初中数学二次函数的图象与性质基础过关测试题(附答案详解)
- 格式:doc
- 大小:614.00 KB
- 文档页数:24
二次函数的图象与性质1一、选择题:1.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 62.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0,③ 4a+b2<4ac,④ 3a+c<0.正确的个数是()A. 1B. 2C. 3D. 43.已知二次函数y=−x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是(1,3)C. 当x<1时,y随x的增大而增大D. 图象与x轴有唯一交点4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(−1,0),点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线x=2,有以下结论:① abc>0;②若点M(−12,y1),点N(72,y2)是函数图象上的两点,则y1<y2;③ −35<a<−25;④ ΔADB可以是等腰直角三形.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. 154B. 4 C. ﹣154D. ﹣1746.已知二次函数y=x2−2ax+a2−2a−4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A. a≥−2B. a<3C. −2≤a<3D. −2≤a≤3二、填空题7.抛物线y=(k−1)x2−x+1与x轴有交点,则k的取值范围是________.8.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x.其中正确结论的序号是________.的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣1a9.下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.10.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.11.将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是________.三、解答题12.二次函数y=ax2+bx+c(a≠0)的图象过点A(﹣1,8)、B(2,﹣1),与y轴交于点C(0,3),求二次函数的表达式.13.已知二次函数y=ax2−2ax−3a的图象与x轴交于A、B两点,且经过C(1,-2),求点A、B的坐标和a的值.14.已知二次函数的顶点坐标为(2,−2),且其图象经过点(1,−1),求此二次函数的解析式.15.如图,抛物线y=-x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=4.求抛物线的顶点坐标。
中考数学复习《二次函数的图象与性质》经典题型及测试题(含答案)知识点一:二次函数的概念及解析式 1.一次函数的定义形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 例:如果函数y =(a -1)x 2是二次函数,那么a 的取值范围是a ≠0. 2.解析式(1)三种解析式:①一般式:y=ax 2+bx+c;②顶点式:y=a(x-h)2+k(a ≠0),其中二次函数的顶点坐标是(h ,k ); ③交点式:y=a(x-x 1)(x-x 2),其中x 1,x 2为抛物线与x 轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.变式练习:如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0). (1)求抛物线的解析式;(2)直接写出B ,C 两点的坐标; (3)求过O ,B ,C 三点的圆的 面积.(结果用含π的代数式表示)解:(1)由A(-1,0),对称轴为x =2,可得⎩⎪⎨⎪⎧-b 2=2,1-b +c =0,解得⎩⎨⎧b =-4,c =-5,∴抛物线解析式为y =x 2-4x -5(2)由A 点坐标为(-1,0),且对称轴方程为x =2,可知AB =6,∴OB =5,∴B 点坐标为(5,0),∵y =x 2-4x -5, ∴C 点坐标为(0,-5)(3)如图,连接BC ,则△OBC 是直角三角形,∴过O ,B ,C 三点的圆的直径是线段BC 的长度,在Rt △OBC 中,OB =OC =5,∴BC =52, ∴圆的半径为522,注意:若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x 轴的两个交点坐标,可设交点式.∴圆的面积为π(522)2=252π知识点二 :二次函数的图象与性质变式练习2:当0≤x ≤5时,抛物线y=x 2+2x+7的最小值为7 .变式练习2:二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是( ) A. 函数有最小值B. 对称轴是直线x =12C. 当x <12时,y 随x 的增大而减小 D. 当-1<x <2时,y >0【解析】A.由抛物线的开口向上,可知a >0,函数有最小值,正确,故本选项不顶点坐标 24,24b ac b a a ⎛⎫-- ⎪⎝⎭增减性 当x >2ba -时,y 随x 的增大而增大;当x <2b a-时,y 随x 的增大而减小. 当x >2ba-时,y 随x 的增大而减小;当x<2b a-时,y 随x 的增大而增大.最值x=2ba -,y 最小=244ac b a -.x =2ba -,y 最大=244ac b a-. 注意:(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.符合题意;B.由图象可知,对称轴为x =12,正确,故本选项不符合题意;C.因为a >0,所以,当x <12时,y 随x 的增大而减小,正确,故本选项不符合题意;D.由图象可知,当-1<x <2时,y <0,错误,故本选项符合题意. 2.系数a 、b 、c 的关系注意某些特殊形式代数式的符号: ① a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值. ③ 2a+b 的符号,需判断对称 某些特殊形式代数式的符号: ② a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值. ④ 2a+b 的符号,需判断对称 ③ a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值.轴-b/2a 与1的大小.若对称轴在直线x=1的左边,则-b/2a >1,再根据a 的符号即可得出结果.④2a-b 的符号,需判断对称轴与-1的大小.3.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( D ) A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小系数a 、b 、c a 决定抛物线的开口方向及开口大小当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.a 、b 决定对称轴(x=-b/2a )的位置当a ,b 同号,-b/2a <0,对称轴在y 轴左边;当b =0时, -b/2a=0,对称轴为y 轴;当a ,b 异号,-b/2a >0,对称轴在y 轴右边. c决定抛物线与y 轴的交点的位置当c >0时,抛物线与y 轴的交点在正半轴上;当c =0时,抛物线经过原点; 当c <0时,抛物线与y 轴的交点在负半轴上.b 2-4ac 决定抛物线与x 轴的交点个数b 2-4ac >0时,抛物线与x 轴有2个交点; b 2-4ac =0时,抛物线与x 轴有1个交点;b 2-4ac <0时,抛物线与x 轴没有交点D .若a <0,则当x ≤1时,y 随x 的增大而增大知识点三 :二次函数的平移平移与解析式的关系平移|k |个单位平移|h |个单位向上(k >0)或向下(k <0)向左(h <0)或向右(h >0)y =a (x -h )2+k 的图象y =a (x -h )2的图象y =ax 2的图象变式练习1:将抛物线y=x 2沿x 轴向右平移2个单位后所得抛物线的解析式是y=(x -2)2. 变式练习2:如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( C )A .y =(x -1)2+2B .y =(x +1)2+2C .y =x 2+1D .y =x 2+3变式练习3:已知二次函数y =x 2-4x +a ,下列说法错误的是( ) A. 当x <1时,y 随x 的增大而减小 B. 若图象与x 轴有交点,则a ≤4C. 当a =3时,不等式x 2-4x +a >0的解集是1<x <3D. 若将图象向上平移1个单位,再向左平移3个单位后过点(1, -2),则a =-3【解析】C ∵y =x 2-4x +a ,∴对称轴x =2,画二次函数的草图如解图,A.当x <1时,y 随x 的增大而减小,所以A 选项正确;B.∵b 2-4ac =16-4a ≥0,即a ≤4时,二次函数和x 轴有交点,所以B 选项正确;C.当a =3时,不等式x 2-4x +a >0的解集是x <1或x >3,所以C 选项错误;D.y =x 2-4x +a 配方后是y =(x -2)2+a -4,向上平移1个单位,再向左平移3个单位后,函数解析式是y =(x +1)2+a -3,把(1,-2)代入函数解析式,易求a =-3,所以D 选项正确,故选C.知识点四 :二次函数与一元二次方程以及不等式注意:1)二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式2)抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.无论是什么函数,左右移影响着x 的变化,左移x 加,右移x 减;上下移影响着y 的变化,上移y 减,下移y 加。
练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
