体育单招试卷数学模拟试卷3含答案汇编
- 格式:doc
- 大小:97.61 KB
- 文档页数:8
全国体育单招考试全真数学模拟卷(三)一、选择题:本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={2,4,6,7}, B={x ∈N |0<x −1≤8},则C B A 元素的个数为( ) A.2 B.3 C.4D.52.已知函数f (x )=√x−2x−4的定义域为( ) A.[2,4)∪(4,+∞) B.(2,+∞) C.[2,4)D.[2,+∞)3.下列函数为偶函数且在(0,+∞)上单调递增的是( ) A.y =−x 2 B.y =2x C.y =|x |D.y =x 34.已知函数f (x )=sin x cos x +√32cos 2x 的最小正周期为( ) A.π4B. π2C.πD.2π5.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +3)2+(y +1)2=4上运动,则线段AB 中点M 的运动轨迹方程为( ) A. (x +12)2+(y +1)2=1B. (x −12)2+(y +1)2=1C. (x +12)2+(y −1)2=1D. (x −12)2+(y −1)2=16.从编号为1,2,3,4的4个球中,任取2个球,则这两个球的编号之和为偶数的概率为( ) A.13 B.14 C.12D.237在△ABC 中,内角A,B,C 所对的边分别为a,b,c ,若B=60°,△ABC 的面积为√3,a+c=6则b=( ) A. 5 B. 2√6 C.2√7D. √308.关于三条不同直线a,b,l 以及两个不同平面α,β,则下面命题正确的是( ) A.若a ‖α,b ‖α,则a ∥bB. 若a ∥α,b ⊥α,则b ⊥αC. 若a ∥α,α⊥β,则a ⊥βD. 若a ⊂α,b ⊂α,且l ⊥a,l ⊥b ,则l ⊥α二、填空题:本题共4小题。
每小题8分,共32分。
9.不等式x 2−3x +2≤0的解集是____________ 10.若tan α=12,则2sin 2α+sin acos α=____________11.在数列{a n }中,a 1=3,a n+1−a n =2,n ∈N +,则a 10=____________12.已知向量a 与向量b 的夹角为π3,且|a |=1,|2a −b |=√7,则|b |=____________三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤。
体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。
A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。
B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。
12. 若 a + b = 10,且 a - b = 2,则a × b = _______。
13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。
14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。
15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。
三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。
体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。
A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。
A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。
B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。
A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。
答案:正数;02. 一个数的相反数是其本身的数是______。
答案:03. 一个数的倒数是其本身的数是______。
答案:±14. 若a和b互为倒数,则ab=______。
答案:15. 一个数的平方等于9,这个数可以是______或______。
答案:3;-36. 一个数的立方等于-27,这个数是______。
答案:-37. 一个数的平方根是2,这个数是______。
全国普通高等学校运动训练、民族传统体育专业单招统一招生考试一、选择题:(本大题共10小题,每小题6分,共60分)(1)设集合{2,4,6,8}N 4}{1,2,3==,,M ,则N M =( )A .φB .}3,1{C .}4,2{D .}8,6,4,3,2,1{数的周期函数,且为偶函最小正周期为数的周期函数,且为偶函最小正周期为数的周期函数,且为奇函最小正周期为数的周期函数,且为奇函最小正周期为)是()函数(42422sin )(2D C B A xx f π=(3)下列函数中是增函数的是( )A.x e y --=B.x e y -=C.x e y -=D.x e y =46332633215cos 15sin 4D C B A )()(=︒+︒ ︒︒︒︒⊥+=1501206030)(33,15D C B A b a b b a b a 的夹角为与,则)满足(),单位向量,()已知平面向量( (6)已知a >b,甲:c >d ;乙:a+c >b+d ,则甲是乙的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3203203203221023722=-+=--=++=+--=+-+y x D y x C y x B y x A l y y x l 的方程为(),则的圆心,斜率为过圆)已知直线(4523249]1,1[1)(82D C B A m M x x x f m M )(的最大值和最小值,则在区间分别是函数与)设(=----=))(())(())(())(()其中正确的命题是(,则)若;(∥,则∥)若(,则)若;(∥,则∥)若(有下面四个命题:为两个平面,为两条直线,,)设(434231212321,9D C B A m m nm n n m n m n m βαββαβαααβα⊥⊥⊥⊥⊂(10)的解集为不等式21≤-xx ( ) A.),2[1+∞∞- ),( B.),1]32+∞-∞-(,( C.]2,1( D.)1,32[二、填空题(本大题共6小题,每小题6分,共36分)(11)在6名男运动员和5名女运动员种选男、女运动员各3名组成一个代表队,则不同的组队方案共有( )种。
2022年全国体育单招数学试题一、单选题1.若集合,,则A. B.C. D.2.不等式的解集为A. B.C. D.3.若,则等于A. B.C. D.4.函数的零点是A. B.C. D.5.若直线过圆的圆心,则的值为A. B.1C. D.6.设数列的前项和,则的值为A. B.C. D.7.设,用二分法求方程在近似解的过程中得,,,,则方程的根落在区间A. B.C. D.8.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.6B.12C.18D.249.设双曲线2213yx-=,22125x y-=,22127y x-=的离心率分别为1e,2e,3e,则()A.321e e e <<B.312e e e <<C.123e e e <<D.213e e e <<10.若函数()lg(f x x mx =+为偶函数,则m =()A.-1B.1C.-1或1D.0二、填空题11.不等式01xx ≤+的解集为___________________.12.已知椭圆的一个焦点为()1,0F ,离心率为12,则椭圆的标准方程为_______.13.已知向量a ,b 满足2a = ,||b = ,若()b a b ⊥- ,则a 与b 的夹角为______.14.在6212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为__________(用数字作答).15.不等式22lg lg 0x x -<的解集是_______.16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.三、解答题17.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.18.过点()2,0P -的直线l 与抛物线2:4C y x =交于不同的两点A ,B.(Ⅰ)求直线l 斜率的取值范围;(Ⅱ)若F 为C 的焦点,且0FA FB ⋅=,求ABF 的面积.19.