八年级数学分式方程2(2)
- 格式:pdf
- 大小:1.20 MB
- 文档页数:13
八年级数学《分式方程》评课稿八年级数学《分式方程(2)》评课稿1.课堂整体结构强课堂结构设计整体性强,课堂学习活动充分培养学生的理性精神。
课堂学习活动沿着“设疑自探-质疑共探-解疑合探-悬疑再探”这样富有理性思维的活动主线展开学习活动。
使课堂结构具有整体性、主体感、层次性和流畅性。
体现了“高观点下的数学教学”,数学课堂有了灵魂。
2.问题设计有特色-高立意,低起点教学起点把握准确,体现在很好地衔接了新旧知识,接轨了学生已有的认知基础和教学活动经验,揭示了数学的本质,指引着学生的数学思维方向。
王老师的课堂教学层次通过问题串刻画得非常精细,起点低,但层次丰富,逐层递进,步步深入,让不同的学生有不同的收获。
也使学生看到了知识之间的联系和难点所在。
从整节课的几个环节看,在理解深度上递进,这种多层次的教学展开是面向全体学生的重要方式。
一堂好课始于问题,特别是初始问题要能引起认知冲突,要突出数学思维和本节课的本质。
这是关键,又通过问题串提高课堂的立意。
3.弹性预设,精彩生成凡是则预立,不预则废。
只有课前精细的预设,才有课堂的动态生成。
我们可以看出本节课在问题串的指引下,在师生和生生互动中,在逐层展开中实现了多层次,多维度的目标生成。
教者巧妙的预设引发了多个认知冲突,在教学展开过程中充分发挥学生的主动性,让学生展开讨论,质疑,辩论。
学生正是在这样的互动过程中生成了丰富的教学资。
可贵的是王老师在解决前面的几个问题中,学生已掌握产生增根的原因及检验增根的方法。
为了进一步培养学生自觉反思求解过程和自觉检验的良好习惯(教学目标之一)。
留下了充足的时间让学生自由思考,提出问题。
这才有学生问题3、4、5…的精彩提问和回答。
这就是精彩生成。
使本节课的内涵更加丰富。
4.重难点解决方法巧妙增根问题是本节课的重点难点。
教材中增根定义是模糊的,教者采取“发现增根-产生原因-如何检验-巩固练习-讨论增根的问题”。
这一教学过程巧妙地解决了这一问题。
4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。
分式方程的应用2一.解答题(共25小题)1.小明家用80元网购的A型口罩与小磊家用120元在药店购买的B型口罩的数量相同,A 型与B型口罩的单价之和为10元,求A、B两种口罩的单价各是多少元?2.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“某超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?3.某商场在五四青年节来临之际用2400元购进A,B两种运动衫共22件.已知购买A种运动衫与购买B种运动衫的费用相同,A种运动衫的单价是B种运动衫单价的1.2倍.(1)求A,B两种运动衫的单价各是多少元?(2)若计划用不超过5600元的资金再次购进A,B两种运动衫共50件,已知A,B两种运动衫的进价不变.求A种运动衫最多能购进多少件?4.某商店以固定进价一次性购进一种商品,7月份按一定售价销售,销售额为120000元,为扩大销量,减少库存,8月份在7月份售价基础上打8折销售,结果销售量增加40件,销售额增加8000元.(1)求该商店7月份这种商品的售价是多少元?(2)如果该商品的进价为750元,那么该商店7月份销售这种商品的利润为多少元?5.樱桃是我市的特色时令水果.一上市,水果店的老板用2400元购进一批樱桃,很快售完;老板又用3700元购进第二批樱桃,进价比第一批每千克少了11元,所购件数是第一批的2倍.(1)第一批樱桃进价是每千克多少元?(2)老板以每千克50元的价格销售第二批樱桃,售出80%后,为了尽快售完,剩下降价促销.要使得第二批樱桃的销售利润不低于1100元,剩余的樱桃每千克最多降价多少元销售?6.为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过10万元,则至少应安排甲工程队工作多少天?7.母亲节前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价2元,降价后80元可购买玫瑰的数量是原来购买玫瑰数量的1.25倍,求降价后每枝玫瑰的售价是多少元?8.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.求第一次所购该蔬菜的进货价是每千克多少元?9.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)10.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?11.为美化校园,某校需补栽甲、乙两种花苗.经咨询,每株甲种花苗比每株乙种花苗贵5元.已知购买相同数量的甲、乙两种花苗,所用费用分别是100元、50元.求甲、乙两种花苗的单价.12.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?13.随着云南旅游业的飞速发展,西双版纳原生态的村寨生活、节日活动、民俗仪式深深吸引了很多游客前来观赏.