浅谈对亚临界流体萃取新技术的一点认识
- 格式:pdf
- 大小:263.50 KB
- 文档页数:7
亚临界水萃取的原理及其优缺点嘿,小伙伴们!今天我们来聊聊一个神奇的过程——亚临界水萃取。
这个过程可不是闹着玩儿的,它可是有着丰富的科学原理哦!那么,亚临界水萃取究竟是什么呢?它又有哪些优缺点呢?别着急,让我一一道来。
让我们来了解一下亚临界水萃取的原理。
亚临界水是指介于气态和液态之间的一种状态,它的压力和温度都比气态和液态低。
在亚临界水中,水分子与气体分子之间的相互作用力较弱,因此可以更容易地将物质从一种状态转移到另一种状态。
而萃取就是利用这种特性,将某种物质从一种溶液中提取出来,然后将其分离成纯品的过程。
那么,亚临界水萃取有哪些优缺点呢?咱们先来看看优点。
亚临界水萃取是一种非常环保的方法。
因为在这个过程中,不需要使用任何化学溶剂,所以不会产生有害的废水和废气。
亚临界水萃取具有很高的效率。
由于亚临界水的性质,它可以在很短的时间内将物质从一种状态转移到另一种状态,从而大大提高了萃取的速度。
亚临界水萃取还可以对多种物质进行分离和提纯,因此具有很高的应用价值。
任何事物都有两面性,亚临界水萃取也不例外。
接下来,我们来看看它的缺点。
亚临界水萃取的设备相对较为复杂。
由于需要使用亚临界水作为溶剂,所以需要专门的设备来维持亚临界水的状态。
这就使得整个萃取过程变得更加复杂和昂贵。
亚临界水萃取对操作条件的要求较高。
例如,需要控制好压力、温度等参数,否则会影响到萃取的效果。
这就给操作带来了一定的难度。
亚临界水萃取对于某些物质可能并不适用。
因为不同的物质在亚临界水中的溶解度和转移速度不同,所以并不是所有的物质都可以通过亚临界水萃取来提纯。
总的来说,亚临界水萃取是一种非常有前景的新型萃取技术。
它具有环保、高效、多功能等优点,但同时也存在设备复杂、操作条件要求高、适用范围有限等缺点。
希望通过今天的介绍,大家都对亚临界水萃取有了更深入的了解。
以后如果有机会接触到这个领域,相信你会更加得心应手哦!。
亚临界水萃取萃取方法将水加热至沸点以上,临界点以下,并掌控系统压力使水保持为液态,这种状态的水被称为亚临界水,在文献中也有称它为超热水和高温水。
通常条件下,水是极性化合物。
在505 kPa压力下,随温度上升(50~300℃),其介电常数由70减小至1,也就是说其性质由强极性渐变为非极性,可将溶质按极性由高到低萃取出来。
在温度和压力都较高的条件下、水的极性降低,可以萃取非极性化合物;温度和压力都较低的条件下,水的极性提高,可以萃取极性化合物。
技术原理水的临界压力及临界温度分别为22.1 MPa和374℃,在f374℃,p22.1 MPa条件下,水的介电常数为5~15、在比374.2℃和22.1MPa略微低一些的低温压下成液体状态的水称为"亚临界水",英文为:subcritical water。
在实际萃取过程中,由于压力对介电常数的影响不如温度的影响大,所以重要通过调整温度来掌控水的介电常数。
由于是不使用酸、碱和催化剂的水在高热高压下的处理技术,因此亚临界水的提取方法被称之为"绿色的处理法"。
此外,提取可以在数秒钟到数分钟的短时间内完成,故而具有可以进行连续处理的优点。
亚临界水可用于萃取各种固体样品中的被测物和各种难萃取的天然产物,通过掌控温度和压力还可以测定挥发性较强的物质和强极性物质。
亚临界水具有"猛烈的溶解有机物在水中"和"猛烈的分解力"等同一般水不同的性质。
利用这一性质,超临界水和亚临界水被利用来提取有用成分(包括提取随着分解反应产生的分解物)。
同时,由于该性质同温度和压力有关系:随着两者的不同而发生相应的变化,因此提取的方法是可以调整掌控的。
也就是说,可以提取由加水分解反应引起的低分子化的有用成分;或者由热分解和氧化分解反应而产生的物质变换后的有用成分也因此可以利用这一方法而提取得到。
亚临界水萃取作为一种新的样品预处理技术,与传统的预处理技术相比具有以下优点口:设备简单、萃取时间短,通过更改萃取温度,可以更改水的极性,从而可以选择性的萃取样品基体中的不同极性的有机化合物,而且它是采纳纯水作萃取剂,不用或很少用有机溶剂,因此它对环境没有污染或污染很少。
亚临界萃取技术
一、亚临界萃取技术(Subcritical and Supercritical Extraction Technologies)
1、什么是亚临界萃取技术?