如图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.参考答案1.C2.A【解析】不等式可化为:,所以,所以,所以不等式的解集为.注:先保证x2前的系数为正,才有“大于取两边,小于取中间的规律”3.D4.A【解析】令得,或.5.B【解析】圆化为标准方程为,所以圆心为,代入直线得.6.C【解析】.(想想S4表示什么?前4项的和!所以S4=a1+a2+a3+a4,S3=a1+a2+a3)7.C8.D【解析】【分析】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;再由分步计数原理的运算法则求得结果.【详解】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;所以可以组成无重复数字的三位奇数有1212232224C C C A⋅⋅⋅=种.故选:D【点睛】本题考查排列组合的综合应用,属于基础题.9.D【解析】【分析】已知双曲线标准方程,根据离心率的公式,直接分别算出1e ,2e ,3e ,即可得出结论.【详解】对于双曲线2213y x -=,可得222221,3,4a b c a b ===+=,则22124c e a==,对于双曲线22125x y -=,得222222,5,7a b c a b ===+=,则222272c e a ==,对于双曲线22271x y -=,得222222,7,9a b c a b ===+=,则223292c e a ==,可得出,221322e e e <<,所以213e e e <<.故选:D.【点睛】本题考查双曲线的标准方程和离心率,属于基础题.10.C 【解析】【分析】由f (x)为偶函数,得((lg lg x mx x mx --+=+,化简成xlg (x 2+1﹣m 2x 2)=0对x ∈R 恒成立,从而得到x 2+1﹣m 2x 2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即((lg lg x mx x mx --=;得((()222lg lg lg 10x mx x mx x x m x -+++=+-=对x ∈R 恒成立,∴x 2+1﹣m 2x 2=1,∴(1﹣m 2)x 2=0,∴1﹣m 2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.11.(1,0]-【解析】由01xx ≤+得:(1)0(1)x x x +≤≠-,解得:10x -<≤,故填(]1,0-.12.22143x y +=【解析】【分析】根据焦点和离心率构造关于,,a b c 的方程组,求解得到,,a b c ,从而可得椭圆的标准方程.【详解】设椭圆的标准方程为:()222210x y a b a b +=>>.椭圆的一个焦点为()1,0F ,离心率12e =222112c c a a b c=⎧⎪⎪∴=⎨⎪=+⎪⎩,解得:223a b =⎧⎨=⎩∴椭圆的标准方程为:22143x y +=本题正确结果:22143x y +=【点睛】本题考查椭圆标准方程的求解问题,属于基础题.13.30°【解析】【分析】由已知可得()0b a b ⋅-=,利用向量的数量积即可求解.【详解】由已知()0b a b ⋅-= 知,20b a b -⋅= ,则3a b ⋅= ,所以3cos ,2a b = ,故夹角为30°.故答案为:30°【点睛】本题考查了向量的数量积,需掌握向量垂直数量积等于零,属于基础题.14.154【解析】【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.【详解】因为66316621122rrr r r r r T C x C x x --+⎛⎫⎛⎫=⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令630r -=,所以2r =,3154T =.故答案为:154.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.()1100,【解析】【分析】运用对数恒等式,将2lg x 转化成2lg x ,对lg x 进行因式分解,可求lg x 的范围,即可求出解集.【详解】22lg lg 0x x -< ,即()2lg 2lg 0x x -<()lg lg 20x x ∴-<0lg 2x ∴<<1100x ∴<<故答案为:()1100,【点睛】本题考查了对数恒等式log log na a M n M =,是常考题型.16.(,1-∞--.【解析】【分析】由对数函数的性质化对数不等式为一元二次不等式组求解.【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <-.∴不等式()()222log 1log 2x x ->-的解集为(,1-∞--.故答案为:(,1-∞--.【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.17.(1)0.46.(2)0.2352.【解析】【分析】【详解】(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46.(2)P 2=[0.6(1-0.6)]·[(0.7)2(1-0.7)0]=0.2352.18.(Ⅰ)22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)9【解析】【分析】(Ⅰ)利用点斜式写出直线l 的方程,将直线与抛物线联立消去y ,利用>0∆即可求解.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k +=-=,(1,0)F ,利用向量数量积的坐标运算可得24170FA FB k⋅=-= ,从而1211(1)(1)22ABF S FA FB x x △=×=++,代入即可求解.【详解】(Ⅰ)由题意知直线斜率存在且不为0,设直线l 的方程为(2)y k x =+,将直线l 的方程和抛物线2:4C y x =联立,消去y 得2222(44)40k x k x k +-+=由题意知,2016(12)0k k ≠⎧⎨∆=->⎩解得2102k <<,所以直线l 的斜率的取值范围是22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k+=-=,又(1,0)F ,所以212121212(1)(1)(1)(1)(2)(2)FA FB x x y y x x k x x×=--+=--+++2221212(1)(21)()41k x x k x x k =++-+++2417k =-因为0FA FB ⋅= ,所以24170k -=,即2417k =.()121212211114(1)(1)144192222ABF S FA FB x x x x x x k△骣琪=×=++=+++=+-+=琪桫所以ABF 的面积为9.【点睛】本题考查了直线与抛物线的位置关系、焦点三角形的面积问题,考查了抛物线的焦半径公式,属于中档题.19.(1)证明见解析(2)5-【解析】【分析】(1)证明四边形EFBC 是平行四边形,可得CE BE ∥,进而得证.(2)首先取AB 的中点O ,连接PO ,根据题意易证PO ⊥底面ABCD ,再建立空间直角坐标系,求出两平面的法向量,利用向量的夹角公式即可求得余弦值.【详解】(1)取PA 的中点F ,连接FE ,FB ,∵E 是PD 的中点,∴1//2FE AD ,又1//2BC AD ,∴//FE BC ,∴四边形EFBC 是平行四边形,∴//CE BF ,又CE 不在平面PAB 内,BF 在平面PAB 内,∴//CE 平面PAB .(2)取AB 的中点O ,连接PO .因为PA PB =,所以PO AB⊥又因为平面PAB ⊥底面ABCD AB =,所以PO ⊥底面ABCD .分别以AB 、PO 所在的直线为x 轴和z 轴,以底面内AB 的中垂线为y 轴建立空间直角坐标系,令122AB BC AD ===,则4=AD ,因为PAB △是等边三角形,则2PA PB ==,O 为AB的中点,PO =,则(P ,()1,0,0B ,()1,2,0C ,()1,4,0D -∴(1,2,PC = ,()0,2,0BC =uu u r,()2,2,0CD =- ,设平面PBC 的法向量为(),,m x y z = ,平面PDC 的法向量为(),,n a b c =,则200200m PC x y m BC y ⎧⋅=+=⎪⎨⋅=++=⎪⎩,令x =)m =,202200n PC a b n CD a b ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令1a =,故可取(n = ,∴cos ,=5m n m n m n ⋅<>=,经检验,二面角B PC D --的余弦值的大小为5-.【点睛】本题第一问考查线面平行的证明,第二问考查向量法求二面角的余弦值,同时考查了学生的计算能力,属于中档题.答案第9页,总9页。