初中数学二次函数的图象与性质基础练习题3(附答案详解)1.在下列四个函数中,当0x >时,y 随x 的增大而减小的函数是( )A .2y x =B .3y x =C .32y x =-D .2y x2.在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象可能是( )A .B .C .D . 3.二次函数y = x 2+2的对称轴为( )A .2x =B .0x =C .2x =-D .1x =4.已知点()13,A y ,()25,B y ,()34,C y -均在抛物线236y x x m =-+上,下列说法中正确的是().A .321y y y <<B .213y y y <<C .312y y y <<D .123y y y << 5.已知函数2y x bx c =-++,其中0b >,0c <,此函数的图象可以是( ) A .B .C .D .6.二次函数y =﹣2(x ﹣3)2+1的顶点坐标为( )A .(﹣3,1)B .(3,﹣1)C .(﹣3,﹣1)D .(3,1)7.把抛物线y =x 2向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为()A .y =(x +3)2+1B .y =(x +3)2﹣1C .y =(x ﹣1)2+3D .y =(x +1)2+38.二次函数2y ax bx c =++的图象如图所示,则下列结论正确的是( )A .0abc >B .0a b c ++= 29.下列哪一个是假命题( )A .五边形外角和为360°B .圆的切线垂直于经过切点的半径C .(3,﹣2)关于y 轴的对称点为(﹣3,2)D .抛物线y =x 2﹣4x +2020的对称轴为直线x =210.如图,已知抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1.有下列结论:①b 2=4ac ②abc >0 ③a >c ④4a+c >2b .其中结论正确的个数是( )A .1个B .2个C .3个D .4个 11. 抛物线()2234y x =--+的顶点坐标( )A .(-3,4)B .(-3,-4)C .(3,-4)D .(3,4)12.将抛物线向右平移2个单位再向上平移1个单位后得到的抛物线表达式是y =x 2+1,则原抛物线的表达式是( )A .21y x =-B .244y x x =++C .265y x x =++D .2817y x x =++13.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是A B C →→,点Q 的运动路径是B D →,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ ∆的面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .14.已知二次函数()20y ax bx c a =++≠的图象如图所示,现有下列结论:①0abc >;②240b ac -<;③420a b c -+<;④2b a =-.则其中结论正确的是( )A .①③B .③④C .②③D .①④15.在同一平面直角坐标系中,先将抛物线A :y =x 2﹣2通过左右平移得到抛物线B ,再将抛物线B 通过上下平移得到抛物线C :y =x 2﹣2x +2,则抛物线B 的顶点坐标为( )A .(﹣1,2)B .(1,﹣2)C .(1,2)D .(﹣1,﹣2) 16.已知反比例函数y =k x,当x >0时,y 的值随x 的值增大而增大,下列四个选项中,可能是二次函数y =2kx 2﹣x ﹣k 图象的选项是( )A .B .C .D .17.二次函数22y x x =-的顶点坐标是( )A .(1,1)B .(1,1)-C .(1,1)--D .(1,1)-18.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)19.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为()2,1.一张透明纸上画有一个点E 和一条抛物线,平移透明纸,使点E 与点A 重合,此时抛物线的函数表达式为2y x ,再次平移透明纸,使点E 与点C 重合,则该抛物线的函数表达式变为_______. 20.写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式________.21.如图,小亮从斜坡的点O 处抛出一个沙包,沙包轨迹抛物线的解析式为y=12x ﹣x 2, 斜坡OA 的坡度i=1:2,则沙包在斜坡的落点A 的垂直高度是___.22.(1)分解因式:32a ab -=______;(2)抛物线24y x =- 与x 轴的交点的坐标是______. 23.小亮同学参加了学校体育兴趣小组,在今年的校体育节中参加了跳远比赛,若函数h=52t ﹣72t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是_______.24.抛物线2y x =-向右平移4个单位,向上平移1个单位长度得到的抛物线解析式是_____25.把抛物线2y x =向上平移2个单位,所得的抛物线的函数关系式为________26.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).27.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.28.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数)的图象如图所示,则反比例函数y =a b c x++的图象所在的象限是第_____象限.29.如图,已知抛物线y=ax2+bx+1与x轴相交于点A,B,与y轴相交于点C,点A的坐标为(﹣1,0),对称轴为直线x=1.(1)求点B的坐标及抛物线的解析式;(2)在直线BC上方的抛物线上有一点P,使△PBC的面积为1,求出点P的坐标.30.如图,抛物线y=ax2+c经过点A(0,2)和点B(-1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.参考答案1.B【解析】【分析】分别根据正比例函数、反比例函数、一次函数和二次函数的性质逐项判断即得答案.【详解】解:A 、 20>,∴当0x >时,函数2y x =是y 随着x 增大而增大,故本选项错误; B 、30>,∴当0x >时,函数3y x =是y 随着x 增大而减小,故本选项正确; C 、30>,∴当0x >时,函数32y x =-是y 随着x 增大而增大,故本选项错误;D 、函数2y x ,当0x <时,y 随着x 增大而减小,当0x >时,y 随着x 增大而增大,故本选项错误.故选:B .【点睛】本题考查了初中阶段三类常见函数的性质,属于基础题型,熟练掌握一次函数、反比例函数和二次函数的性质是解题的关键.2.D【解析】【分析】根据一次函数的性质和二次函数的性质,由函数图象可以判断a 、b 的正负情况,从而可以解答本题.【详解】解:在A 中,由一次函数图像可知:a <0,b >0,由二次函数图像可知,a >0,b <0,矛盾,故不符合;在B 中,由一次函数图像可知:a >0,b <0,由二次函数图像可知,a <0,b <0,矛盾,故不符合;在C 中,由一次函数图像可知:a >0,b <0,由二次函数图像可知,a >0,b <0,但抛物线不经过原点,与21y ax bx =+性质不符,故不符合;在D 中,由一次函数图像可知:a <0,b >0,由二次函数图像可知,a <0,b >0,故符合; 故选D.本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.3.B【解析】【分析】根据二次函数的性质解答即可.【详解】二次函数y = x 2+2的对称轴为直线0x =.故选B .【点睛】本题考查了二次函数y =a (x -h )2+k (a ,b ,c 为常数,a ≠0)的性质,熟练掌握二次函数y =a (x -h )2+k的性质是解答本题的关键. y =a (x -h )2+k 是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(h ,k ),对称轴是x =h .4.D【解析】【分析】先求得抛物线的对称轴,再求出点(−4,y 3)关于对称轴的对称点,然后根据抛物线的增减性判断即可.【详解】解:∵抛物线236y x x+m =-的对称轴是:直线x=−-623⨯=1,且抛物线开口向上, ∴当x>1时,y 随x 的增大而增大,又∵点(−4,y 3)关于直线x=1的对称点是(6,y 3),且3<5<6,∴123y y y <<,故选:D .【点睛】本题考查了抛物线的图象和性质,属于常考题型,熟练掌握抛物线的性质是解题关键. 5.D【分析】根据已知条件“a <0、b >0、c <0”判断出该函数图象的开口方向、与x 和y 轴的交点、对称轴所在的位置,然后据此来判断它的图象.【详解】解:∵a=-1<0,b >0,c <0, ∴该函数图象的开口向下,对称轴是b x 02a=->,与y 轴的交点在y 轴的负半轴上; 故选D .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握判定方法是解题的关键.6.D【解析】【分析】根据二次函数的解析式可直接得到顶点坐标.【详解】解:∵二次函数y =﹣2(x ﹣3)2+1是顶点式,∴顶点坐标为(3,1).故选:D .【点睛】本题考查了二次函数的性质,属于基础题,解题的关键是掌握()2y a x h k =-+的顶点坐标为(),h k .7.C【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y =x 2向上平移3个单位所得抛物线的解析式为:y =x 2+3;由“左加右减”的原则可知,把抛物线y =x 2+3向右平移1个单位所得抛物线的解析式为:y=(x ﹣1)2+3.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.8.A【解析】【分析】A 选项,根据抛物线的开口方向可判断a 的正负,然后根据对称轴的位置可判断b 的正负,根据抛物线与y 轴的交点的位置可判断c 的正负,进而即可判断A 选项的正误;B 选项,令1x =结合图象即可判断B 选项的正误;C 选项,令2x =-结合图象即可判断C 选项的正误;D 选项,根据抛物线与x 轴的交点的个数即可判断.【详解】A. ∵该抛物线的开口方向向上,0a ∴>02b x a=-> 0b ∴<∵抛物线与y 轴的交点在y 轴的负半轴,0c ∴<0abc ∴>,故此选项正确;B. 令1x =,由图象可知0a b c ++<,故此选项错误;C. 令2x =-,由图象可知420a b c -+>,故此选项错误;D. 由图象可知,该抛物线与x 轴有两个不同的交点,∴240b ac ->;故此选项错误;故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.9.C【解析】【分析】根据多边形的外角和定理、切线的性质定理、关于y 轴对称的点的坐标特征、二次函数的对称轴是确定方法判断即可.