小明和小张假期从昆明去西双版纳游玩,昆明到西双版纳的乘车距离约为540km,小明开小轿车自驾游,小张乘坐大巴车,小明比小张晚出发3小时,最后两车同时到达西双版纳.已知小轿车的速度是大巴车速度的1.5倍.那么小轿车和大巴车的速度各是多少?14.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?15.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?16.某服装店春节后进行促销活动,每购买一件某款羽绒衣,客户可优惠40元,若同样用5000元所购买的此款羽绒衣的件数,促销活动后比促销活动前多10%,求这款羽绒衣促销前的售价.17.某商店准备购进A,B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A,B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?18.某乡镇道路改造工程由甲、乙两个工程队合作20天可完成,若单独施工,甲工程队所用天数是乙工程队所用天数的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此工程先由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程.已知甲工程队施工每天需付施工费1万元,乙程队施工每天需付施工费2.5万元,要使施工总费用不超过64万元,那么甲工程队至少要单独施工多少天?19.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?20.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的300米需要多少小时打通?21.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?22.我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?23.老师每天要骑车到离家15千米的单位上班,若将速度提高原来的,则时间可缩短15分钟.(1)求老师原来的速度为多少千米/时;(2)老师按照原来的速度骑车到途中的A地,发现公文包忘在家里,他立即提速1倍回到家里取公文包(其他时间忽略不计),并且以返回时的速度赶往单位,若老师到单位的时间不超过平时到校的时间,求A地距家最多多少千米.24.甲、乙两个工厂需加工生产550台某种机器,已知甲工厂每天加工生产的机器台数是乙工厂每天加工生产的机器台数的1.5倍,并且加工生产240台这种机器甲工厂需要的时间比乙工厂需要的时间少4天.(1)求甲、乙两个工厂每天分别可以加工生产多少台这种机器?(2)若甲工厂每天加工的生产成本是3万元,乙工厂每天加工生产的成本是2.4万元,要使得加工生产这批机器的总成本不得高于60万元,至少应该安排甲工厂生产多少天?25.小明家购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?分式方程的应用2参考答案与试题解析一.解答题(共25小题)1.解:设A型口罩的单价为x元,则B型口罩的单价为(10﹣x)元,依题意,得:=,解得:x=4,经检验,x=4是原分式方程的解,且符合题意,∴10﹣x=6.答:A型口罩的单价为4元,B型口罩的单价为6元.2.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.3.解:(1)设B种运动衫单价为x元/件,则A种运动衫单价为1.2x元/件,由题意得:+=22,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120,∴A种运动衫单价为120元/件,B种运动衫单价为100元/件;答:A种运动衫单价为120元/件,B种运动衫单价为100元/件.(2)设购进A种运动衫m件,则购进B种运动衫(50﹣m)件,由题意得:120m+100(50﹣m)≤5600,解得:m≤30.答:A种运动衫最多能购进30件.4.解:(1)设该商店7月份这种商品的售价为x元,则8月份这种商品的售价为0.8x元,根据题意得:=﹣40,解得:x=1000,经检验,x=1000是原分式方程的解.答:该商店7月份这种商品的售价是1000元.(2)根据题意,得×(1000﹣750)=30000(元).该商店7月份销售这种商品的利润为30000元.5.解:(1)设第一批樱桃进价是每千克x元,则第二批樱桃进价是每千克(x﹣11)元,依题意,得:2×=,解得:x=48,经检验,x=48是原方程的解,且符合题意.答:第一批樱桃进价是每千克48元.(2)设剩余的樱桃每千克降价y元销售,依题意,得:50××80%+(50﹣y)××(1﹣80%)﹣3700≥1100,解得:y≤10.答:剩余的樱桃每千克最多降价10元销售.6.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣2=,解得:x=150,经检验:x=150是原方程的解,则2x=300.