1.(2013年第7题)若等比数列的前n 项和为5na +,则a = . 2.(2013年第13题)等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 .3.(2012年第9题)等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = .4.(2012年第15题)已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++=L .5.(2011年第9题)n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = .6.(2011年第14题)已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = .7.(2010年第5题)等差数列{}n a 中,12a =,公差12d =-,若数列前N 项的和为0N S =,则N = . 8.(2010年第13题){}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= .9.(2009年第17题){}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存在,求出n 。
若不存在,说明理由。
10.(2008年第9题)n S 是等比数列的前n 项和,已知21S =,公比2q =,则4S = .11.(2008年第17题)已知{}n a 是等差数列,1236a a a +==,则{}n a 的通项公式为n a = .12. (2005年第4题)设等差数列{}n a 的前n 项和为n S ,已知3316,105a S ==,则10S = .13. (2005年第22题)已知数列{}n a 的前n 项和为n S 满足235(1,2,3,)n n S a n n =-+=L 。
2020年全国体育单招数学测试题(含答案)1.设集合$A=\{x\in \mathbb{Z}|(x-4)(x+1)<0\}$,集合$B=\{2,3,4\}$,则$A\cap B$=()答案:C。
解析:解方程$(x-4)(x+1)<0$,得到解集$A=(-1,4)$,与$B$的交集为$\{3\}$。
2.函数$y=2\cos2x-1$的最小正周期为()答案:$\pi$。
解析:根据余弦函数的最小正周期为$2\pi$,得到$2x=\pi$,即$x=\frac{\pi}{2}$,所以函数的最小正周期为$\frac{\pi}{2}$。
3.下列函数中,既是偶函数又在区间$(0,+\infty)$上单调递增的是()答案:$y=x^2$。
解析:$y=-x$是奇函数,$y=x^2-1$在$(0,+\infty)$上单调递增,但不是偶函数,$y=\cos x$在$[-\frac{\pi}{2},\frac{\pi}{2}]$上单调递增,但不是偶函数,所以答案为$y=x^2$。
4.$\cos^2\frac{\pi}{8}-\sin^2\frac{\pi}{8}=$()答案:$\frac{1}{2}$。
解析:根据三角函数的半角公式,$\cos\frac{\pi}{4}=\cos^2\frac{\pi}{8}-\sin^2\frac{\pi}{8}$,又$\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}$,所以$\cos^2\frac{\pi}{8}-\sin^2\frac{\pi}{8}=\frac{1}{2}$。
5.设向量$\mathbf{a}=(1,2)$,$\mathbf{b}=\begin{pmatrix}1\\2\end{pmatrix}$,则下列结论正确的是()答案:$\mathbf{a}\cdot\mathbf{b}=5$。
解析:$\mathbf{a}\cdot\mathbf{b}=1\times 1+2\times 2=5$。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学试卷一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M =x │x >―1,N ={x |x 2>1},则M ∩N =( )A.{x |x >―1}B. x │x >―1 或 {x |x >1}C. {x |x >1}D. {x |―1<x <1}2.已知向量a =(1,2),b =(1,-3),则|3a +b |=( )3.点(1,-1)到直线x ―2y ―8=0的距离是( )4.已知( )5.若2x +5>14,则的取值范围是( )A.(-7,+∞)B.(7,+∞)C.(-3,+∞)D.(3,+∞)6.已知圆锥的母线长为4,底面周长为2π,该圆锥的表面积是( )A. 4πB. 5πC. 8πD. 9π7.从1,2,3,4,5这5个数中,任取2个不同的数,其和为偶数的概率是( )A .34 B. 35 C . 12 D. 258.记等差数列{a n }的前n 项和为S n ,若a 5+a 6+a 7=15,则S 11=( )A.110B.80C.55D.309.若方程x 2+y 2+4ax ―2y +5a =0表示的曲线是圆,则a 的取值范围是( )A.(14,1)B. (―1,―14)C.( ―∞,14 )∪(1,+∞)D. ( ―∞,―1 )∪(―14,+∞)10.函数f (x )=sin x cos x +cos 2x 的最大值是 ( )二、填空题:本题共6小题,每小题6分,共36分.的系数是_________.(用数字作答)12.双曲线x 24―y 2=1的离心率是_________.13.已知{a n }是各项均为正数的等比数列,且a 3,3a 2,a 4,成等差数列,则的公比为 .14.在ΔABC 中,AC =2,BC =3,AB =4,则cos ∠ACB =_________.15.已知二次函数f (x )=ax 2―3a 2x ―1,若f (x )在(1,+∞)单调递增,则a 的取值范围是_________.16.已知正四棱柱ABCD ―A 1B 1C 1D 1的底面边长为2,点P 是底面A 1B 1C 1D 1的中心,且点P 到直线AB 的距离是3,则ΔPAC 的面积为_________.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.【淘宝店学子之家精品店出品haiwang103】17.(18分)A ,B ,C 成等差数列.(1)求B ;(2.18.(18分)已知椭圆c :x 2a 2+y 2b 2=1(a >b >0) 4.(1)求C 的方程(2)过点(-3,0)且斜率k 的直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,当AO ⊥BO 时,求k 的值。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学试卷一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M =*x |x >−1+,N =*x|x 2>1+,则M ∩N =( )A.*x|x >−1+B. *x|x >−1+或*x|x >1+C. *x|x >1+D. *x|−1<x <1+2.已知向量a ⃗=(1,2),b ⃗⃗=(1,-3),则|3a ⃗+b⃗⃗|=( ) A.5 B.4 C.3 D.√53.点(1,-1)到直线x −2y −8=0的距离是( )A.5B. √5C.√55D.154.已知α=2kπ+π2(k ∈Z ),则tan α2=( ) A.-1 B.−√22 C. √22 D.1 5.若2x+5>14,则x 的取值范围是( )A.(-7,+∞)B.(7,+∞)C.(-3,+∞)D.(3,+∞)6.已知圆锥的母线长为4,底面周长为2π,该圆锥的表面积是( )A. 4πB. 5πC. 8πD. 9π7.从1,2,3,4,5这5个数中,任取2个不同的数,其和为偶数的概率是( ) A .34 B. 35C . 12 D. 25 8.记等差数列*a n +的前n 项和为S n ,若a 5+a 6+a 7=15,则S 11=( )A.110B.80C.55D.309.若方程x 2+y 2+4ax −2y +5a =0表示的曲线是圆,则a 的取值范围是( )A.(14,1)B. (−1,−14)C.( −∞,14 )∪(1,+∞)D. ( −∞,−1 )∪(−14,+∞)10.函数f (x )=sin x cos x +cos 2x 的最大值是 ( )A.