【详解】A .五边形外角和为360°,是真命题;B .圆的切线垂直于经过切点的半径,是真命题;C .(3,﹣2)关于y 轴的对称点为(﹣3,﹣2),原命题是假命题;D .抛物线y =x 2﹣4x +2020的对称轴为直线x =2,是真命题;故选:C .【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉性质定理.10.C【解析】【分析】根据二次函数的图象和二次函数的性质可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】①∵函数图象与x 轴两个交点,∴240b ac ->,即24b ac >,故①错误;②∵抛物线开口向上,顶点在y 轴左侧,与y 轴交于正半轴,∴a >0,,c >0,ab >0,∴abc >0,故②正确;③∵x=﹣1时,y 0<,即a-b+c 0<,∵对称轴为直线x=﹣1,∴2b a-=﹣1,b=2a , ∴a-2a+c 0<,即a >c ,故③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y >0,∴4a-2b +c >0,即4a+c >2b ,故④正确.故选C.【点睛】本题考查二次函数图象与系数的关系.11.D【解析】【分析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为()2y 2x 34=--+是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3, 4),故选D .【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.12.B【解析】【分析】根据图象左加右减,上加下减,可得答案.【详解】解:∵抛物线向右平移2个单位再向上平移1个单位后得到的抛物线表达式是y =x 2+1, ∴抛物线y =x 2+1,左移2个单位,下移1个单位得原函数解析式y=(x+2)2+1-1=244x x ++ 故选:B .【点睛】本题考查了二次函数图象与几何变换,利用了图象左加右减,上加下减的规律.13.C【解析】【分析】分两种情况,求出y 关于x 的函数关系式,即可求解.【详解】解:∵四边形ABCD 是正方形,8AB =,∴BD=当0<x≤8时,则y =12x =2x + ∴此段抛物线的开口向下;当8<时,则y =12(x−8)• 2x =24x ∴此段抛物线的开口向上,故选:C【点睛】本题考查了动点问题的函数图象,找出对应的函数关系式是解本题的关键.14.B【解析】【分析】由抛物线开口向下,得到a 小于0,再由对称轴在y 轴右侧,得到a 与b 异号,可得出b 大于0,又抛物线与y 轴交于正半轴,得到c 大于0,可得出abc 小于0,选项①错误;由抛物线与x 轴有2个交点,得到根的判别式b 2-4ac 大于0,选项②错误;由x=-2时对应的函数值小于0,将x=-2代入抛物线解析式可得出4a-2b+c 小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=-2a ,得到选项④正确,即可得到正确结论的序号.【详解】由抛物线的开口向下,得到a <0, ∵02b a->,∴b >0, 由抛物线与y 轴交于正半轴,得到c >0,∴abc <0,选项①错误;又抛物线与x 轴有2个交点,∴b 2−4ac >0,选项②错误;∵x =−2时对应的函数值为负数,∴4a −2b +c <0,选项③正确;∵对称轴为直线x =1, ∴12b a-=,即b =−2a ,选项④正确, 则其中正确的选项有③④.故选:B【点睛】考查二次函数图象与系数的关系.二次项系数a决定抛物线的开口方向,,a b共同决定了对称轴的位置,常数项c决定了抛物线与y轴的交点位置.15.B【解析】【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【详解】解:抛物线A:y=x2﹣2的顶点坐标是(0,﹣2),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移3个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣2,所以其顶点坐标是(1,﹣2).故选:B.【点睛】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.16.D【解析】【分析】直接利用反比例函数的性质得出k的符号,再利用二次函数的性质得出答案.【详解】解:∵反比例函数y=kx,当x>0时,y的值随x的值增大而增大,∴k<0,∴二次函数y=2kx2﹣x﹣k中,2k<0,则图象开口向下,﹣k>0,则图象与y轴交在正半轴上,又∵b=﹣1<0,∴二次项与一次项系数相同,则对称轴在y 轴左侧,符合题意的只有选项D .故选:D .【点睛】此题主要考查了反比例函数的性质以及二次函数的性质,正确掌握系数与图象的关系是解题关键.17.B【解析】【分析】根据配方法把函数化为顶点式即可求解.【详解】∵22y x x =-=2(1)1x -- 故顶点坐标是(1,1)-故选B.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知配方法的应用.18.D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .19.2814y x x =++【解析】【分析】先由对称计算出C 点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【详解】解:∵矩形ABCD 的两条对称轴为坐标轴,∴矩形ABCD 关于坐标原点对称,∵A 点C 点是对角线上的两个点,∴A 点、C 点关于坐标原点对称,∴C 点坐标为(-2,-1);∴透明纸由A 点平移至C 点,抛物线向左平移了4个单位,向下平移了2个单位; ∵透明纸上点E 与点A 重合时,函数表达式为y=x 2,∴透明纸上点E 与点C 重合时,函数表达式为y=(x+4)2-2=x 2+8x+14故答案为:2814y x x =++.【点睛】本题主要考查了函数图象的平移,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式,是解题的关键.20.y=-(x-1)2+2【解析】【分析】利用顶点式可设抛物线解析式为y=a(x-1)2+2,然后根据a 的作用确定a 的值即可.【详解】解:设抛物线解析式为y=a(x-1)2+2,∵抛物线y=a y=-(x-1)2+22+2的开口向下,∴可令a=-1,∴抛物线解析式y=-(x-1)2+2.故答案为y=-(x-1)2+2.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.234.【解析】【分析】设A 点的坐标为(m ,n ),根据斜坡OA 的坡度i=1:2,可得出m ,n 之间的关系,结合点在二次函数图象上即可列出关于m ,n 的二元二次方程组,解方程组求出n 值即可.【详解】解:设A 点的坐标为(m ,n ), 根据题意,得21212n m m n m ⎧=-⎪⎨=⎪⎩, 解得:n=0(舍去),或234n =, 故答案为:234. 【点睛】本题考查了二次函数的应用、坡度角问题以及解二元二次方程组,解题的关键是列出关于m 、n 的二元二次方程组.本题属于中档题,难度不大,但涉及到的知识点较多,解题的关键是结合各知识点列出方程组.22.()()a a b a b +-; (2,0)-,(2,0)【解析】【分析】(1)先提取公因式a ,再利用平方差公式进行因式分解即可;(2)令y=0,解240x -=这个方程即可得出答案.【详解】(1)3222()()()a ab a a b a a b a b -=-=+-;故答案为:()()a a b a b +-(2)令y=0,则240x -=,解得: 12x =-,22x =,故答案为:(2,0)-,(2,0).【点睛】本题考查了多项式的因式分解,二次函数与x 轴的交点坐标,属于基础题,与x 轴的交点坐标,令y=0,与y 轴的交点坐标,令x=0.23.514s 【解析】【分析】重心最高点,就是求这个二次函数的顶点,将二次函数化为顶点式,由此即可得.【详解】22577525()2221456h t t t =-=--+ 由二次函数的性质可知,当514t =时,h 取得最大值 故答案为:514s . 【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题关键.24.241y x 【解析】【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线2y x =-向右平移4个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线241y x , 故答案为:241y x .【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.25.2y 2x =+【解析】【分析】求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.【详解】∵抛物线y =x ²向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=x²+2.故答案为:y=x²+2.【点睛】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.26.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.27.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y =x 2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.28.二、四.【解析】【分析】根据函数图象,由1x =时,得到a b c ++的正负,即可得到答案.【详解】解:由二次函数的图象可知,当x =1时,y <0,即a +b +c <0,∴反比例函数y =a b c x++的图象所在的象限是第二、四象限, 故答案为:二、四.【点睛】本题考查了二次函数中a b c ++的正负判断,反比例函数系数对于图象象限的影响,熟练掌握这些知识点是解题的关键.29.(1)点B 的坐标为:B (3,0),抛物线解析式为y =﹣13x 2+23x +1;(2)P 点坐标为(1,43)或(2,1). 【解析】【分析】(1)利用抛物线的对称性确定B (3,0),然后利用交点式求抛物线解析式;(2)作PQ ∥y 轴于Q ,如图,利用待定系数法求出直线BC 的解析式为y=13-x+1,设P (t ,13-t 2+23 t +1)(0<t <3),则Q (t ,13-t+1),则PQ=13-t 2+t ,利用三角形面积公式得到12×3×(13-t 2+t )=1,然后解方程求出t 即可得到P 点坐标. 