答:甲工程队每天能完成绿化的面积是300m2,乙工程队每天能完成绿化的面积是150m2,(2)设甲队工作y天完成:300y(m2),乙队完成工作所需要(天),根据题意得:0.3y+0.2×≤10,解得:y≥28.所以y最小值是28.答:至少应安排甲队工作28天.7.解:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,依题意,得:=1.25×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是8元.8.解:设第一次购买蔬菜的进货价为每千克为x元,∴第二次购买蔬菜的进货价为每千克为(x﹣0.5)元,∴2×=,∴x=4,经检验,x=4是原方程的解,答:第一次所购该蔬菜的进货价是每千克4元9.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个10.解:(1)设B口罩的单价为x元/个,则A口罩单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,则1.2x=3.答:A口罩单价为3元/个,B口罩单价为2.5元/个.(2)设购进A口罩m个,则购进B口罩(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.11.解:设乙种花苗的单价为x元,则甲种花苗的单价为(x+5)元.由题意可列方程,解得x=5.经检验,x=5是原分式方程的解,x+5=10.答:甲种花苗的单价为10元、乙种花苗的单价为5元.12.解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.13.解:设大巴车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,依题意,得:﹣=3,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1.5x=90.答:小轿车的速度为90千米/小时,大巴车的速度为60千米/小时.14.解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.15.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.16.解:设这款羽绒衣促销活动前的售价为x元/件,由题意得方程:(1+10%)=.解得x=440.经检验,x=440是原方程的根.故这款羽绒衣促销活动前的售价为440元/件17.解:(1)设A种商品每件的进价为x元,则B种商品每件的进价是(x﹣20)元,由题意得:=,解得:x=50,经检验,x=50是原方程的解且符合实际意义.50﹣20=30(元),答:A种商品每件的进价为50元,B种商品每件的进价是30元.(2)设购进A种商品a件,则购进B种商品(40﹣a)件,由题意得:,解得:≤a≤18,∵a取整数,∴a可为14,15,16,17,18,答:该商店有5种进货方案.18.解:(1)设乙工程队单独完成此项工程需要x天,则甲工程队单独完成此项工程需要2x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲工程队要单独施工m天,则甲、乙两工程队要合作施工=天,依题意,得:m+(1+2.5)×≤64,解得:m≥36.答:甲工程队至少要单独施工36天.19.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.20.解:(1)设原计划每小时打通隧道x米,则实际工作过程中每小时打通隧道1.2x米,依题意,得:﹣=2,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原计划每小时打通隧道50米.(2)300÷(50×1.2)=5(小时).答:按照这个速度下去,后面的300米需要5小时打通.21.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.22.解:设二班单独整理这批实验器材需要x分钟,根据题意可得:15×(+)+15×=1,解得:x=60,经检验得:x=60是原方程的根,答:二班单独整理这批实验器材需要60分钟.23.解:(1)设老师原来的速度为x千米/时,根据题意,得﹣=.解得x=12.经检验,x=12是所列方程的解.答:老师原来的速度为12千米/时;(2)设A地距家a千米,根据题意,得+≤.解得a≤5.答:A地距家最多5千米.24.解:(1)设乙工厂每天加工生产的机器台数为x,则甲工厂每天加工生产的机器台数为1.5x,根据题意可知:=﹣4,解得:x=20,经检验,x=20是原方程的解,答:甲、乙两个工厂每天分别可以加工生产30和20台这种机器.(2)设应该安排甲工厂生产x天,根据题意可知:解得:10≤x<,答:至少应该安排甲工厂生产10天25.解:设乙公司单独完成需x天,则甲公司单独完成需要2x天,根据题意得:+=,解得:x=30,经检验,x=30是原方程的解.∴应付甲公司2×30×650=39000(元).应付乙公司30×1200=36000(元).∵36000<39000,∴公司应选择乙公司.答:公司应选择乙公司,应付工程总费用36000元.。