亚临界萃取技术是一种物理萃取技术,它利用温度和压力调节气体物质(如二氧化碳)的状态,从而进行萃取,这种技术可用于萃取空气中稀释或稀有物质,并且可以有效节约能源,在节能减排、保护环境等方面具有重要意义。
2、亚临界萃取技术的优点
(1)利用高温和高压,可以较高效率地提取植物油中的有效成分,从而可以节省成本和时间。
(2)在此技术中,高温可把提取物保存在稳定的气相状态下,把提取物的挥发损失大大降低。
(3)亚临界萃取技术还可以消除有害物质,如芳香族物质和杂质,有效地改善提取物的性能。
(4)它还可以把萃取过程中的残留物降至最低,从而保证产品的质量。
(5)此外,它没有溶剂,不会产生有害物质,可以有效减少对环境的污染。
3、亚临界萃取技术的缺点
(1)亚临界萃取技术的一大缺点是费用高,一般投入资金都比较多。
(2)由于需要高温、高压环境,技术复杂、稳定性差,需要专家一起操作,这也是亚临界萃取技术的不足之处。
(3)另外,由于高温和压力的作用,在回收过程中可能存在缩水或挥发的问题,这降低了提取效率,降低了提取物的质量。
4、总结
亚临界萃取技术是一种有效的物理萃取技术,它可以从植物油中分离有效成分,节省成本和时间,节能减排和保护环境,但仍有一些不足之处,需要进一步改进。
中草药的亚临界萃取汇报人:2023-11-22•亚临界萃取技术简介•中草药亚临界萃取应用•亚临界萃取实验设计与操作目•中草药亚临界萃取的挑战与前景录01亚临界萃取技术简介•亚临界萃取:是一种利用亚临界流体(通常是某种气体或混合气体)在高压下进行萃取的技术。
亚临界流体在高压下具有较高的溶解能力,能够溶解中草药中的有效成分。
溶解能力将中草药与亚临界流体接触,通过调节压力和温度,使有效成分从中草药中转移到亚临界流体中,实现萃取目的。
萃取过程高效性环保性选择性节能性亚临界萃取技术优势01020304亚临界萃取技术具有较高的萃取效率,能够充分提取中草药中的有效成分。
相比传统萃取方法,亚临界萃取技术使用的亚临界流体通常无毒无害,对环境友好。
通过调节压力和温度等参数,可以实现对不同成分的选择性萃取,提高产品的纯度。
亚临界萃取技术在操作过程中通常具有较低的能耗,符合节能减排的要求。
02中草药亚临界萃取应用传统的中草药萃取方法往往面临着效率低下、耗时费力和成分破坏等问题。
随着现代科技的发展,对中草药有效成分的提取效率和纯度要求越来越高。
中草药萃取现状需求挑战优点亚临界萃取具有高效、环保、选择性高等优点,可大大提高中草药有效成分的提取效率。
原理亚临界萃取是一种利用亚临界流体(如二氧化碳)在高于其临界温度和低于其临界压力的条件下,选择性萃取中草药中的有效成分的方法。
实例如利用亚临界二氧化碳萃取黄芪中的黄酮类化合物,或者萃取丹参中的丹参酮等。
亚临界萃取在中草药领域的应用评估中草药亚临界萃取的效果主要依据萃取率、纯度、耗时以及成本等指标。
评估指标与传统的水提法或有机溶剂提取法相比,亚临界萃取法在中草药有效成分提取上表现出更高的萃取率和纯度。
实例分析亚临界萃取技术为中草药产业的现代化和国际化提供了新的可能性,有助于进一步发掘和利用中草药的药用价值。
前景展望中草药亚临界萃取的效果评估03亚临界萃取实验设计与操作明确实验目标,即希望从中草药中提取的目标成分。
中草药的亚临界萃取研究中草药是中国传统医学中重要的治疗工具之一,具有疗效稳定、副作用小等优点。
为了有效提取中草药中的有效成分,传统的方法是采用水、乙醇等溶剂进行提取。
然而,这些传统的提取方法存在着一些问题,比如,溶剂的成本高、环保问题、提取效率低等。
为了解决这些问题,近年来出现了一种新的提取方式——亚临界萃取技术。
1. 亚临界萃取技术原理亚临界萃取属于一种新兴的提取技术,其基本原理是将提取物质在一定压力和温度下,使其处于临界状态下,同时在适当的溶剂、辅助溶剂和萃取物料的条件下,持续进行提取。