【详解】解:(1)∵点A 的坐标为(﹣1,0),对称轴为直线x =1,∴B (3,0),设抛物线解析式为y =a (x +1)(x ﹣3),即y =ax 2﹣2ax ﹣3a ,∵﹣3a =1,∴a=13-,∴抛物线解析式为y=13-x2+23x+1;(2)作PQ∥y轴于Q ,如图,当x=0时,y=13-x2+23x+1=1,则C(0,1)设直线BC的解析式为y=mx+n,把C(0,1),B(3,0)代入得130nm n=⎧⎨+=⎩,解得131mn⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为y=13-x+1,设P(t,13-t2+23t+1)(0<t<3),则Q(t,13-t+1)∴PQ=13-t2+23t+1﹣(13-t+1)=13-t2+t,∵△PBC的面积为1,∴12×3×(13-t2+t)=1,整理得t2﹣3t+2=0,解得t1=1,t2=2,∴P点坐标为(1,43)或(2,1).故答案为:(1)点B的坐标为:B(3,0),抛物线解析式为y=﹣13x2+23x+1;(2)P点坐标为(1,43)或(2,1).【点睛】本题考查抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和二次函数图象上点的坐标特征.30.(1)y=-2x2+2;(2)C(2-,0),D(2+,0)(3)<n<.【解析】试题分析:(1)把点A、B的坐标分别代入函数解析式,列出关于a、c的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令y=0,则解关于x的方程,即可求得点C、D的横坐标;(3)根据根与系数的关系来求n的取值范围;试题解析:(1)∵抛物线y=ax2+c经过点A(0,2)和点B(-1,0).∴解得:∴此抛物线的解析式为y=-2x2+2;(2)∵此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为y=-2(x-2)2+1令y=0,即-2(x-2)2+1=0解得x1=2+,x2=2-.∵点C在点D的左边∴ C(2-,0),D(2+,0)(3)<n<.考点:1.二次函数图象与几何变换;2.待定系数法求二次函数解析式.。
中考数学总复习《二次函数的图象与性质》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.已知二次函数y=-3(x-2)2-3,下列说法正确的是( )A.对称轴为x=-2B.顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-32.将抛物线y=x2向右平移3个单位,再向上平移4个单位,得到的抛物线是( )A.y=(x-3)2+4B.y=(x+3)2+4C.y=(x+3)2-4D.y=(x-3)2-43.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知A(x1,y1),B(x2,y2),C(3,y3)是抛物线y=-(x-2)2-m+4上的三个点,若x1>x2>3,则( )A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y3<y15.已知抛物线y=x2+bx+c过点A(m,n),B(m-4,n),且它与x轴只有一个公共点,则n 的值是( )A.4B.-4C.6D.166.(2024·内江中考)已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P(2,y1),Q(3,y2)在抛物线C上,则y1y2(填“>”或“<”).【B层·能力提升】7.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n-1)D.(m-1,n)8.(2024·达州中考)抛物线y=-x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A.b+c>1B.b=2C.b2+4c<0D.c<09.(2024·陕西中考)已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:x…-4-2035…y…-24-80-3-15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x值的增大而减小C.图象经过第二、三、四象限D.图象的对称轴是直线x=110.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的一个交点坐标为(1,0),对称轴为直线x =-1,下列四个结论:①abc <0;②4a -2b +c <0;③3a +c =0;④当-3<x <1时,ax 2+bx +c <0;其中正确结论的个数为( )A.1个B.2个C.3个D.4个11.(2024·广安中考)如图,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴交于点A (-32,0),对称轴是直线x =-12,有以下结论:①abc <0;②若点(-1,y 1)和点(2,y 2)都在抛物线上,则y 1<y 2;③am 2+bm ≤14a -12b (m 为任意实数);④3a +4c =0,其中正确的有( )A.1个B.2个C.3个D.4个12.若一个函数的图象关于y 轴对称,则称这个函数为偶函数,如二次函数y =-x 2是偶函数.若二次函数y =2x 2+(3-a )x +8是偶函数,则a 的值为 . 13.如图,已知二次函数y =x 2+bx +c 图象经过点A (1,-2)和B (0,-5).(1)求该二次函数的表达式及图象的顶点坐标; (2)当y ≤-2时,请根据图象直接写出x 的取值范围.【C层·素养挑战】14.已知二次函数y=x2-2ax+1.(1)若二次函数的图象经过点(1,-2),求a的值;(2)在(1)的条件下,当m-2≤x≤2时,二次函数的最大值是6,求m的值;(3)已知点A(-2,7),B(3,2),直线AB与x轴和y轴分别交于点E,F,若y=x2-2ax+1与直线AB有两个不同的交点,其中一个交点在线段AF上(包含A,F两个端点),另一个交点在线段BE上(包含B,E两个端点),直接写出a的取值范围.参考答案【A层·基础过关】1.已知二次函数y=-3(x-2)2-3,下列说法正确的是(C)A.对称轴为x=-2B.顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-32.将抛物线y=x2向右平移3个单位,再向上平移4个单位,得到的抛物线是(A)A.y=(x-3)2+4B.y=(x+3)2+4C.y=(x+3)2-4D.y=(x-3)2-43.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过(D)A.第一象限B.第二象限C.第三象限D.第四象限4.已知A(x1,y1),B(x2,y2),C(3,y3)是抛物线y=-(x-2)2-m+4上的三个点,若x1>x2>3,则(B)A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y3<y15.已知抛物线y=x2+bx+c过点A(m,n),B(m-4,n),且它与x轴只有一个公共点,则n 的值是(A)A.4B.-4C.6D.166.(2024·内江中考)已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P(2,y1),Q(3,y2)在抛物线C上,则y1<y2(填“>”或“<”).【B层·能力提升】7.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是(D)A.(m,n+1)B.(m+1,n)C.(m,n-1)D.(m-1,n)8.(2024·达州中考)抛物线y=-x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是(A)A.b+c>1B.b=2C.b2+4c<0D.c<09.(2024·陕西中考)已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:x … -4 -2 0 3 5 …y … -24-8-3-15 …则下列关于这个二次函数的结论正确的是(D) A.图象的开口向上B.当x >0时,y 的值随x 值的增大而减小C.图象经过第二、三、四象限D.图象的对称轴是直线x =110.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的一个交点坐标为(1,0),对称轴为直线x =-1,下列四个结论:①abc <0;②4a -2b +c <0;③3a +c =0;④当-3<x <1时,ax 2+bx +c <0;其中正确结论的个数为(D)A.1个B.2个C.3个D.4个11.(2024·广安中考)如图,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴交于点A (-32,0),对称轴是直线x =-12,有以下结论:①abc <0;②若点(-1,y 1)和点(2,y 2)都在抛物线上,则y 1<y 2;③am 2+bm ≤14a -12b (m 为任意实数);④3a +4c =0,其中正确的有(B)A.1个B.2个C.3个D.4个12.若一个函数的图象关于y 轴对称,则称这个函数为偶函数,如二次函数y =-x 2是偶函数.若二次函数y =2x 2+(3-a )x +8是偶函数,则a 的值为 3 . 13.如图,已知二次函数y =x 2+bx +c 图象经过点A (1,-2)和B (0,-5).(1)求该二次函数的表达式及图象的顶点坐标; (2)当y ≤-2时,请根据图象直接写出x 的取值范围.【解析】(1)把A (1,-2)和B (0,-5)代入y =x 2+bx +c 得,{1+b +c =-2c =-5,解得{b =2c =-5∴二次函数的表达式为y =x 2+2x -5 ∵y =x 2+2x -5=(x +1)2-6 ∴顶点坐标为(-1,-6); (2)如图:∵点A (1,-2)关于对称轴直线x =-1的对称点C 为(-3,-2) ∴当y ≤-2时,x 的取值范围是-3≤x ≤1.【C 层·素养挑战】14.已知二次函数y =x 2-2ax +1.(1)若二次函数的图象经过点(1,-2),求a 的值;(2)在(1)的条件下,当m -2≤x ≤2时,二次函数的最大值是6,求m 的值;(3)已知点A (-2,7),B (3,2),直线AB 与x 轴和y 轴分别交于点E ,F ,若y =x 2-2ax +1与直线AB 有两个不同的交点,其中一个交点在线段AF 上(包含A ,F 两个端点),另一个交点在线段BE 上(包含B ,E 两个端点),直接写出a 的取值范围. 【解析】(1)∵二次函数的图象经过点(1,-2) ∴-2=1-2a +1 ∴a =2.(2)由(1)可知二次函数为y =x 2-4x +1 ∵y =x 2-4x +1=(x -2)2-3∴抛物线y =x 2-4x +1开口向上,对称轴为直线x =2,顶点为(2,-3) ∵当m -2≤x ≤2时,二次函数的最大值是6 ∴当x =m -2时,二次函数的最大值是6 ∴(m -2-2)2-3=6解得m =1或m =7(舍去),故m 的值为1. (3)∵已知点A (-2,7),B (3,2)∴设直线AB 的解析式为y =kx +b (k ≠0) 将A (-2,7),B (3,2)代入得:{-2k +b =73k +b =2解得:{k =-1b =5,经过E (5,0)时,a =135∴43≤a ≤135.。