√22B.1+√22C. √2D.1+√2二、填空题:本题共6小题,每小题6分,共36分.11.(1+2x )7的展开式中的系数是_________.(用数字作答)12.双曲线x 24−y 2=1的离心率是_________.13.已知*a n +是各项均为正数的等比数列,且a 3,3a 2,a 4,成等差数列,则的公比为14.在ΔABC 中,AC =2,BC =3,AB =4,则cos∠ACB =_________.15.已知二次函数f (x )=ax 2−3a 2x −1,若f (x )在(1,+∞)单调递增,则a 的取值范围是_________.16.已知正四棱柱ABCD −A 1B 1C 1D 1的底面边长为2,点P 是底面A 1B 1C 1D 1的中心,且点P到直线AB的距离是3,则ΔPAC的面积为_________.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.【学子之家精品店出品haiwang103】17.(18分)已知ΔABC的内角A,B,C成等差数列.(1)求B;(2)求sinA+√3cos A的最大值.18.(18分)已知椭圆c:x2a2+y2b2=1(a>b>0)的离心率为√63,焦距为4.(1)求C的方程(2)过点(-3,0)且斜率k的直线l与椭圆C交于A,B两点,O为坐标原点,当AO⊥BO时,求k的值。
2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学一、选择题:本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将所选答案的字母在答题卡上涂黑。
1. 若集合=-<<∈=-<<∈A x x x Z B x x x Z {|14,},{|21,},则A B 的元素共有( ) A .1个 B .2个 C .3个 D .4个 2.函数f x x x =-++22()log 23的定义域是( )A.(-1,3)B.[-1,3]C.(-3,1)D.[-3,1]3.下列函数中,为增函数的是( )A.y x =-+ln(1)B.y x =-21 C.=y e x2D.y x =-14.函数y x x =++3sin 4cos 1的最小值是( )A.-7B.-6C.-5D.-45.已知O 为坐标原点,点A (2,2),M 满足|AM |=2|OM |,则点M 的轨迹方程为( )A.3x 2+3y 2+4x+4y-8=0B.3x 2+3y 2-4x-4y-8=0C.x 2+y 2+4x+4y-4=0D.x 2+y 2-4x-4y-4=06.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方法共有( ) A .6种 B .9种 C .12种 D .15种 7.ΔABC 中,已知A =60°,AC =2,BC =7,则AB =( ) A.4 B.3 C.2 D.18.长方体ABCD-A 1B 1C 1D 1中,O 是AB 的中点,且OD =OB 1,则( ) A. AB=CC 1 B. AB=BC C.∠CBC 1=45° D.∠BDB 1=45°二、填空题:本题共4小题,每小题8分,共32分。
请将各题的答案填入答题卡上的相应位置。
9. 若θθ-=-22sin cos 13,则cos2θ=______; 10. 不等式x ->|1|2的解集是_______.11. 若向量a ,b 满足a b ==2,3,且a 与b 的夹角为120o ,则a b ⋅=_______12. 设,,αβγ是三个平面,有下列四个命题: ①若⊥⊥αββγ,,则⊥αγ ②若αββγ//,//,则//αγ ③若⊥αββγ,//,则⊥αγ ④若⊥αββγ//,,则//αγ 其中所有真命题的序号是_________三、解答题:本题共3小题,每小题18分,共54分。
2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=()A. ∅B.{3}C.{9}D.{4,9}2.1, 3的等差中项是()A.1B.2C.3D.43.函数f(x)=sin2x+cos2x的最小正周期是()A.2πB.3π2C.π D.π24.函数f(x)=√3−4x+x2的定义域是()A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]5.函数y=1√x2−2x+2图象的对称轴为()A. x= 1B. x=12C. x= −12D. x= -16.已知,则()A. 35B.310C.−310D. −357.函数f(x)=ln(-3x2+1)的单调递减区间为()A.(0,√33) B.(−√33,0) C.(−√32,√32) D.(−√33,√33)8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为()A. B. C. D.9.双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线的倾斜角分别为α和β,则cosα+β2=()A.1B.√32C.12D.010.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11.从1,2,3,4,5中任取3个不同数学,这3个数字之和是偶数的概率为____________12.已知向量a, b满足|a|=2,|a+b|=1,且a与b的夹角为150°,则|b|=___________13.不等式log1x>2的解集是____________214.等比数列{an}中,若a1+a2=3,a4+a5=12,则a3=____________215.(x−3y)5的展开式中x2y3的系数为______________16.若平面α, β, r满足α⊥γ,α∩r=a,β⊥γ,β∩r=b,有下列四个判断:①a//β②当α//β时,a//b③a⊥β④当α∩β=c时,c⊥γ其中,正确的是_____________(填写所有正确判断的序号)三、解答题:本大题共3小题,每小题18分,共54分。
2021 年全国一般高等学校运动训练,民族传统体育专业单招统一招生考试数学一,挑选题:本大题共 10 小题,每道题 6 分;在每道题给出的四个选项中,只 有哪一项符合题目要求的,请将所选答案的字母在答题卡上涂黑72A { x | 0 x , x N} ,就 1,如集合 的元素共有( )A A. 2 个 B. 3 个 C. 4 个 无穷多个D. 222,圆 x y2y 7 0 的半径是()6C. 2 2A. 9B. 8D. 3,以下函数中的减函数是 ()xxee 232yxy 2x x sin xA. y | x |yB.C.D. 2f (x) 2x x 4,函数 的值域是()(,1) (1,) [0, 2][0, 1] A. B. C. D . y 3 sin 4 x 3 cos4x 的最小正周期和最小值分别是 5,函数 ()32 332 3和和D . A.和和B.C.22ABC BC 4 , AC 4 3 ,就 B是钝角三角形, A 30 6.已知 , ()A. 135B. 120C. 60D. 30l , m ,平面 7.设直线 , ,有以下 4 个命题:①如 l , m ,就 l // m ②如 l // , m // ,就 l // m ③如 l, l//m//m ////,就 ④如 , ,就 其中,真命题是 ()A . ①③8.从 5 名新队员中选出 165 种 ②③①④D. ②④B. C. 2 人, 6 名老队员中选出 B. 120 种1 人,组成训练小组,就不同的组成方案共有( )C. 75 种D. 60 种2 2x ay b3 ,就此双曲线的离心率为的一条渐近线的斜率为 ()1 9,双曲线222 3 3A.B.C. 2D. 43x2x 2 x 0 时, f ( x)ln( x1 ) ,就当 x 0 时, f ( x) f ( x) 是奇函数,当 10,已知 ( )2222x ln( x 1 x ) x ln( x 1 x ) A . B. 2222xln( x1 x )xln( x1 x )C.D.二,填空题 : 本大题共 6 小题,每道题6 分,共 36 分.把答案填在题中横线上;1 x2 x 3的解集是;0 11,不等式3 ,就该椭圆的标准方程为5( 3,0) ,(3,0) ,离心率为 ;12,如椭圆的焦点为 tan 213,已知 tan() 3 , tan() 5 ,就 ;2 3a ,b 满意, 2 , a b 14,如向量 | a | 1 , | b | ,就 cos a, b ;4 315, (2x1) 的绽开式中 x 的系数是;(2a2log 1) log (3a) 0 ,就 a 的取值范畴是;16,如 0 a 1 ,且 a a 三,解答题 : 本大题共 3 小题,共 54 分.