亚临界萃取技术主要包含四个步骤:1. 前处理:将制备好的样品经过粉碎、均质、筛分等处理,以打散其细胞结构,增加提取效率。
2. 前沿喷雾干燥:将处理好的样品制成粉末状,以便有效进行亚临界萃取。
3. 亚临界萃取:将制备好的样品放入亚临界批式提取设备中,按照一定的比例和条件,加入辅助溶剂,通过压力和温度的调节,将有效成分提取出来。
4. 后处理:对提取出来的有效成分进行分离纯化、过滤、浓缩等处理,以获得最终产物。
2. 中草药的亚临界萃取应用中草药是一类自然药物,主要成分包含多种生物活性物质。
相比传统提取方法,亚临界萃取技术能够提高中草药的萃取效率、降低成本、减少污染,且产物质量稳定,并且不会破坏药物的活性物质。
因此,亚临界萃取技术在中草药提取中得到了广泛的应用。
以下是一些典型的中草药亚临界萃取的应用。
1. 何首乌的亚临界萃取:何首乌是一种常见的中药材,被广泛应用于治疗不同类型的癌症和心脑血管疾病。
利用亚临界萃取技术,可以获得何首乌中有效成分的高产率和高纯度。
2. 茯苓的亚临界萃取:茯苓是一种常见的中草药,被广泛应用于治疗心脏病和消化不良。
利用亚临界萃取技术,可以获得茯苓中有效成分的高产率和高纯度。
3. 高丽参的亚临界萃取:高丽参是一种常见的中草药,被广泛应用于改善人的免疫功能和治疗糖尿病。
利用亚临界萃取技术,可以获得高丽参中有效成分的高产率和高纯度。
食品工业亚临界水萃取技术浅述近年来“绿色化学”的提出,亚临界水萃取技术是以价廉、无污染的水作为萃取剂,操作简单,提取时间短、环境好、萃取效率高的优势引起了科学工作者的关注被视为绿色环保、前景广阔的一项变革性技术。
在国外该方法已在环境和食品的样品中有机污染物的萃取、天然产物有效成分提取和分析预处理过程中得到了广泛应用,但国内对该技术的研究起步较晚。
本文着重综述了近年来国内外亚临界水萃取技术在食品各方面中的应用,并对以后发展趋势作出探讨。
1 亚临界水萃取的原理亚临界水(Sub-critical water,SCW)是指在一定压力下,将水加热到100℃以上临界温度374℃以下的高温,但水体仍然保持在液体状态(或指压力和温度在其临界值之下的附近区域的液态水)。
亚临界状态下水的流体微观结构(氢键、离子水合、离子缔合、簇状结构)发生了变化,使亚临界水的物理、化学特性与常温常压下的水有较大的差别[1]。
亚临界水在一定压力下会随着温度的升高,其极性会降低,能够降低表面张力和水的粘度,从而对有机物的溶解能力增加,增强了有机物在水中的溶解度。
2 亚临界水萃取的影响因素亚临界水提取技术是一种很有前景,强有力的提取变革方法。
近年来应用于食品分析过程预处理的研究逐年增多,影响亚临界水萃取的因素[2]包括萃取温度、萃取液料比、萃取时间、萃取改良剂(包括表面活性剂的添加)以及萃取压力。
2.1 萃取温度亚临界水萃取技术最主要的影响因素是温度,随着温度升高,水的极性下降。
通过对温度的控制,可以实现对基体中不同极性有机物的萃取,极性较强的物质需要的温度较低。
Pawlowski等[3]使用亚临界水萃取技术对香蕉、柠檬、桔子、蘑菇和大米中的杀虫剂残留进行了萃取研究,在75℃的温度下,亚临界水对噻苯咪唑和多菌灵这两种杀虫剂的萃取率达到了80.9~100.5%;氯酚、胺、烷烃等在100℃左右就萃取完全。
Yang等[4]利用亚临界水萃取技术从牛至叶中萃取5种萜烯类物质,并对其稳定性进行考察,结果表明,高温会使萜烯类物质降解并使回收率下降,并且其稳定性也会随着温度的升高而降低。
亚临界水萃取的原理及其优缺点亚临界水萃取,听起来好像是高科技的东西,其实呢,它就是一种古老的中药材提取方法。
这个方法的原理很简单,就是把药材放在一个高压低温的环境下,让药材里的有效成分溶解在水中,然后再用这种溶液来制药。
那么,这种方法有什么优点和缺点呢?咱们一起来看看吧!