初中数学二次函数的图象与性质基础练习题2(附答案详解) 1.二次函数y=(x-2)2+1的对称轴表达式是 A .x=2B .x=-2C .x=1D .x=-12.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 3>y 2>y 1D .y 3>y 1>y 23.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①abc<0;②2a +b=0;③当x=﹣1或x=3时,函数y 的值都等于0;④4a +2b +c >0,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( ) A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+35.已知点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭在函数23612y x x =++的图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>6.如图,在平面直角坐标系中,A (1,2),B (1,﹣1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .a≤﹣1或a≥2B .12≤a≤2 C .﹣1≤a <0或1<a≤2D .﹣1≤a <0或0<a≤27.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为( )A .x >2B .x <2C .x >6D .x <68.函数2122y x x =-++有最值为( ) A .最大值32B .最小值32C .最大值12-D .最小值12-9.在同一直角坐标系中,函数y=2x +3与y=mx(0)m ≠的图象可能是( ) A . B . C . D .10.二次函数y =ax 2+bx +c (a ≠0)的图象所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b>0.其中正确的结论有( )A .①②B .①④C .①③④D .②③④11.将二次函数y =x 2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.12.将抛物线y=(x+m )2向右平移2个单位后,对称轴是y 轴,那么m 的值是_____. 13.二次函数2y 2x 4x 1=--的图象是由2y 2x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b =________,c =________. 14.抛物线2(1)y x =-的顶点坐标是__________.15.一条抛物线的顶点是A (2,1),且经过点B (1,0),则该抛物线的函数表达式是_____.16.二次函数222y x x -=-,当x ________时,y 有________值,这个值为________;当x ________时,y 随x 的增大而增大;当x ________时,y 随x 的增大而减小. 17.已知函数y=﹣2x 2+x ﹣4,当x________时,y 随x 增大而减少.18.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.19.如图,二次函数()20y ax bx c a =++≠的图象经过点()1,2-且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0b <;②0a b c ++<;③420a b c -+<;④20a b -<,其中正确的有________.(填代号)20.将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____21.观察表格:根据表格解答下列问题:(l) a =______,b =_____,c =_____;(2) 在下图的直角坐标系中画出函数y =ax 2+bx +c 的图象,并根据图象,直接写出当x 取什么实数时,不等式ax 2+bx +c > -3成立;(3)该图象与x 轴两交点从左到右依次分别为A 、B ,与y 轴交点为C ,求过这三个点的外接圆的半径.22.如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°. (1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+12E′B的最小值.23.当行驶中的汽车撞到物体时,汽车的损坏程度通常用“撞击影响”来衡量.汽车的撞击影响I可以用汽车行驶速度v(km/min)来表示,下表是某种型号汽车的行驶速度与撞击影响的试验数据:v(km/min) 0 1 2 3 4I 0 2 8 18 32(1)请根据上表中的数据,在直角坐标系中描出坐标(v,I)所对应的点,并用光滑曲线将各点连接起来;(2)填写下表,并根据表中数据的呈现规律,猜想用v表示I的二次函数表达式;v(km/min) 1 2 3 42 v I 12121212(3)当汽车的速度分别是1.5 km/min,2.5 km/min,4.5 km/min时,利用你得到的撞击影响公式,计算撞击影响分别是多少?24.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.25.已知抛物线2y ax bx c =++与y 轴交于点()0,3a ,对称轴为1x =.()1试用含a 的代数式表示b 、c .()2当抛物线与直线1y x =-交于点()2,1时,求此抛物线的解析式. ()3求当()6b c +取得最大值时的抛物线的顶点坐标.26.如图,已知抛物线y=ax 2+32x+4的对称轴是直线x=3,且与轴相交于A 、B 两点(B 点在A 点的右侧),与轴交于C 点.(1)A 点的坐标是 ;B 点坐标是 ; (2)直线BC 的解析式是: ;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由; (4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.27.如图,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标.28.己知二次函数221y x x =--.(1)写出其顶点坐标为 ,对称轴为 ; (2)在右边平面直角坐标系内画出该函数图像; (3)根据图像写出满足2y >的x 的取值范围 .参考答案1.A 【解析】 【分析】根据二次函数2()y a x b c =-+的对称轴是直线x=b,顶点坐标分别为 (b, c) 判断即可. 【详解】解:二次函数y=(x-2)2+1的对称轴为直线x=2, 故选:A. 【点睛】本题主要考查二次函数的性质. 2.A 【解析】 【分析】根据二次函数的对称性,可利用对称性,找出点A 的对称点A′,再利用二次函数的增减性可判断y 值的大小. 【详解】∵函数的解析式是y=-(x+1)2+a , ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(-2,y 1),那么点A′、B 、C 都在对称轴的左边,而对称轴左边y 随x 的增大而减小, 于是y 1>y 2>y 3. 故选A . 【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断. 3.D 【解析】根据函数图象,我们可以得到以下信息:a <0,c >0,对称轴x=1,b >0,与x 轴交于(﹣1,0)(3,0)两点.①abc <0,正确; ②∵对称轴x=﹣2ba=1时, ∴2a+b=0,正确;③当x=﹣1或x=3时,函数y 的值都等于0,正确; ④当x=2时,y=4a+2b+c >0,正确; 故选D . 4.B 【解析】解:∵将抛物线y =﹣(x +1)2+3向右平移2个单位,∴新抛物线的表达式为y =﹣(x +1﹣2)2+3=﹣(x ﹣1)2+3.故选B . 5.C 【解析】 【分析】)把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入2361y x x =++,求出1y ,2y ,3y 的值,比较即可得到大小关系. 【详解】把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入23612y x x =++得, y 1=9,y 2=3274,y 3=3154, ∴1y ,2y ,3y 的大小关系为23y y >>1y . 故选C. 【点睛】本题考查了二次函数的性质,二次函数图像上的点的坐标满足二次函数解析式. 6.D 【解析】 【分析】分a<0和a>0两种情况,确定开口最小经过的点,代入解析式求出a 的取值范围即可. 【详解】解:若a<0,则抛物线开口向下,开口最小过点B(1,-1)∴-1=a×12∴a=-1∴-1≤a<0若a>0,则抛物线开口向上,开口最小过点A(1,2)∴2=a×12∴a=2∴0<a≤2∴a的取值范围是-1≤a<0或0<a≤2故选D【点睛】本题考查了二次函数的图象,有一定难度,进行分类讨论是解题的关键.7.A【解析】【分析】根据抛物线的顶点坐标是P(2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x的取值范围. 【详解】∵抛物线的顶点坐标是P(2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y随自变量x的增大而减小,∴x的取值范围是x>2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质. 8.A【解析】【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数的最值问题解答.