解答应写出文字说明,证明过程或演算步骤.3 417,某校组织跳远达标测验, 已知甲同学每次达标的概率是 .他测验时跳了 4 次,设各次是否达标相互独立 .(Ⅰ)求甲恰有 3 次达标的概率; (Ⅱ)求甲至少有 1 次不达标的概率; (用分数作答) 2x4y ,直线 l : 18,已知抛物线 C : x y m 0 ;与l m1 ;( 1)证明: C 有两个交点的充分必要条件是 m 1,C 与 l y 轴于点 GAB ( 2)设 有两个交点 A ,B ,线段 的垂直平分线交 G ,求 面积的取值范AB 围;1CD 2P ABCD 中,底面 ABCD 为梯形, AB // CD ,且 AB19,如图,四棱锥 , ADC 90 .PA 平面 ABCD PD M , 是 的中点;P( 1)证明: AM // 平面 PBC ; ( 2)设 PAAD 2 AB ,求 PC 与平面 ABCD 所成角的正弦值MBCAD绝密★ 启用前2021 年全国一般高等学校运动训练,民族传统体育专业单独统一招生考试数学试题参考答案和评分参考评分说明:1.本解答指出了每题要考查的主要学问和才能,并给出了一种或几种解法供参考.假如考生 的解法与本解答不同,可依据试题的主要考查内容比照评分标准制订相应的评分细就,2.对运算题,当考生的解答在某一步显现错误时,假如后继部分的解答未转变该题的内容和 难度,可视影响的程度打算后继部分的给分,但不得超过该部分正确解答应得分效的一半: 假如后继部分的解答有较严峻的错误,就不再给分.3.解答右端所注分数.表示考生正确做到这一步应得的累加分数. 4.只给整数分数,挑选题和填空题不给中间分.挑选题:此题考查基本学问和基本运算.每道题6 分,满分 60 分.( 1 ) B ( 2 ) C ( 3 ) B ( 4) D ( 5) D( 6 ) B ( 7 ) A ( 8 ) D ( 9 ) C ( 10) A 1,考点:自然数概念,集合元素个数求法,集合的表示法--描述法和列举法7 , x 2解:∵集合 A { x | 0 x N}={ 1,2,3} ,∴ A 的元素共有 3 个;选 B2,考点:圆半径求法 x2y2x2 ( y+1)22 y7 0 变形为 8 ,所以半径是 解:将圆方程 2 2 ,选 C. a)2b)2r 2的圆心为( a , b ),半径为 说明:圆方程( x ( y r3,考点:函数的单调性 x x x x 0解: A.y | x|当 x 0, y x 是增函数,当 x 0, y x 是减函数,不符合题意;3y x 是减函数符合题意;所以选B.B3x 的定义域是 说明:用函数单调性的定义判定:∵ 是任意两个实数,且 x x ,yx R ,∴设 x 1 , x 2 1 2 3333 3就△ xx 2 x 1 0 ,△ y ( x 2 ) ( x 1 )x1x20 ,所以 y x 在定义域内是减函数;4,考点:根式函数的定义域和值域的求法,一元二次不等式的解法,二次函数最大值求法; 2x解:由平方根的定义知(2 x ) x 0 x 2 ,当 x 0 ,x 2 时, 2 x 0 ,即 0 ,解得 y 0 ,当 2( x 1) 0 x 2 时 y1 的最大值为 1,22所以函数 f ( x)2 x x( x 1)1 的值域是 [ 0,1] 选 D.5,考点:三角函数最小正周期和最小值,三角函数加法公式解:用帮助角公式:a a2b a2b a2222a sin xb cos x ab (sin x cos x) ab sin( x) ( tan)b2b23 3 3由于 y3sin 4x 3cos 4x 2 3( sin 4x cos4 x)2 2 31= 2 3( sin 4 x232 22 4cos 4 x ) = 2 3 sin(4 x ) , T 322 3 所以函数y3sin 4 x 3cos4 x 的最小正周期是,最小值是;应选 D26,考点:正弦定理和钝角三角形的概念 解:∵已知ABC 是钝角三角形, BC4 , AC 4 3 ,A 30 , 4 sin 304 3 3 2∴由正弦定理得, sin B,sin B0 0 0∴ B 120 B 60 B 60 ABC ( 不符合题意,当 时 变为直角三角形,故舍去)选 Bl , m ,平面 7.设直线 , ,有以下 4 个命题:①如 l , m l // m l // , m // ,就 l // m ,就 ②如 ③如 l, l//m//m ////,就 ④如 , ,就 其中,真命题是 ()A. ①③②③①④D. ②④B. C. 考点:直线与直线,直线与平面,平面与平面的位置关系; l m,就 l // m 正确,垂直于同一平面的两直线平行;解:①如 , l , m 可能平行,相交,异面,故结论错误, ②如 l // , m // ,就 l // m 错误, l ,l // ③如 ,就 正确,垂直于同始终线的两平面平行;④如 m//, m////,就 错误,平行于同始终线的两平面可能平行,相交,故结论错误,因此①③正确,应选 A8.从 5 名新队员中选出 2 人, 6 名老队员中选出 1 人,组成训练小组,就不同的组成方案共有( )种考点:组合数,乘法原理B. 120 种C. 75 种D. 60 种解:由于从 5 名新队员中选出 2 人, 6 名老队员中选出 1 人,组成训练小组,只有同时选出任务才算完成, 5 4 2 1故用乘法原理, C 5 C66 60 (种),应选 D2x 2y 23 ,就此双曲线的离心率为1的一条渐近线的斜率( )9.双曲线 22 ab2 3 B.3A.C. 2D. 43考点:双曲线渐近线方程的斜率,双曲线的离心率22x y bx ab a1 的一条渐近线方程为3 ,即解:双曲线y3 ,双曲线的离心率为,其斜率为 a2 b222c aabab 2 e1 ( ) a= 1 3 2 ,选 C 2x2x ) ,就当 x 0 时, x 0 时, 10.已知 f ( x) 是奇函数,当 f (x) ln( x1 f ( x) ( )x 21 x 2) x 2x 2 ln( x ln( x 1 ) A . B. x2 x 2x2x 2)ln( x1 )ln( x1 C.D.考点:奇函数性质,对数函数的运算x2x2解:∵ f ( x) 是奇函数,当 x 0 时, f ( x ) ln( x1) 且当 x 0 时 x 0222[ x2x )][( x)ln( x1 ( x) )] = ∴ f (x)f ( x) = ln( x1 22ln( (x 1 x )( x21 xx x))1 2xx2x2ln() 1 1 xx2x21= x2x 2) ,选 ln( 1 x) ln( x 1 A二.填空题:此题考查基本学问和基本运算.每道题6 分,满分 36 分.1 2 x 12的解集是 0 { x | 3 x } ;11,不等式x 3 考点:分式不等式1 2x 00 1 x 2x 3 00 1}2解:原不等式等价于或 解得 { x | 3 x x 3 x 2 25 y 2163 5,就该椭圆的标准方程为( 3,0) , (3,0) ,离心率为1 ;12,如椭圆的焦点为 考点:椭圆的标准方程,椭圆的离心率3 5解:∵椭圆的焦点为 ( 3,0) , (3,0) ,离心率为x 2y 23 5c ac 3, e∴设椭圆的标准方程为 1 (a b 0) ,由题知 ,22 a b∴ a5 , b22a2c25 9 16 ,x 225 y 216∴该椭圆的标准方程为 1 ;4 7tan 213,已知 tan( ) 3 , tan( ) 5 ,就 ;考点:正切函数加法公式 解:∵已知 tan() 3 , tan( ) 5 tan( ) tan( ) tan( ) )3 54 7tan 2 tan[() ()]∴ 1 tan(1 3 52 ,就 31 3 a , b 满意, | a | 1 , | b |2 , a bcos a, b14,如向量 ;考点:向量夹角公式2 3解:∵向量 a , b 满意, 2 ,a b | a | 1 , | b | ,2 3 2a b | a | | b | 1 3∴ cosa, b1 4315, (2x 1) 的绽开式中 32 x 的系数是 ;考点:二项式绽开式及通项公式 r 4 r rrr 4 r 4 r解:由通项公式得 T r C 4(2x) ( 1)( 1) C 42x1 4(2 x 1) 的绽开式中 3x 1 4 1 ∴当 r1 时,满意题意,故 的系数是 ( 1)C 23241 12log a (2a 1) log a (3a) 0 ,就 a 的取值范畴是 0 a 1,且 ;( , ) 3 216,如 考点:对数函数的性质 解:∵ 0 a 1∴ f ( x )log a x 在定义域上是减函数2∵ log a (2a1) log a (3a) 0 log a 113 12 ( 1 , 1) 3 222a∴ a 的取值范畴是 1 3a 1 ,解得 x,即 2a23a 1 13a (1)2a22a 2(不等式 解( 1) 1 3a 1 等价于3a 1 0 , (2 a 1)(a 1) 0 解(2)12 12)得 a,所以 a 的取值范畴是 3 1 1( , ) 3 2得 ) a 或 a 1 ,解( 三.