最新2.3继电器接触器控制电路的分析与设计
- 格式:ppt
- 大小:69.00 KB
- 文档页数:4
常用继电器-接触器控制电路解析1.利用速度继电器对三相异步电动机反接制动原理:SB2按下→KM1有电且自锁→电机全压启动,转速很快达到120r/min,此时速度继电器触点动作,为反接制动做好准备→当SB1按下→KM1失电,同时KM2得电并自锁保持,串接制动电阻R反接制动(将电流消耗到电阻R上)→转速迅速下降,当转速小于100r/min 时,速度继电器的触点复位→切断KM2,使其失电,制动过程结束。
2.三相异步电动机Y-∆起动原理:SB1(起动按钮)按下→KM1得电并且自锁,同时时间继电器KT得电(开始计时),KM3得电→KM1,KM3得电,三相异步电动机接成Y型起动→当设定的时间到达后,延时继电器KT的延时断开触点使KM3失电,延时继电器KT的延时接通触点使KM2得电→此时KM1得电,KM2得电,KM3失电→三相异步电动机接成∆起动。
3.定子串电阻降压启动原理:SB1按下→KM2得电,并且自锁,同时时间继电器,KT得电开始计时→KM2得电,定子串接电阻R降压启动→当设定的时间到后,KT的延时接通触点使KM1得电,并且自锁→KM1得电,在主电路中相当于短接了电阻R,三相异步电动机全压运行。
4.自耦变压器降压启动(带指示灯)原理:SB2按下→KM1得电并且自锁,同时KT得电(开始计时)→KM1有电,在主电路中,自耦变压器抽头降压启动→当设定时间到后,延时继电器常开触点闭合,中间继电器K得电并自锁→使得KM1断电,KM2得电→三相异步电动机全压工作。
控制电路中的变压器使指示灯工作在安全电压下(一般,交流36V)→HL3为上电指示灯(K 和KM1均不得电);HL2为降压启动指示灯(K失电,但KM1得电);HL3为全压工作指示灯(KM2得电)。
5.转子绕组串电阻启动(针对于绕线式异步电动机)原理:合上QS,SB2按下→KM4得电,并自锁保持(此时,电动机转子串接全部电阻降压启动)→中间继电器KA4得电,为KM1,KM2,KM3的得电做好准备,由于刚启动时电流很大,KA1-KA3吸和电流相同,因此同时得电吸和,其常闭触点都断开,使KM1-KM3处于失电状态,转子电阻全部串入,达到限流和提高转矩的目的。
继电接触控制电路的设计、安装与调试摘要:提出了一种继电接触电路,来实现对三相异步电动机的控制、调节、转换和保护目的。
关键词:继电控制电路分析三相电机三相异步电动机是现代生产技术的动力源。
为适应生产机械和加工工艺对电动机起动、停止、转向、转速和制动等工作状态的不同要求,产生了各种各样的控制电路。
本文介绍的控制电路简单实用、工作可靠、操作方便、投资不多,特别适宜于迅速发展中的各种乡镇企业(如小型铸造厂)采用。
1 电动机直接启动控制电路在三相异步电动机定子绕组连向三相电源的主电路中接有隔离开关QS,熔断器FU,接触器的主触点KM,以及热继电器FR的发热元件。
而接触器KM的线圈则与起动按钮SB2停止按钮SB1及热继电器FR的动断触点串联后接到电源上构成控制电路,如图1所示。
容量较小的异步电动机通常可用接触器进行直接起动,电动机起动时,先合上隔离开关QS接通电源,然后再按下起动按钮SB2,接触器线圈KM 通电,于是接触器的三对动合主触点KM闭合而使电动机起动。
与起动按钮并联的接触器动合辅助触点KM也同时闭合,将起动按钮的动合触点短接,当起动按钮松开后,接触器的线圈仍能通电,从而保证电动机能继续正常工作。
这种利用接触器本身的动合辅助触点使其线圈保持通电的作用称为“自锁”作用,而该辅助触点也就称为自锁触点。
按下停止按钮SB1,接触器线圈断电,所有KM触点都断开,电动机就停止转动。
如果将控制电路中的自锁触点拆除,则可对电动机实行点动控制,这时按下起动按钮SB2时,电动机就运转,松手时就停转。
电动机在运转过程中,如果发生突然停电或电压严重下降的情况,接触器线圈KM将失电而断开所有动合触点。
一旦电源恢复供电,电动机不会自行起动,必须按一下SB2才能重新起动,因而不会造成人身和设备事故。
由此可见采用接触器控制的线路,具有失压和欠压保护作用。
在主电路中接有三个熔断器FU,是作电动机短路保护用的。
另外还串联热继电器FR的三个发热元件,由于热继电器的整定电流等于电动机额定电流,当电动机过载时,电流超过额定值,经过一段时间,热继电器因发热元件过热而使与接触线圈KM串联的动断触点FR断开,线圈KM断电之后使所有动合触点断开,从而使电动机停转,达到过载保护的目的。
继电器与接触器控制的基本电路引言继电器和接触器是常用的电气元件,用于控制电路中的电流流动。
它们在各种自动化系统、电力系统等领域中起着重要的作用。
本文将介绍继电器和接触器的基本原理以及它们在电路控制中的应用。
继电器的基本原理继电器是一种电控制装置,能够使用小电流来控制大电流的流动。
继电器通常由电磁系统、机械系统和电气系统组成。
电磁系统继电器的电磁系统由线圈和铁芯组成。
