电力机车、动车组受电弓型号与动态包络线资料.
- 格式:ppt
- 大小:3.80 MB
- 文档页数:39
受电弓知识受电弓动态包络线示意图ea--设计规定的受电弓横向摆动量b--滑板拐点至受电弓诱导角端点的距离c--滑板拐点至受电弓中心线的距离d = 2a+be = a+b+c300km/h受电弓,设计速度300km/h,适用于相应速度等级的各种电力机车及动车组。
底架采用不锈钢焊接结构,下臂采用铸铝结构,上导杆采用碳纤维材料,弓头采用高强度的钛合金材料,上臂采用重量较轻的铝型材。
300km/h受电弓的参数:设计速度300 km/h落弓位伸展长度约2640 mm最大升弓高度(包括绝缘子)3000 mm落弓位高度(包括绝缘子)588 mm弓头长度1950 mm额定电压25 kV额定电流1000 A接触压力70 –120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约109kg此主题相关图片如下:DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
具有DSA200型受电弓的所有特点,与DSA200型受电弓比较, DSA150上臂采用铝型材焊接结构。
DSA150型受电弓的参数:设计速度 160 km/h落弓位伸展长度约2600 mm最大升弓高度(包括绝缘子) 3000 mm落弓位高度(包括绝缘子) 588 mm弓头长度 1950 mm额定电压 25 kV额定电流 1000 A接触压力 70 – 120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约125kg此主题相关图片如下:DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
具有DSA200型受电弓的所有特点,与DSA200型受电弓比较, DSA150上臂采用铝型材焊接结构。
DSA150型受电弓的参数:设计速度 160 km/h落弓位伸展长度约2600 mm最大升弓高度(包括绝缘子) 3000 mm落弓位高度(包括绝缘子) 588 mm弓头长度 1950 mm额定电压 25 kV额定电流 1000 A接触压力 70 – 120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约125kg此主题相关图片如下:DSA200型受电弓,设计速度200km/h,适用于相应速度等级的各种电力机车及动车组。
浅谈电气化铁路的弓网关系摘要:在电气化铁道线路,电力机车的受电弓与接触网采用直接接触的方式为电力机车供电。
因此,受电弓与接触网需要保持良好的接触状态。
本文就弓网关系进行探究,解决弓与网在实际运行中存在的问题。
关键词:受电弓接触网弓网关系一、弓网关系概述电力机车通过受电弓与接触网的接触而获取电能,受电弓与接触网是动态相互作用的,为了使电力机车可以获得稳定的电能,受电弓对接触网有向上抬升的力。
两者相互接触受力,联系密切。
在电气列车运行过程中的弓网接触力总是变化的,因此又称接触力为动态接触力。
任一时刻的接触力等于静态接触力、摩擦阻力、空气动力及动态接触力分力的矢量和,即:F = F 0+ F R+ FAER + FDYN通过弓网受力分析,可以判断受电弓与接触网任一者的状态不良时,都容易引发弓网的异常信息,影响供电安全。
而且,弓网关系可以更深入的追溯到电力机车的内部故障,同样会引起接触网跳闸,造成车顶放炮,对弓网设备构成影响。
同样接触网的故障停电,也会使电力机车失去动力停车。
因此广义上讲弓网关系是电力机车与牵引供电设备之间的关系1、易引发弓网故障的接触网缺陷(1)接触线的硬点造成接触线硬点有四大原因,①设计原因。
在锚段关节、线岔以及上跨桥下需降高的接触网设备,由于接触线需要使用做降高或下锚的处理,易产生硬点。
②材质原因。
接触线采用的合金接触导线晶粒不均匀,导线内部在应力、张力的作用下形成容易波浪弯。
③施工原因。
在接触线施工架设过程中,应采取恒张力放线施工,但由于缺乏必要的张力标准理论数值指导具有很大的不稳定性,极易使接触线发生变形、扭曲、硬弯。
④维护原因。
由于检修作业人员日常作业不标准,在作业过程中踩踏接触线造成硬点。
序号项目160km/h等级线路200km/等级线路1类2类3类1类2类3类1 硬点(g)30 40 50 30 40 502 一跨内接触线高差—150 200 ——150表1 接触网平顺性指标在电力机车高速运行的过程中,接触线的硬点增加了与受电弓的摩擦力,导致受电弓寿命降低,严重的可能发生打弓故障,甚至造成大面积塌网。