解答题:17.考点: n 重贝努力试验3 3 33 4 27 64 解:(Ⅰ)甲恰有 3 次达标的概率为 C 4( ) (14 3 41 ( ))9 分 175 256(Ⅱ)甲至少有 1 次不达标的概率为 18 分418.考点:直线与曲线有交点的判别法,根与系数的关系,中点坐标的求法,两点间距离公式,点到直线的 距离公式,求直线方程,三角形面积的运算及取值范畴的确定; 2x4 ym 0解:(Ⅰ) C 与 l 的交点( x , y )满意x y x2由其次个方程得 y m x ,代入第一个方程得4 x 4m 0① 4 分= 42△>0方程①的判别式△ 4( 4m) 16 16m 16(1 m)m1 ,故命题得证;C 与 l 有两交点8 分(Ⅱ)设 C 与 l 的交点 A( x 1 , y 1) B( x 2 , y 2 ) ,就 x 1, x 2 满意方程① x 1 x 24 , x 1 x 24m,所以 22222(x 1 x 2 )( x 1 x 2 )4x 1 x 2 16(m 1), ( y 1 y 2 )[( x 1 m) ( x 2 m)] = ( x 1 x 2 )222∴ x 2 ) = 4 2(m 1) ,AB( x 1 x 2 )( y 1y 2 )2( x 1 分12 y 1 y 2( x 1 x 2 ) 2m 4 2mx 1x 2 y 1 y 2Q 2,m 2 ,即 Q(, ) AB 中点 2 2AB 垂直的直线方程为 x y m 4 0 , 过 Q 与 它与 y 轴的交点 G(0, m 4) 到直线 l 的距离0 m 4 md2 2 ,212所以 GAB 的面积 S ΔGAB d AB 8 m 11 m 1 ,所以 08 2 ,故 (0,8 2) 由于 S S GAB 的取值范畴是 ;18 分GAB1CD 2P ABCD ABCD AB // CD AB ADC 90 19.如图,四棱锥 中,底面 为梯形, ,且 , .PA 平面 ABCD 是 PD 的中点;, M P( 1)证明: AM // 平面 PBC ; M( 2)设 PAAD 2 AB ,求 PC ABCD 所成角的正弦值与平面 19.考点:线面平行,线面所成的角BC1 MN / / CD ,2A解:(Ⅰ)取 PC 中点 N ,连接 BN , MN ;由于 1CD 由已知 AB ∥ AB MN ABNM ,所以 ∥ ,故四边形 为平行四边形;2DAM ∥ BN , BN 平面 PBC , AM 平面 PBC ,所以 AM ∥ PBC ;10 分(Ⅱ)设 PA ADa ,就 CD =2 AB = a ,连接 AC AC 是 PC 在平面 ABCD PCA 为;就 上的射影,PC 与平面 ABCD 所成的角;2AD 2CD2a 2a∵ PAC2a N2222PC所以PAAC a2a3aMCPA PCa 3a3 3Bsin PCA18 分AD19 题图。
体育单招-高考模拟试卷3一.选择题(共10小题,满分60分,每小题6分)1.(6分)集合M={x|x2﹣2x﹣3<0},N={x|x>a},若M⊆N,则实数a的取值范围是() A.[3,+∞) B.(3,+∞)ﻩC.(﹣∞,﹣1]ﻩD.(﹣∞,﹣1)2.(6分)已知||=1,||=2,向量与的夹角为60°,则|+|=( )A. B.C.1D.23.(6分)若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7B.0或7ﻩC.0D.44.(6分)已知tanα=3,则等于()A.B.C.D.25.(6分)已知函数f(x)是定义在R上的增函数,若f(a2﹣a)>f(2a2﹣4a),则实数a的取值范围是( )A.(﹣∞,0)B.(0,3)C.(3,+∞)ﻩD.(﹣∞,0)∪(3,+∞)6.(6分)在(x﹣2)6的展开式中,x3的系数是()A.160B.﹣160C.120D.﹣1207.(6分)等比数列{a n},满足an>0,2a1+a2=a3,则公比q=()A.1B.2C.3D.48.(6分)四个大学生分到两个单位,每个单位至少分一个的分配方案有( )A.10种B.14种ﻩC.20种D.24种9.(6分)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是()A.2πa2B.4πa2C.πa2D.3πa210.(6分)已知log a<log b,则下列不等式一定成立的是()A. B.ﻩC.ln(a﹣b)>0D.3a﹣b>1二.填空题(共6小题,满分36分,每小题6分)11.(6分)函数f(x)=x2,(x<﹣2)的反函数是.12.(6分)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.13.(6分)在等差数列{a n}中,an>0,a7=a4+4,S n为数列{an}的前n项和,S19=.14.(6分)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.15.(6分)已知直线4x﹣y+4=0与抛物线y=ax2相切,则a=.16.(6分)已知圆x2+y2+2x﹣2y﹣6=0截直线x+y+a=0所得弦的长度为4,则实数a的值是.三.解答题(共3小题,满分54分,每小题18分)17.(18分)已知函数f(x)=Asin(ωx+),(A>0,ω>0)的最小正周期为T=6π,且f(2π)=2.(Ⅰ)求f(x)的表达式;(Ⅱ)若g(x)=f(x)+2,求g(x)的单调区间及最大值.18.(18分)已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.(18分)如图,在三棱柱ABC﹣A1B1C1中,C1C⊥底面ABC,CC1=AB=AC=BC=4,D为线段AC的中点.(Ⅰ)求证:直线AB1∥平面BC1D;(Ⅱ)求证:平面BC1D⊥平面A1ACC1;(Ⅲ)求三棱锥D﹣C1CB的体积.体育单招-高考模拟训练3参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)1.(6分)(2017•山西一模)集合M={x|x2﹣2x﹣3<0},N={x|x>a},若M⊆N,则实数a的取值范围是()A.[3,+∞)B.(3,+∞)ﻩC.(﹣∞,﹣1]ﻩD.(﹣∞,﹣1)【解答】解:∵集合M={x|x2﹣2x﹣3<0}=(﹣1,3)N={x|x>a},若N={x|x>a},则﹣1≥a即a≤﹣1即实数a的取值范围是(﹣∞,﹣1]故选C2.(6分)(2017•吉林三模)已知||=1,||=2,向量与的夹角为60°,则|+|=() A.B.C.1 D.2【解答】解:∵已知||=1,||=2,向量与的夹角为60°,∴=1×2×cos60°=1,∴|+|===,故选:B.3.(6分)(2017•揭阳一模)若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7 B.0或7ﻩC.0ﻩD.4【解答】解:∵直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,∴m(m﹣1)=3m×2,∴m=0或7,经检验都符合题意.故选:B.4.(6分)(2017•广西模拟)已知tanα=3,则等于()A.B.C.ﻩD.2【解答】解:∵tanα=3,∴===.故选:B.5.(6分)(2017春•五华区校级月考)已知函数f(x)是定义在R上的增函数,若f(a2﹣a)>f(2a2﹣4a),则实数a的取值范围是()A.(﹣∞,0)B.(0,3)C.(3,+∞) D.(﹣∞,0)∪(3,+∞)【解答】解:因为f(x)为R上的增函数,所以f(a2﹣a)>f(2a2﹣4a),等价于a2﹣a>2a2﹣4a,解得0<a<3,故选B.6.(6分)(2014•海淀区校级模拟)在(x﹣2)6的展开式中,x3的系数是()A.160ﻩB.﹣160ﻩC.120ﻩD.﹣120【解答】解:在(x﹣2)6的展开式中,通项公式为T r+1=•x6﹣r•(﹣2)r,令6﹣r=3,可得r=3,故x3的系数是(﹣2)3•=﹣160,故选B.7.(6分)(2014春•苍南县校级期末)等比数列{an},满足an>0,2a1+a2=a3,则公比q=( )A.1 B.2ﻩC.3ﻩD.4【解答】解:∵等比数列{a n},满足a n>0,2a1+a2=a3,∴2a1+a1q=a1q2,∴q2﹣q﹣2=0,解得q=2,或q=﹣1(舍)故选:B.8.