【详解】∵y=-x 2+2x+12=-(x-1)2+32, ∴二次函数有最大值32.故选A . 【点睛】本题考查了二次函数的最值问题,把函数解析式整理成顶点式形式是解题的关键. 9.A 【解析】试题解析:因为23y x =+的图象经过第一、二、三象限, 故选A . 10.C 【解析】 【分析】由二次函数图象开口方向、对称轴的位置、图象与y 轴交点的位置得到a 、b 、c 的符号,即可判①;由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,观察图象即可判定②;由图象可知,x=-1时,y >0,即可得a-b+c=0,根据对称轴-2ba=1,可得b=-2a ,代入即可判定③;由-2ba=1可得2a+b=0,所以3a+b=2a+b+a=a >0,即可判定④. 【详解】由二次函数图象开口向上,得到a>0;与y 轴交于负半轴,得到c<0,对称轴在y 轴右侧,a 、b 异号,则b<0,所以abc>0,①正确;②由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,当x >2时,y 值得符号不确定,∴②不正确;③∵当x=-1时,y >0, ∴a-b+c=0,∵-2b a=1, ∴b=-2a ,∴a+2a+c >0,∴3a+c >0,∴③正确;④∵-2b a=1, ∴2a+b=0,∴3a+b=2a+b+a=a >0,∴④正确.综上,正确的结论为①③④.故选C .【点睛】本题考查了抛物线图象与系数的关系,熟练运用抛物线的图象与系数的关系是解决问题的关键.11.y =(x -1) 2+3.【解析】根据二次函数图象平移规律,左加右减,上加下减的平移规律,所以将二次函数y =x 2的图像向右平移1个单位,再向上平移3个单位,得到的新图像的函数表达式是y =(x -1) 2+3,故答案为: y =(x -1) 2+3.12.2【解析】【分析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m )2向右平移2个单位后,得到抛物线解析式为y=(x+m-2)2.其对称轴为:x=2-m=0,解得m=2.故答案是:2.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.-8, 7【解析】【分析】把y=2x 2-4x-1化为顶点坐标式,按照“左加右减,上加下减”的规律,右平移1个单位,再向上平移2个单位得抛物线跟y=2x 2+bx+c 的系数对比则可.【详解】把y=2x 2-4x-1=2(x-1)2-3,向右平移1个单位,再向上平移2个单位,得y=2(x-2)2-1=2x 2-8x+7,所以b=-8,c=7.故答案为-8;7.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.14.(1,0)【解析】试题解析:抛物线2(1)y x =-的顶点坐标是()1,0. 故答案为: ()1,0.点睛:根据抛物线()2y a x h k =-+的顶点坐标是(),h k 直接写出即可. 15.2(2)1y x =--+(或243y x x =-+-)【解析】设抛物线解析式为y=a (x-2)2+1,把B (1,0)代入得a+1=0,解得a=-1,所以抛物线解析式为y=-(x-2)2+1,即y=-x 2+4x-3故答案为:()221y x =--+(或y=-x 2+4x-3).【点睛】本题考查了待定系数法求二次函数的解析式,关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.16.1= 最小 3- 1> 1<【解析】【分析】先把解析式配成顶点式得到y=(x-1)2-3,根据二次函数的性质得到当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.【详解】解:y=x 2-2x-2=(x-1)2-3,∵a=1>0,∴当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.故答案为=1,最小,-3,>1,<1.【点评】本题考查了二次函数的最值:二次函数y=ax 2+bx+c (a≠0),当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=−2b a时,y=244ac b a -;当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=−2b a时,y=244ac b a -. 17.> 14【解析】【分析】把抛物线解析式化为顶点式,可求得其对称轴,再利用二次函数的增减性可求得答案.【详解】∵y=-2x 2+x-4=-2(x-14)2-318, ∴抛物线开口向下,对称轴为x=14,∴当x>14时,y随x的增大而减小,故答案是:>14.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,其顶点坐标为(h,k),对称轴为x=h.18.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.19.①②③④【解析】【分析】观察图象,通过抛物线的开口方向,对称轴x=−b2a>−1,以及与x轴交于两点这些条件,即可解答出该题.【详解】①∵抛物线的开口方向向下,∴a<0,由图象可看出抛物线的对称轴x=b2a<0,∴b<0,故①正确.②由图象看出当x=1时,y=a+b+c<0,故②正确.③由图象看出当x=−2时,y=4a−2b+c<0,故③正确.④∵抛物线的对称轴大于−1,即x=b2a>−1,得出2a−b<0,故④正确.故答案为:①②③④.【点睛】本题综合考查了抛物线的性质,体现了数形结合的思想,同学们要熟练掌握.20.25(5)3y x =-+-【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】∵抛物线y=-5x 2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.21.(1)1,-2,-3;(2)图象见解析,0x <或2x >;(3【解析】【分析】(1)直接将()11,代入求出a 即可,进而将2x =代入求出y ,再分别将()()03,23--,,代入求出b c ,的值;(2)再利用函数解析式进而得出函数图象,进而得出不等式的解集.(3)根据题意求得外接圆的圆心的坐标为()1,1-,进而求得圆的半径.【详解】(1)2y ax =过(1,1),∴1=a ,∴当x =2时,224y ==, 2y ax bx c =++过(0,−3),(2,−3),a =1,23,3223c b ∴=--=+-,解得:b =−2,223y x x ∴=--,当x =1时,y =−4, 故答案为1,−2,−3;(2)如图所示:当0x <或2x >时,不等式2 3.ax bx c ++>-(3)由(2)可知A (−1,0),B (3,0),C (0,−3), 则作BC 、AB 的垂直平分线的交点Q (1,−1),∴外接圆的半径()()223101 5.QB =-++= 22.(1)3223x ;(2)点P 坐标为(03043);(321. 【解析】 【分析】(1)根据AO=OB=2,∠AOB=120°,求出A 点坐标,以及B 点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE ,23,推出当OP=12OC 或OP′=2OC 时,△POC 与△AOE 相似; (3)如图,取Q (12,0).连接AQ ,QE ′.由△OE′Q ∽△OBE ′,推出12E Q OE BE OB ''==',推出E′Q=12BE ′,推出AE′+12BE′=AE′+QE ′,由AE′+E′Q≥AQ ,推出E′A+12E′B 的最小值就是线段AQ 的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=3,∴A点坐标为:(-1,3),B点坐标为:(2,0),将两点代入y=ax2+bx得:3420a ba b⎧-⎪⎨+⎪⎩==,解得:3323ab⎧⎪⎪⎨⎪-⎪⎩==,∴抛物线的表达式为:y=33x2-23x;(2)如图,∵C(1,-33),∴tan∠EOC=33ECOE=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=233,∴当OP=12OC或OP′=2OC时,△POC与△AOE相似,∴OP=3,OP′=433,∴点P坐标为(0,3)或(0,43).(3)如图,取Q(12,0).连接AQ,QE′.∵12 OE OQ OB OE'==',∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴12E Q OEBE OB''==',∴E′Q=12 BE′,∴AE′+12BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+12E′B的最小值就是线段AQ22321()(3)22+=.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.23.解:(1)如图所示;(2)2v2;(3)4.5,12.5,40.5.【解析】试题分析:将表(1)里各个数据在直角坐标系里描出,连接各点,形成的光滑曲线就是速度与撞击影响之间的函数图象.从表格里可看出速度与撞击影响的函数表达式为I=2v2;当V=1.5,2.5,4.5时,代入函数表达式中可求得撞击影响.解:(1)如图所示.(2)由表格得I=2v2.(3)当V=1.5,2.5,4.5时,I=4.5,12.5,40.5.所以撞击影响分别是4.5,12.5,40.5.24.()12123y x x=--+,21y x=-+;()22x<-或1x>【解析】【分析】(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式;(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围.【详解】()1二次函数21y ax bx c=++的图象经过点()A3,0-,()B1,0,()C0,3,则9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩.故二次函数图象的解析式为21y x 2x 3=--+,∵对称轴x 1=-,∴点D 的坐标为()2,3-,设2y kx b =+,∵2y kx b =+过B 、D 两点,∴023k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩. ∴2y x 1=-+;()2函数的图象如图所示,∴当21y y >时,x 的取值范围是x 2<-或x 1>.