亚临界水萃取的优点之一就是提取出来的药物成分纯度高。
因为在高压低温的环境下,药材里的杂质和水分都会被去掉,这样就能保证提取出来的药物成分是纯净的。
这对于制药行业来说非常重要,因为只有纯度高的药品才能保证疗效。
亚临界水萃取还有一个优点,那就是生产过程中不会产生有害物质。
相比于传统的提取方法,亚临界水萃取不需要使用有机溶剂,因此就不会产生那些有毒有害的废气和废水。
这对于环保来说也是非常有利的。
亚临界水萃取也有一定的缺点。
这种方法比较复杂,需要专业的设备和技术。
而且,由于高压低温的条件比较苛刻,所以设备的维护成本也比较高。
这对于一些小型制药企业来说可能是一个负担。
亚临界水萃取还存在一定的安全隐患。
因为在高压低温的环境下,设备很容易发生故障,甚至可能会爆炸。
所以在使用这种方法的时候,必须要有严格的安全措施和应急预案。
总的来说,亚临界水萃取是一种非常有效的中药材提取方法。
它既能保证药物成分的纯度,又能减少生产过程中的污染。
但是,由于它的复杂性和安全性问题,所以在使用的时候一定要特别小心。
好了,今天咱们就聊到这里吧!希望这篇文章能让大家对亚临界水萃取有一个更深入的了解。
下次再见啦!。
亚临界萃取原理嗨,小伙伴们!今天咱们来唠唠亚临界萃取这个超有趣的东西。
亚临界萃取啊,就像是一场神奇的魔法表演。
你知道吗?它主要是利用亚临界流体来进行萃取的呢。
那啥是亚临界流体呀?简单说呢,就是物质处于一种比较特殊的状态。
它既不是像气体那样特别散漫,也不是像液体那样老老实实待着。
就好比是一个调皮的小精灵,有着独特的本事。
亚临界流体的溶解度很奇特哦。
它能像一个超级收纳盒一样,把那些我们想要从原料里提取出来的东西给装进去。
比如说,从植物里提取油脂或者一些有用的成分。
植物就像是一个装满宝藏的小盒子,亚临界流体这个小机灵鬼就可以钻进去,把那些宝藏,像油脂啊,还有一些有药用价值的成分,都给带出来。
亚临界萃取的过程就像是一场精心策划的寻宝之旅。
亚临界流体在合适的温度和压力条件下,会和原料亲密接触。
这个时候啊,它们之间就开始有了奇妙的互动。
亚临界流体分子就像一个个热情的小使者,跑到原料里,找到那些目标成分,然后拉着它们的小手,说:“走,咱们一起出去玩。
”而且哦,亚临界萃取还有个很大的优点呢。
它对原料的要求不会特别苛刻。
不像有些萃取方法,原料稍微有点不完美就不行了。
亚临界萃取就比较包容,不管原料是长得有点歪歪扭扭,还是稍微有点小瑕疵,它都能很好地完成萃取任务。
这就好比是一个很随和的小伙伴,不管和谁都能玩到一起去。
再说说亚临界流体的种类吧。
有丙烷、丁烷这些呢。
这些家伙在亚临界状态下就像是一群勤劳的小工蚁。
它们各自发挥着自己的作用。
丙烷呢,就像一个力气比较大的小工蚁,在某些萃取中特别能干。
丁烷呢,也有自己的特长,就像一个比较细心的小工蚁,能把一些比较难搞的成分给提取出来。
亚临界萃取在很多领域都大显身手呢。
在食品行业,它可以把植物里的营养成分提取出来,还能保证这些营养成分不被破坏。
就像从芝麻里提取芝麻油,用亚临界萃取出来的芝麻油啊,那味道可香了,而且营养还特别丰富。
在中药领域,它也像是一个得力的助手,把中药里的有效成分提取出来,让中药更好地发挥作用。
低温压榨菜籽饼的亚临界流体萃取技术研究近年来,随着人们对健康和有机食品的日益关注以及绿色环保的提倡,菜籽油的需求量不断增加。
而目前,菜籽油的生产常采用高温压榨法,但高温压榨法存在着油脂中营养成分丧失严重、油渣中残留有害物质等问题。
因此,寻找一种新的低温压榨技术就显得尤为重要。
亚临界流体萃取技术是一种利用亚临界流体的物理特性进行分离和提取的方法。