(6分)(2017•永州二模)四个大学生分到两个单位,每个单位至少分一个的分配方案有()A.10种ﻩB.14种ﻩC.20种ﻩD.24种【解答】解:根据题意,假设2个单位为甲单位和乙单位,分3种情况讨论:①、甲单位1人而乙单位3人,在4人中任选1个安排在甲单位,剩余3人安排在甲乙单位即可,有C41=4种安排方法;②、甲乙单位各2人,在4人中任选2个安排在甲单位,剩余2人安排在甲乙单位即可,有C42=6种安排方法;③、甲单位3人而乙单位1人,在4人中任选3个安排在甲单位,剩余1人安排在甲乙单位即可,有C43=4种安排方法;则一共有4+6+4=14种分配方案;故选:B.9.(6分)(2017•江西二模)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是()A.2πa2B.4πa2ﻩC.πa2ﻩD.3πa2【解答】解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍∵圆锥的底面半径为a,故圆锥的母线长为2a,故圆锥的侧面积S=πrl=2πa2.故选A.10.(6分)(2016•沈阳校级四模)已知log a<log b,则下列不等式一定成立的是( )A. B.ﻩC.ln(a﹣b)>0D.3a﹣b>1【解答】解:y=是单调减函数,,可得a>b>0,∴3a﹣b>1.故选:D.二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2017•上海模拟)函数f(x)=x2,(x<﹣2)的反函数是.【解答】解:函数f(x)=x2,(x<﹣2),则y>4.可得x=,所以函数的反函数为:.故答案为:.12.(6分)(2017•江苏一模)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,则AO=AC=.在直角三角形POA中,PO===1.所以VP﹣ABCD=•SABCD•P O=×4×1=.故答案为:.13.(6分)(2017•濮阳二模)在等差数列{a n}中,an>0,a7=a4+4,S n为数列{an}的前n项和,S19=152.【解答】解:∵等差数列{an}中,an>0,a7=a4+4,∴,解得a1+9d=a10=8,Sn为数列{an}的前n项和,则S19=(a1+a19)=19a10=152.故答案为:152.14.(6分)(2017•南通模拟)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.【解答】解:甲、乙、丙三名学生选择每一个食堂的概率均为,则他们同时选中A食堂的概率为:=;他们同时选中B食堂的概率也为:=;故们在同一个食堂用餐的概率P=+=故答案为:15.(6分)(2015•马鞍山二模)已知直线4x﹣y+4=0与抛物线y=ax2相切,则a=﹣1.【解答】解:直线4x﹣y+4=0与抛物线y=ax2联立,消去y可得:ax2﹣4x﹣4=0,a≠0,因为直线4x﹣y+4=0与抛物线y=ax2相切,所以△=16+16a=0,解得a=﹣1.故答案为:﹣1.16.(6分)(2017•天津一模)已知圆x2+y2+2x﹣2y﹣6=0截直线x+y+a=0所得弦的长度为4,则实数a的值是±2.【解答】解:圆x2+y2+2x﹣2y﹣6=0标准方程(x+1)2+(y﹣1)2=8,则圆心(﹣1,1),半径为2,圆心(﹣1,1)到直线x+y+a=0的距离d==|a|,∵圆(x+1)2+(y﹣1)2=8截直线x+y+a=0所得弦长为4,∴2=4,解得a=±2,故答案为:a=±2.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2017•河北区一模)已知函数f(x)=Asin(ωx+),(A>0,ω>0)的最小正周期为T=6π,且f(2π)=2.(Ⅰ)求f(x)的表达式;(Ⅱ)若g(x)=f(x)+2,求g(x)的单调区间及最大值.【解答】解:(Ⅰ)函数f(x)=Asin(ωx+),∵最小正周期为T=6π,即,可得:ω=.∴f(x)=Asin(x+),又∵f(2π)=2,A>0、∴2=Asin(×2π+),故得A=4.∴f(x)的表达式为:f(x)=4sin(x+).(Ⅱ)∵g(x)=f(x)+2,∴g(x)=4sin(x+)+2由﹣x+≤,k∈Z可得:6kπ﹣2π≤x≤π+6kπ∴g(x)的单调增区间为[6kπ﹣2π,π+6kπ],k∈Z由x+≤,k∈Z可得:6kπ+π≤x≤4π+6kπ∴g(x)的单调减区间为[π+6kπ,4π+6kπ],k∈Z.∵sin(x+)的最大值为1.∴g(x)=4+2=6,故得g(x)的最大值为6.18.(18分)(2017•上海模拟)已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.(18分)(2017•历下区校级三模)如图,在三棱柱ABC﹣A1B1C1中,C1C⊥底面ABC,CC1=AB=AC=BC=4,D为线段AC的中点.(Ⅰ)求证:直线AB1∥平面BC1D;(Ⅱ)求证:平面BC1D⊥平面A1ACC1;(Ⅲ)求三棱锥D﹣C1CB的体积.【解答】证明:(Ⅰ)连结B1C交BC1于点M,连结DM,∵D为AC中点,M为B1C中点,∴DM∥AB1,又∵AB1⊄平面BC1D,DM⊂平面BC1D,∴AB1∥平面BC1D.(Ⅱ)∵CC1⊥底面ABC,BD⊂底面ABC,∴CC1⊥BD.∵AB=BC,D为AC中点,∴BD⊥AC.又∵AC⊂A1ACC1,CC1⊂平面A1ACC1,AC∩CC1=C,∴BD⊥平面A1ACC1,∵BD⊂平面C1DB,∴平面BC1D⊥平面A1ACC1.(Ⅲ)∵CD=,BC=4,BD⊥AC,∴BD==2.∵CC1⊥底面ABC,∴CC1为三棱锥C1﹣DBC的高,所以=.。
学习-----好资料体育单招-高考模拟试卷3一.选择题(共10小题,满分60分,每小题6分)2﹣2x﹣3<0},N={x|x>a},M={x|x若M?N,则实数a的取值范围是()1.(6分)集合A.[3,+∞)B.(3,+∞)C.(﹣∞,﹣1] D.(﹣∞,﹣1)2.(6分)已知||=1,||=2,向量与的夹角为60°,则|+|=()B.C.1D.2.A3.(6分)若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4等于(,则)4.(6分)已知tanα=3C.D.2B A..22﹣4a),则实数)>f(2aa(x)是定义在R上的增函数,若f(a﹣a5.(6分)已知函数f的取值范围是()A.(﹣∞,0)B.(0,3)C.(3,+∞)D.(﹣∞,0)∪(3,+∞)63的系数是())的展开式中,x6.(6分)在(x﹣2A.160 B.﹣160C.120 D.﹣1207.(6分)等比数列{a},满足a>0,2a+a=a,则公比q=()3n21n A.1B.2C.3D.48.(6分)四个大学生分到两个单位,每个单位至少分一个的分配方案有()A.10种B.14种C.20种D.24种9.(6分)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是()22223πaD..4πa C.πaA.2πa B)10a<log.(6分)已知logb,则下列不等式一定成立的是(ab﹣>>1D.3>(A.C .lna﹣B.b)>0二.填空题(共6小题,满分36分,每小题6分)2,(x<﹣2)的反函数是x611.(分)函数f()=x.12.(6分)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.更多精品文档.学习-----好资料13.(6分)在等差数列{a}中,a>0,a=a+4,S为数列{a}的前n项和,S=.19n4nn7n 14.(6分)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.2相切,则a=与抛物线y=ax.y.(6分)已知直线4x﹣+4=01522+2x﹣2y﹣6=0截直线x+y+a=0所得弦的长度为6.(分)已知圆x4+y,则实数a的值是.16三.解答题(共3小题,满分54分,每小题18分),0)的最小正周期为T=6πA>0,ω>x18分)已知函数f()=Asin(ωx+),(17.(且f(2π)=2.(Ⅰ)求f(x)的表达式;(Ⅱ)若g(x)=f(x)+2,求g(x)的单调区间及最大值.(a>0,b>0),直线l:x+y﹣2=0,F,F为双曲(18分)已知双曲线Γ:.1821线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠FPF的角平分线所在直线的方程.2119.(18分)如图,在三棱柱ABC﹣ABC中,CC⊥底面ABC,CC=AB=AC=BC=4,D为线段11111AC 的中点.(Ⅰ)求证:直线AB∥平面BCD;11(Ⅱ)求证:平面BCD⊥平面AACC;111(Ⅲ)求三棱锥D ﹣CCB的体积.1更多精品文档.学习-----好资料体育单招-高考模拟训练3参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)2﹣2x﹣3<0},N={x|x>a},若M?N,则实数|1.(6分)(2017?