【点睛】此题主要考查了一次函数和二次函数解析式的确定以及根据函数图象比较函数值大小,画出函数图象熟练运用数形结合是解决第2问的关键.25.(1)2b a =-;(2)抛物线为212133y x x =-+;(3)抛物线的顶点坐标为()1,2-. 【解析】【分析】(1)根据抛物线与y 轴的交点可以得到c 与a 的关系,根据对称轴可以得到b 与a 的关系; (2)间已知点的坐标代入函数关系式并结合上题求得的系数的关系得到a 、b 、c 的值即可求得其解析式;(3)b (c+6)=-2a (3a+6)=-6a 2-12a=-6(a+1)2+6,从而确定a 的值,确定二次函数的解析式后即可确定其顶点坐标.【详解】解:()1∵抛物线与y 轴交于点()0,3a∴3c a =∵对称轴为1=, ∴12b x a=-= ∴2b a =-;()2∵抛物线与直线1y x =-交于点()2,1,∴()2,1在抛物线上,∴()212223a a a =⨯+-+ ∴13a = ∴223b a =-=-31c a == ∴抛物线为212133y x x =-+;()3∵()()2262366126(1)6b c a a a a a +=-+=--=-++ 当1a =-时,()6b c +的最大值为6;∴抛物线2223(1)2y x x x =-+-=---故抛物线的顶点坐标为()1,2-.【点睛】考查了二次函数的性质,二次函数最值以及待定系数法求二次函数解析式,正确的利用三个系数之间的关系是解题的关键.26.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4,0),(5+0),(50).【解析】【分析】可得a 的值,求出解析式.由解析式可得出C 和B 的坐标,从而得出直线的解析式.运用假设法,连接辅助线可以设出P,D 的坐标,表达出相应△PBC 的面积解析式,分析可得出结果.由平行四边形的定义可求出答案.【详解】(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)假设存在点P ,连结PB 、PC ,过点P 作PD ∥y 轴交直线BC 于点D ,设点P (m ,213442m m -++) 则点D (m ,142m -+) 所以PD =213442m m -++- 142m ⎛⎫-+ ⎪⎝⎭ =2124m m -+ ∴211128224PBC S PD OB m m ⎛⎫=⨯⨯=⨯-+⨯ ⎪⎝⎭()228416m m m =-+=--+∵点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合)∴08m <<∴当4m =时,△PBC 的面积最大,最大面积是16∴存在点P ,使△PBC 的面积最大,最大面积是16(4)(8-,0),(4, 0),(541+0),(541,0) .【点睛】本题考查了一元二次方程的解析式的结构,和直线解析式的求解,以及品行四边形的定义,熟练掌握这些是解决本题的关键.27.(1)y=x 2﹣4;(2)M (0,﹣2)【解析】(1)将A 、B 点的坐标代入抛物线的解析式中即可求出待定系数的值;(2)由于A 、D 关于抛物线对称轴即y 轴对称,那么连接BD ,BD 与y 轴的交点即为所求的M 点,可先求出直线BD 的解析式,即可得到M 点的坐标;解:(1)由题意可得:403a c a c +=⎧⎨+=-⎩,解得14a c =⎧⎨=-⎩; ∴抛物线的解析式为:y =x 2﹣4;(2)由于A 、D 关于抛物线的对称轴(即y 轴)对称,连接BD .则BD 与y 轴的交点即为M 点;设直线BD 的解析式为:y =kx +b (k ≠0),则有:320k b k b -+=-⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩; ∴直线BD 的解析式为y =x ﹣2,∴点M (0,﹣2).点睛:本题主要考查待定系数法及二次函数的性质.利用二次函数的对称性是解题的关键. 28.(1,-2),直线x=1, x <-1或x >3.【解析】试题分析:(1)利用配方法将二次函数的解析式由一般式该写为顶点式,由此即可得出该函数的顶点坐标以及对称轴;(2)利用五点法画出函数图象即可;(3)观察函数图象,根据二次函数图象与2y =的上下位置关系即可得出不等式的解集.试题解析:()22121(1)2y x x x =--=--,∴该二次函数的顶点坐标为(1,−2),对称轴为x =1.故答案为(1,−2);x =1.(2)找出函数图象上部分点的坐标,如图所示:x… −1 0 1 2 3 … y… 2 −1 −2 −1 2 …描点、连线,画出函数图象如图所示.(3)观察函数图象可知:当x <−1或x >3时,函数图象在y =2的上方, ∴满足y >2的x 的取值范围为x <−1或x >3.故答案为x <−1或x >3.。
初中数学二次函数的图象与性质基础过关测试题3(附答案详解)1.将抛物线24y x =+先向左平移2个单位,再向下平移1个单位,那么所得抛物线的函数关系式是( ) A .2(2)3y x =-- B .2(2)3y x =+- C .2(2)3y x =-+D .2(2)3y x =++2.如图,已知抛物线y =x 2+bx +c 与直线y =x 交于(1,1)和(3,3)两点,现有以下结论:①b 2﹣4c >0;②3b +c +6=0;③当x 2+bx +c >2x时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( )A .①②④B .②③④C .②④D .③④3.二次函数y =2x 2-8x +9的图象可由y =2x 2的图象怎样平移得到( ) A .先向右平移2个单位再向上平移1个单位 B .先向右平移2个单位再向下平移1个单位 C .先向左平移2个单位再向上平移1个单位 D .先向左平移2个单位再向下平移1个单位4.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在二次函数y =﹣x 2+x ﹣3的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3=y 1<y 2B .y 3≤y 2≤y 1C .y 2<y 1=y 3D .y 1<y 2<y 35.对于每个自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n A 、n B ,两点,以n n A B 表示该两点间的距离,则1122A B A B ++⋅⋅⋅20152015A B +值为( ). A .20142015B .20162015C .20152014D .201520166.已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在函数y=-x 2的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.抛物线y=﹣x 2经过平移得到抛物线y=﹣(x+2)2﹣3,平移的方法是( ) A .向左平移2个,再向下平移3个单位 B .向右平移2个,再向下平移3个单位 C .向左平移2个,再向上平移3个单位D .向右平移2个,再向上平移3个单位9.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A .2B .3C .5D .1210.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx +c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .511.将抛物线y =x 2﹣6x +5化成y =a (x ﹣h )2﹣k 的形式,则hk =_____. 12.如图,ABC ∆的顶点坐标分别为()()()0,4,2,0,4,2A B C ,若二次函数22y x bx =++的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是__________.13.若抛物线y=x 2+bx(b>2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围是______.14.已知抛物线的顶点坐标为(1,8)--,且过点(0,6)-,则该抛物线的表达式为________.15.二次函数22(1)4y x =-+-图象的顶点坐标是______.16.抛物线2(0)y ax a =≠沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线2yx 沿直线y x =向上平移,平移距离2时,那么它的“同簇抛物线”的表达式是_____.17.在平面直角坐标系 xOy 中,函数 y = x 2 的图象经过点M (x 1 , y 1 ) ,N (x 2 , y 2 ) 两点,若- 4< x 1< -2, 0< x 2 <2 ,则 y 1 ____ y 2 . (用“ < ”,“=”或“>”号连接) 18.对于二次函数y=5x 2+bx+c ,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____. 19.已知抛物线y=2x 2-bx+3的对称轴经过点(2,—1),则b 的值为______.20.某同学利用描点法画二次函数y =ax 2+bx+c (a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____ x 0 1 2 3 4 y3﹣2321.已知二次函数y =﹣x 2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x 轴交点为A .B ,与y 轴交点为C ,求A 、B 、C 三点的坐标; (3)在图中画出图象.并求出△ABC 面积.22.已知抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-.()1求此抛物线的顶点D 的坐标;()2将此图象沿x 轴向左平移2个单位长度,直接写出当y 0<时x 的取值范围.23.已知二次函数y =x 2﹣6mx+9m 2+n (m ,n 为常数)(1)若n =﹣4,这个函数图象与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,试求△ABC 面积的最大值;(2)若n =4m+4,当x 轴上的动点Q 到抛物线的顶点P 的距离最小值为4时,求点Q 的坐标.24.在平面直角坐标系xOy 中,抛物线2:23c y ax ax =-+与直线:l y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上.