当线圈通电时,产生的磁场会吸引铁芯,将机械系统连接或断开。
机械系统由机械触点组成,触点通过机械装置与铁芯相连。
当线圈通电时,铁芯受到吸引力,机械触点会发生动作,打开或关闭电路。
电气系统电气系统由常开触点(NO)和常闭触点(NC)组成。
当继电器处于非通电状态时,常开触点闭合,常闭触点断开;当继电器通电时,常开触点断开,常闭触点闭合。
接触器的基本原理接触器与继电器类似,也是一种电控制装置。
接触器通常由电磁系统、机械系统和电气系统组成,但接触器的结构更为复杂。
电磁系统接触器的电磁系统由线圈和铁芯组成。
当线圈通电时,产生的磁场会吸引铁芯,将机械系统连接或断开。
接触器的机械系统由机械触点组成,触点通过机械装置与铁芯相连。
当线圈通电时,铁芯受到吸引力,机械触点会发生动作,打开或关闭电路。
和继电器不同的是,接触器的机械系统可以有多个机械触点,可以实现多个电路的控制。
电气系统接触器的电气系统由多个触点组成,触点通过电气连接与外部电路相连。
接触器的电气系统常用接线方式有串联和并联两种。
继电器和接触器在电路控制中的应用继电器和接触器广泛应用于各种电路控制中,下面将介绍它们在电路控制中常见的应用。
继电器的应用•自动控制:继电器可以实现自动控制功能,通过传感器检测到的信号来控制其他设备的启停。
•电机控制:继电器可以用于电机的启停、正反转等控制。
•照明控制:继电器可以通过光敏传感器或定时器控制照明设备的开启和关闭。
•报警控制:继电器可以用于报警系统的控制,如火灾报警、温度报警等。
接触器和中间继电器控制电动机混合线路工作原理分析
中间继电器和接触器控制电动机连续与点动混合线路的工作原理如下:
首先,我们来看看接触器的工作原理。
接触器是一种通过电磁铁驱动触点闭合和断开来实现电路控制的电器。
当线圈通电后,线圈产生磁场,使铁芯产生吸力,带动触点闭合。
当线圈断电后,铁芯失去吸力,触点就会断开。
因此,接触器可以用于接通和断开电路。
接下来,我们来看看中间继电器的工作原理。
中间继电器是一种控制继电器,它通过线圈的电流强弱来动作。
当线圈通电时,中间继电器会产生磁力,将触点吸合,从而使电路导通。
当线圈断电时,磁力消失,触点断开,电路也随之断开。
在混合线路中,接触器和中间继电器共同作用来控制电动机的连续和点动。
当按下点动按钮时,接触器的线圈通电,触点闭合,电动机开始运转。
同时,中间继电器的线圈也通电,但它的触点并没有闭合,因此电动机不会持续运转。
当松开点动按钮时,接触器的线圈断电,触点断开,电动机停止运转。
而中间继电器的线圈仍然通电,它的触点仍然处于断开状态。
当按下连续按钮时,接触器和中间继电器的线圈都通电。
接触器的触点闭合,电动机开始运转。
同时,中间继电器的触点也闭合,形成一个自锁电路。
这样,即使松开连续按钮,电动机也会继续运转。
总的来说,中间继电器和接触器控制电动机连续与点动混合线路的工作原理是通过接触器和中间继电器的相互作用来控制电动机的
运转状态。
接触器控制电路2009-09-14 01:42:16| 分类:默认分类| 标签:|字号大中小订阅一、电气原理图现代生产机械的自动控制主要是使电动机的各种不同的运行状态和电磁阀的通断电情况可以根据生产的工艺要求自动改变。
虽然由于工艺要求不同,控制线路复杂程度也不一样,但都是由基本控制电路或典型控制环节组成的。
本节将介绍几种常用的基本继电一接触器控制电器。
图4.13 典型的控制线路原理图图4.13(a)是一个按实际电器元件画出的控制线路图。
这种画法显然不方便。
而且实际上控制线路涉及的电器元件多,若按这种画法,根本无法画出来,所以,实际上都是画成原理性的控制电路图,如图4.13(b)所示,画原理图时应遵守以下几条原则:(1)所有电器在图中均同时用其标准图形符号和文字符号表示。
所有电器的触点均按常态画出。
所谓常态,对继电器、接触器而言是指线圈未得电时触点的状态;对行程并关、按钮等而言是指此电器未受压时触点的状态。
(2)为了在原理图上充分体现各电器之间的联系关系和工作原理,同一电器的各个部件可以画的不同的地方。
但同一电器的所有部件应使用同一文字符号。
(3)将整个线路分成两部分来画,负载所在的大电流回路称主回路,常用粗实线表示,画在左边。
接触器线圈、辅助触点、继电器的线圈和触点、主令电器等小电流回路称控制回路,常用细实线表示,画在右边。
(4)对于复杂的控制线路,为了便于安装和维修,对各电器的各个部件的两个端点要加以编号。
主回路中的同种电器用同一字母加角标表示。
控制回路中的电器则用数字表示,一般以各电器的线圈为界,左边用奇数顺序进行标注,右边用偶数顺序进行标注,同一节点的各条支路应标注同一数字。
二、单向直接启动控制1、点动控制当电动机容量较小时,可以采用直接启动的方法控制。
图4.14为点动控制线路,主回路由刀开关S(或用转换开关)、接触器的主触点KM和电动机M组成。
熔断器FU作短路保护用,刀开关S用作电源引入开关。