山西一模)集合M={xxa的取值范围是()A.[3,+∞)B.(3,+∞)C.(﹣∞,﹣1] D.(﹣∞,﹣1)2﹣2x﹣3<0}=xM={x|(﹣1,3)【解答】解:∵集合N={x|x>a},若N={x|x>a},则﹣1≥a即a≤﹣1即实数a的取值范围是(﹣∞,﹣1]故选C)|=(60°|=2,向量与的夹角为,则|+已知2.(6分)(2017?吉林三模)||=1,| D.2C.1B..A【解答】解:∵已知||=1,||=2,向量与的夹角为60°,,cos60°=1=1×2∴×,||∴+===故选:B.3.(6分)(2017?揭阳一模)若直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4【解答】解:∵直线mx+2y+m=0与直线3mx+(m﹣1)y+7=0平行,∴m(m﹣1)=3m×2,∴m=0或7,经检验都符合题意.更多精品文档.学习-----好资料故选:B.等于(,则)6分)(2017?广西模拟)已知tanα=34.(DA...B.2C【解答】解:∵tanα=3,==∴=.故选:B.2﹣aa)R上的增函数,若f(2017春?五华区校级月考)已知函数f(x)是定义在5.(6分)(2﹣4a),则实数a的取值范围是(f>(2a)A.(﹣∞,0)B.(0,3)C.(3,+∞)D.(﹣∞,0)∪(3,+∞)222﹣a>),等价于aa)>f(2a﹣f【解答】解:因为(x)为R上的增函数,所以f(a4a﹣2﹣4a,2a解得0<a<3,故选B.63的系数是(x x﹣2))的展开式中,(6.6分)(2014?海淀区校级模拟)在(A.160 B.﹣160C.120 D.﹣120r66r﹣,令6﹣r=3),可得2)的展开式中,通项公式为T=?x?(﹣2【解答】解:在(x﹣1r+33=﹣160?,故r=3 x,的系数是(﹣2)故选B.7.(6分)(2014春?苍南县校级期末)等比数列{a},满足a>0,2a+a=a,则公比q=()3n21n A.1 B.2C.3D.4【解答】解:∵等比数列{a},满足a>0,2a+a=a,3n12n2,q=aq+∴2aa1112﹣q﹣2=0,∴q解得q=2,或q=﹣1(舍)故选:B.更多精品文档.学习-----好资料8.(6分)(2017?永州二模)四个大学生分到两个单位,每个单位至少分一个的分配方案有()A.10种B.14种C.20种D.24种【解答】解:根据题意,假设2个单位为甲单位和乙单位,分3种情况讨论:①、甲单位1人而乙单位3人,在4人中任选1个安排在甲单位,剩余3人安排在甲乙单位1=4C 种安排方法;即可,有4②、甲乙单位各2人,在4人中任选2个安排在甲单位,剩余2人安排在甲乙单位即可,有2=6C种安排方法;4③、甲单位3人而乙单位1人,在4人中任选3个安排在甲单位,剩余1人安排在甲乙单位3=4种安排方法;即可,有C4则一共有4+6+4=14种分配方案;故选:B.9.(6分)(2017?江西二模)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是()22223πa.C.2πaA.πa B.4πaD【解答】解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍∵圆锥的底面半径为a,故圆锥的母线长为2a,2.故圆锥的侧面积S=πrl=2πa故选A.10.(6分)(2016?沈阳校级四模)已知loga<log则下列不等式一定成立的是(b,)ab﹣>>>31﹣ab)>0 D..Cln BA..(是单调减函数,y=【解答】解:<,可得a>b>0,更多精品文档.学习-----好资料ab﹣.1∴3>故选:D.二.填空题(共6小题,满分36分,每小题6分)2,>.2)的反函数是上海模拟)6分)(2017?函数f(x)=x,(x<﹣11.(2,(x<﹣2)=x,则y>4.f【解答】解:函数(x),可得x=,>.所以函数的反函数为:,>.故答案为:12.(6分)(2017?江苏一模)已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥.的体积为【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,.AC=则AO===1.在直角三角形POA中,PO=.1=ABCD=?SABCD?PO=×4×所以VP﹣.故答案为:项的前n}为数列+=0,aa4,S{a>a}a濮阳二模)在等差数列(6.13(分)2017?{中,n7n4nn .152=和,S19更多精品文档.学习-----好资料【解答】解:∵等差数列{a}中,a>0,a=a+4,4n7n,∴,9d=a=8解得a+101项和,的前n为数列{a}S nn.=152+a)=19a则S=(a1011919故答案为:152.14.(6分)(2017?南通模拟)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中.的一个食堂用餐,则他们在同一个食堂用餐的概率为,【解答】解:甲、乙、丙三名学生选择每一个食堂的概率均为;则他们同时选中A食堂的概率为:=;他们同时选中B食堂的概率也为:==P=+故们在同一个食堂用餐的概率故答案为:2相切,则a=﹣与抛物线y=ax1.6(分)(2015?马鞍山二模)已知直线4x﹣y+4=015.2联立,y=ax4=0与抛物线4x﹣y+【解答】解:直线2﹣4x﹣4=0,a≠消去y可得:ax0,2相切,与抛物线y=axy+4=0因为直线4x﹣所以△=16+16a=0,解得a=﹣1.故答案为:﹣1.22+2x﹣2y﹣6=0截直线xy++y+a=0所得弦的长度为4,已知圆分)16.(6(2017?天津一模)x则实数a的值是±2.2222=8,则圆心(﹣1,)1),半1y)+标准方程(﹣﹣y解:圆【解答】x++2x2y6=0x1+(﹣径为2,更多精品文档.学习-----好资料丨丨圆心(﹣1,1)到直线x+y+a=0的距离d==|a|,22=8截直线x+y+a=0所得弦长为4,∵圆(x+1)(+y﹣1),=4∴2,a=±2解得.±2故答案为:a=分)1854分,每小题三.解答题(共3小题,满分)的最小正>0>0,ω)=Asin(ωx+),(A河北区一模)已知函数17.(18分)(2017?f(x周期为T=6π,且f(2π)=2.(Ⅰ)求f(x)的表达式;(Ⅱ)若g(x)=f(x)+2,求g(x)的单调区间及最大值.,+)=Asin(ωx)【解答】解:(Ⅰ)函数f(x,,即∵最小正周期为T=6π.可得:ω=,x+))∴f(x=Asin(又∵f(2π)=2,A>0、,2π+)∴2=Asin(×故得A=4..+))=4sin(x)的表达式为:∴f(xf(x(Ⅱ)∵g(x)=f(x)+2,2+x+)g∴(x)=4sin(Z∈,k≤x由﹣+可得:6kπ﹣2π≤x≤π+6kπ∴g(x)的单调增区间为[6kπ﹣2π,π+6kπ],k∈Z,k∈Z≤由+x可得:6kπ+π≤x≤4π+6kπ更多精品文档.学习-----好资料∴g(x)的单调减区间为[π+6kπ,4π+6kπ],k∈Z..)的最大值为1∵sin(x+∴g(x)=4+2=6,故得g(x)的最大值为6.(a>0,b>0),直线l:x+y﹣2=0,:.(Γ上海模拟)已知双曲线18分)(2017?18F,F为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.21(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠FPF的角平分线所在直线的方程.21【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F(﹣2,0),F(2,210),22=2;﹣y∴双曲线方程为x,显然∠F,PF的角平分线所在直线斜率k存在,且k>)(20,21.∴,于是,为所求.19.(18分)(2017?历下区校级三模)如图,在三棱柱ABC﹣ABC中,CC⊥底面ABC,1111CC=AB=AC=BC=4,D为线段AC的中点.1(Ⅰ)求证:直线AB∥平面BCD;11(Ⅱ)求证:平面BCD⊥平面AACC;111(Ⅲ)求三棱锥D﹣CCB的体积.1更多精品文档.学习-----好资料DM,BC于点M,连结【解答】证明:(Ⅰ)连结BC交11中点,BC中点,M为∵D为AC1,BCDDM?平面AB?平面BCD,AB∴DM∥,又∵1111.DAB∥平面BC∴11,ABCBD?底面(Ⅱ)∵CC⊥底面ABC,1.CC⊥BD∴1中点,为AC∵AB=BC,DA平面?=C,∩ACC?.又∵ACAACC,CC,ACCC∴BD⊥AC111111,CDB,∵BD?平面∴BD⊥平面AACC 111ACC.D⊥平面A∴平面BC111,BD⊥AC,BC=4,CD=(Ⅲ)∵.∴BD==2的高,﹣DBC,∴CC为三棱锥C∵CC⊥底面ABC111.=所以更多精品文档.学习-----好资料更多精品文档.。