受电弓动态包络线测量作业指导书一、受电弓动态包络线的定义及要求:受电弓动态包络线是指运行中的受电弓在最大抬升及摆动时可能达到的最大轮廓线。
动态包络线范围内不得有任何障碍影响受电弓运行。
受电弓动态包络线应符合下列规定:120km/h及以下区段,受电弓动态抬升量为100mm,左右摆动量为200mm。
120-160km/h区段,受电弓动态抬升量为120mm,左右摆动量为250mm。
受电弓动态包络线示意图如下:a--设计规定的受电弓横向摆动量,120km/h及以下区段,受电弓左右摆动量为200mm,120-160km/h区段,受电弓左右摆动量为250mm。
b--滑板拐点至受电弓诱导角端点的距离,即d-c。
—1—c--滑板拐点至受电弓中心线的距离。
d--受电弓中心至受电弓诱导角端点的距离。
e--受电弓诱导角端点距受电弓工作面的垂直距离。
包西线常用机车型号及受电弓参数:S4型:2c:1250mm,2d:2030mm,e:370mm。
S3型:2c:1280mm,2d:2110mm,e:370mm。
S3B及S7、和谐号:2c:1250mm,2d:1990mm,e:200mm。
受电弓诱导角处最大距离示意图:A点:高于定位点导线100mm处;B点:与定位点导线等高点。
C点:低于定位点导线100mm处:D点:低于定位点导线270mm处二、受电弓动态包络线的测量工具激光测距仪。
三、受电弓动态包络线的测量位置及方法1.测量定位点导线高度H0和拉出值;2.测量高出导线100mm(即H0+100)处斜腕臂(或棒瓶、定位环)偏移—2—值;3.测量与导线等高(即H0)处斜腕臂(或棒瓶)偏移值;4.测量低于导线100mm(即H0-100)处斜腕臂(或棒瓶、铁帽)偏移值。
5、测量吊柱的侧面限界及吊柱下底面高度。
测量第2-4项时,若对应点在凹槽内或瓷裙小片上,则测量点上移到最近的大瓷裙边沿上。
测量中还应注意腕臂棒式绝缘子铁锚压板和第一片瓷裙处距受电弓的偏移值,根据其对应的抬高量在图2或对照表中查找对应的偏移值是否符合标准。
各种电力机车受电弓滑板的型号各种电力机车受电弓滑板的型号、性能及其应用根据材质的不同,我们将滑板分为纯碳滑板、粉末冶金滑板和浸渍金属滑板。
下面将分别介绍我国各种滑板的生产情况,产品型号、规格、性能及其应用。
1、纯碳质滑板目前,纯碳质滑板是我国电气化铁路上广泛使用的主要滑板之一,是非金属中导电较好的材料,当前有哈尔滨电碳厂、北京电碳和自贡东新电碳厂进行生产。
纯碳滑板工作时磨下来的粉末粘附在接触导线表面,形成一层很薄的碳膜,起到了良好的自润滑作用,能够减轻对导线的磨耗。
据统计,使用纯碳滑板的网线寿命至少是50年,它对导线的磨耗仅为0。
006mm/万次,并且对无线电话及无线电视干扰小。
因此,欧洲等一些国家如荷兰从1934年,德国从1935年便开始使用纯碳滑板,而目前不论交流或直流供电的电气化铁路道在铜导线上都采用了纯碳滑板。
在日本,私营铁路全部使用纯碳滑板。
可见,纯碳滑板不失为一种优良的滑板材料。
目前国内广泛使用的国产纯碳滑板的型号、规格及技术性能如表1所示。
哈碳厂、北京电碳厂和东新电碳厂成产的纯碳板基本能够满足我国电气铁路需求。
因此,机械电子工业部在总结我国近年纯碳滑板生产状况的前提下,于1898年2月17日发布了中华人民共和国专业标准《电力机车碳滑板》,并规定的电力机车纯碳滑板的型号和规格如表2所示,技术性能如表3所示。
表2 纯碳滑板的型号与规格规格mm型号 H(高) B(宽) L(长)C21 30—35 36 250—500C22 35 70 500—1000C23 35 70 500—1000C25 56 — 500—750注:根据用户要求,可生产其他规格制品。
表3 国产纯碳滑板的技术性能型号电阻率肖氏硬度体积密度抗折强度沿长度方向抗压强度单个价值平均值 MPa MpaC21 38 58-100 62 160~180 28 57C22 33 45-90 50 160~180 24 40 C23 20 40-70 20 160~180 20 40 C25 35 60-100 70 160~180 25 59 注:体积密度不作出厂考核项目。