与传统的溶剂萃取方法相比,亚临界流体萃取技术具有操作温度低、环保性好、提取速度快、选择性高等优点。
因此,将亚临界流体萃取技术应用于菜籽饼的低温压榨,有望有效提高菜籽油的纯度和质量。
首先,菜籽油低温压榨的具体步骤如下:首先,将菜籽饼破碎并去除杂质。
然后,将菜籽饼放入亚临界流体中进行浸泡。
亚临界流体的选择可以根据菜籽油的特性来确定,例如采用丙酮、乙酸乙酯等有机溶剂。
接下来,将亚临界流体和菜籽饼进行一定时间的混合搅拌,以促进油脂的溶解和扩散。
最后,通过降温和蒸发的方法将亚临界流体中的溶解油脂进行分离,得到纯净的菜籽油。
亚临界流体萃取技术在菜籽饼的低温压榨中具有许多优点。
首先,亚临界流体的操作温度低于传统的高温压榨法,可以有效减少油脂中营养成分的丧失。
其次,亚临界流体具有较强的选择性,可以选择性地提取菜籽油中的脂肪酸等营养成分。
此外,亚临界流体还具有良好的溶解性和扩散性,可以快速提取出菜籽油中的有益成分。
最后,亚临界流体萃取技术是一种无机溶剂的技术,避免了有机溶剂在萃取过程中的残留和对环境的污染。
然而,亚临界流体萃取技术在菜籽饼的低温压榨中仍然存在一些问题和挑战。
首先,亚临界流体的成本较高,增加了生产成本。
其次,亚临界流体萃取技术的设备和工艺条件要求较高,需要进一步研究和改进。
此外,亚临界流体萃取技术的应用范围有限,只适用于某些特定的原料和产品。
综上所述,低温压榨菜籽饼的亚临界流体萃取技术是一种有潜力的菜籽油生产方法。
通过亚临界流体的物理特性,可以有效提高菜籽油的纯度和质量,并且可以减少营养成分的丧失和有害物质的残留。
学习亚临界流体萃取新技术的工作汇报河南京华食品科技开发有限公司蔡兴亮2014年10月21日至25日我带领公司四名人员参加了由河南省亚临界生物技术有限公司在安阳市承办的“人社部农林产品亚临界萃取新技术高级研修班”。
在研修班上,来自国内著名高校和科研院所的专家学者和教授就亚临界流体萃取的定义、原理、工艺流程、操作方法以及在油脂、植物蛋白、农林产品、中药、化妆品等领域的应用进行了祥细的分析和讲述,并参观了实验基地和现场学习交流,使我受益很深。
现将学习内容做如下汇报:一、亚临界萃取技术科研基地及成果1、河南省工程技术研究中心总部:河南省亚临界生物技术有限公司(安阳)2、河南省亚临界萃取工程技术研究中心分中心:郑州大学(郑州)国家粮食储备局西安油脂科学研究设计院(西安)3、河南省亚临界萃取工程生产示范厂:河南省鲲华生物技术有限公司(汤阴)4、科研成果国家技术进步奖二等奖1项2014年河南省科学技术进步奖二等奖2项2010、2013年中国粮油学会科技进步奖二等奖1项2012年发明专利9项,实用新型4项国家标准1项(大豆蛋白粉)专著1部,合著2部论文20余篇承担国家、省科研项目5项5、合作科研、院校、公司及网站目前,国内已经建有亚临界萃取生产线80多条,应用单位200多家。
1)江苏大学:合作研制亚临界流体萃取产业化生产线2条。
2)中国农业科学院:在花生脱脂蛋白方面建立了5条产业化生产线。
3)河南省农业科学院:合作为飞鹤乳业集团建设核桃蛋白奶粉生产线1条。
4)中国林业科学院:合作完成了辣椒红色素和万寿菊黄色素生产线6条。
5)其他:宁波大学、武汉工业大学、华南理工大学、山西农业大学、武汉轻工大学、江南大学、北京工商大学、郑州烟草研究院、河北晨光公司等。
6)管理中国萃取技术网站二、与会专家、教授详见附件一三、学习主要内容1、亚临界流体萃取技术及食品和生产安全性最早应用的亚临界流体为液化丁烷和丙烷,1990年祁鲲的发明《液化石油气浸出油脂工艺》(专利号:90108660.6)代表了这项技术诞生。