受电弓知识受电弓知识受电弓动态包络线示意图ea--设计规定的受电弓横向摆动量b--滑板拐点至受电弓诱导角端点的距离c--滑板拐点至受电弓中心线的距离d = 2a+be = a+b+c300km/h受电弓,设计速度300km/h,适用于相应速度等级的各种电力机车及动车组。
底架采用不锈钢焊接结构,下臂采用铸铝结构,上导杆采用碳纤维材料,弓头采用高强度的钛合金材料,上臂采用重量较轻的铝型材。
300km/h受电弓的参数:设计速度300 km/h落弓位伸展长度约2640 mm最大升弓高度(包括绝缘子)3000 mm落弓位高度(包括绝缘子)588 mm弓头长度1950 mm额定电压25 kV额定电流1000 A接触压力70 –120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约109kg此主题相关图片如下:DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
具有DSA200型受电弓的所有特点,与DSA200型受电弓比较, DSA150上臂采用铝型材焊接结构。
DSA150型受电弓的参数:设计速度 160 km/h落弓位伸展长度约2600 mm最大升弓高度(包括绝缘子) 3000 mm落弓位高度(包括绝缘子) 588 mm弓头长度 1950 mm额定电压 25 kV额定电流 1000 A接触压力 70 – 120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约125kg此主题相关图片如下:DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
具有DSA200型受电弓的所有特点,与DSA200型受电弓比较, DSA150上臂采用铝型材焊接结构。
DSA150型受电弓的参数:设计速度 160 km/h落弓位伸展长度约2600 mm最大升弓高度(包括绝缘子) 3000 mm落弓位高度(包括绝缘子) 588 mm弓头长度 1950 mm额定电压 25 kV额定电流 1000 A接触压力 70 – 120 N(可调)驱动类型气囊驱动机构升弓时间≤5.4 秒(可调)降弓时间≤4 秒(可调)整弓质量约125kg此主题相关图片如下:DSA200型受电弓,设计速度200km/h,适用于相应速度等级的各种电力机车及动车组。
电力机车受电弓特性分析学生姓名:xxx学号:xxxxxxxx专业班级:xxxxxxxx指导教师:xxxxxx西安铁路职业技术学院毕业设计(论文)摘要电力机车速度不断提高导致对受电弓要求不断提高,弓网电弧加剧,已经严重制约了高速铁路的发展。
本文通过受电弓的结构和动作原理及常见的故障分析等方面,得出了制约受电弓发展的各个因素,阐述了国内外电力机车的发展和性能比较,并针对常见受电弓进行了详尽的特性分析,指出了影响受电弓发展的因素和解决办法,得出受电弓改进与发展的方向。
关键词:受电弓;特性分析;故障分析;性能比较电力机车受电弓特性分析目录摘要 (I)引言 (1)1 受电弓模型简介 (2)1.1底架部分 (2)1.2铰链机构 (2)1.3弓头部分 (3)1.4传动机构 (3)2.DSA200型电弓动作原理简介 (5)2.1DSA200型受电弓的升弓和降弓 (5)3 DSA200型特性分析 (6)3.1 DSA200型受电弓与接触网特性分析 (6)3.2DSA200型受电弓与受流特性分析 (7)4 受电弓故障分析 (11)4.1升不起弓或自动降弓 (11)4.2受电弓升起后放电 (11)4.3受电弓受流时拉弧 (11)4.5滑板条磨耗 (11)4.6静态接触压力偏小 (12)4.7静态接触压力偏大 (12)4.8受电弓软连接线截面形状不当造成的断股 (12)4.9受电弓降不到位 (13)5 国内外受电弓性能比较 (15)5.1法国TGV型受电弓 (15)5.2德国受电弓 (15)5.3日本PS系列受电弓 (15)5.4国内电力机车受电弓介绍 (16)结论 (18)致谢 (19)参考文献 (20)西安铁路职业技术学院毕业设计(论文)引言实践表明,电力机车想要高速发展离不开受电弓的支持,而制约受电弓发展的各个因素里面,受电弓与接触网和受流的关系最为重要。
在电气化铁道中,接触网是指架设在铁道上方沿途为电力机车提供电能的电力传输网,受电弓是电力机车从接触网上获取电能的装置:弓网电弧是指受电弓在接触网上滑动运行过程中,由于接触网的线路的不平顺,接触网振动,受电弓弓头的振动,轨道的不平顺等原因的影响,在相对高速接触运动中离体而产生的气体放电现象。