(1)直接写出点A 的坐标; (2)若1a =-,求直线l 的解析式; (3)若31k -≤≤-,求a 的取值范围.25.如图,是一块三角形材料,∠A =30°,∠C =90°,AB =6.用这块材料剪出一个矩形DECF ,点D ,E ,F 分别在AB ,BC ,AC 上,要使剪出的矩形DECF 面积最大,点D 应该选在何处?26.如图,已知二次函数21:22(0)L y ax ax a a =++->和二次函数22:(2)2(0)=--+>L y a x a 图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1))函数222(0)y ax ax a a =++->的顶点坐标为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围是 ;(2)当AD=MN 时,求a 的值,并判断四边形AMDN 的形状(直接写出,不必证明); (3)当B ,C 是线段AD 的三等分点时,求a 的值.27.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°. (1)填空:点C 的纵坐标是 (用含a 、m 的式子表示); (2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.28.如图,直线y =-x +4与x 轴,y 轴分别交于点B ,C ,点A 在x 轴负半轴上,且OA =12OB , 抛物线y =ax 2+bx +4经过A ,B ,C 三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=12d3? 若存在,请直接写出d3的值,若不存在,请说明理由.参考答案1.D 【解析】 【分析】根据抛物线的平移规律“左加右减,上加下减”进行判断即可. 【详解】解:抛物线24y x =+先向左平移2个单位,再向下平移1个单位,所得抛物线的函数关系式是:2(2)3y x =++. 故选D. 【点睛】本题考查了抛物线的平移,属于基础题型,熟知抛物线的平移规律是解题的关键. 2.C 【解析】 【分析】由函数y =x 2+bx +c 与x 轴无交点,可得b 2﹣4c <0;当x =3时,y =9+3b +c =3,3b +c +6=0;利用抛物线和双曲线交点(2,1)得出x 的范围;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx +c <x ,继而可求得答案. 【详解】∵函数y =x 2+bx +c 与x 轴无交点, ∴b 2﹣4ac <0; ∴b 2﹣4c <0 故①不正确;当x =3时,y =9+3b +c =3, 即3b +c +6=0; 故②正确;把(1,1)(3,3)代入y =x 2+bx +c ,得抛物线的解析式为y =x 2﹣3x +3, 当x =2时,y =x 2﹣3x +3=1,y =2x=1, 抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.【点睛】本题考查了图象与二次函数系数之间的关系,此题难度适中,注意掌握数形结合思想的应用.3.A【解析】【分析】先将二次函数y=2x2-8x+9变形为顶点式,再利用函数平移规则:上加下减,左加右减,即可解答.【详解】y=2x2-8x+9=2(x-2)2+1所以由y=2x2的图象先向右平移2个单位再向上平移1个单位得到二次函数y=2x2-8x+9的图象.故选A【点睛】本题考查二次函数平移,熟练掌握二次函数平移规律“上加下减,左加右减”是解题关键. 4.A【解析】【分析】首先根据二次函数解析式确定抛物线的对称轴为x=12,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【详解】解:∵二次函数y =﹣x 2+x ﹣3=﹣(x ﹣12)2﹣114,∴对称轴为x =12, ∵a <0, ∴x <12时,y 随x 增大而增大, ∵(3,y 3)关于对称轴的对称点为(﹣2,y 3) ∴y 3=y 1<y 2. 故选:A . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,关键是掌握二次函数的增减性. 5.D 【解析】 【分析】首先求出抛物线与x 轴两个交点坐标,然后由题意得到n n A B 111n n =-+,进而求出1122A B A B ++⋅⋅⋅20152015A B +的值.【详解】 令y =x 2()211n n n +-+x ()11n n +=+0, 即x 2()211n n n +-+x()11n n +=+0, 解得:x 1n =或x 11n =+, 故抛物线y =x 2()211n n n +-+x ()11n n ++与x 轴的交点为(1n ,0),(11n +,0),由题意得:n n A B 111n n =-+,则1122A B A B ++⋅⋅⋅20152015A B +=11111122320152016-+-++-=11201520162016-=. 故选D . 【点睛】本题考查了抛物线与x 轴交点的知识,解答本题的关键是求出n n A B . 6.B 【解析】 【分析】根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y 1、y 2、y 3的值,然后比较它们的大小. 【详解】当x=-3时,y 1=-x 2=-9;当x=-1时,y 2=-x 2=-1;当x=2时,y 3=-x 2=-4, 所以y 1<y 3<y 2. 故选B . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 7.A 【解析】 【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况. 【详解】解:抛物线y=-x 2的顶点坐标为(0,0),抛物线y=﹣(x+2)2﹣3的顶点坐标为(-2,-3),而点(0,0)向左平移2个,再向下平移3个单位可得到(-2,-3),所以抛物线y=-x 2向左平移2个,再向下平移3个单位得到抛物线y=﹣(x+2)2﹣3. 故选A . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 8.C【解析】【分析】 根据图上给出的条件是与x 轴交于(1,0),叫我们加个条件使对称轴是x=2,意思就是抛物线的对称轴是x=2是题目的已知条件,这样可以求出a 、b 的值,然后即可判断题目给出四个人的判断是否正确.【详解】解:∵抛物线过(1,0),对称轴是x=2,3022a b b a++=⎧⎪∴⎨-=⎪⎩ 解得a=1,b=-4,∴y=x 2-4x+3,当x=3时,y=0,所以小华正确;当x=4时,y=3,小彬也正确,小明也正确;抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x=2,此时答案不唯一,所以小颖错误.故选:C .【点睛】本题是开放性题目,要把题目的结论作为题目的条件,再推理出四个人说的结论的正误.难度较大.9.B【解析】【分析】求得平移后抛物线的顶点坐标,根据平移规律求得原抛物线的顶点坐标,写出原抛物线解析式,即可取得a 、b 、c 的值.【详解】y =x 2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣,).故原抛物线的解析式是:y =(x+)2+=x 2+x+3.所以a =b =1,c =3.所以a ﹣b+c =1﹣1+3=3.故选B .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.﹣12.【解析】【分析】将抛物线化成顶点式,可得h ,k 的值,代入计算即可.【详解】解:∵y =x 2﹣6x +5=x 2﹣6x +9﹣4=(x ﹣3)2﹣4,∴h =3,k =﹣4,∴hk =3×(﹣4)=﹣12.故答案是:﹣12.【点睛】本题考查了抛物线的顶点式,熟练掌握顶点式的转化是解题关键.12.b≥-4【解析】【分析】因为a=1>0,根据左同右异可知,对称轴在y 轴的左侧时,b >0,对称轴在y 轴右侧时,b <0,对称轴x=-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点. 【详解】抛物线y=x 2+bx+2与y 轴的交点为(0,2),∵C (4,2),当对称轴在y 轴的右侧时当C 与(0,2)是对称点时,抛物线的对称轴的位置在最右边,∴对称轴0<-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点, ∴-4≤b <0.当对称轴在y 轴或y 轴的右侧时,都满足条件则有-02b ≤ 解得:b ≥0, 故有b≥-4故答案为b≥-4.【点睛】本题考查了二次函数图象与系数的关系,解题时,利用了二次函数对称轴的位置列不等式来求b 的取值范围,并利用数形结合的思想.13.b>3【解析】【分析】可设出对称的两个点P ,Q 的坐标,利用两点关于直线y=x 成轴对称,可以设直线PQ 的方程为y=-x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx =-+⎧⎨=+⎩有两组不同的实数解,利用中点在直线上消去b ,建立关于a 的函数关系,求出变量a 的范围.【详解】解:设抛物线上关于直线l 对称的两相异点为P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0),设直线PQ 的方程为y=x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx=-+⎧⎨=+⎩有两组不同的实数解, 即得方程x 2+(1+b )x -a=0.①判别式△=21b ()+-41a ⨯⨯-()>0.② 由①得x 0=x1x22+=-1b 2+,y 0=-x 0+a=1b 2++a ∵M (x 0,y 0)在y=x 上,x 0=y 0∴-1b 1b 22++=+a ∴a=-b-1代入②解得b >3或b <-1 ∵b>2,∴b >3故答案为b >3【点睛】本题考查了直线与抛物线的位置关系,以及对称问题,属于难题,有一定的计算量. 14.22(1)8y x =+-【解析】【分析】利用顶点式求解即可,设y=a (x+1)2-8,把(0,6)-代入求解.【详解】设y=a (x+1)2-8,把(0,6)-代入,得-6=a ×(0+1)2-8,∴a=2,∴22(1)8y x =+-.故答案为:22(1)8y x =+-.【点睛】本题考查了用待定系数法求二次函数解析式的方法,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax 2+bx+c (a≠0);顶点式y=a (x-h )2+k ,其中顶点坐标为(h ,k );交点式y=a (x-x 1)(x-x 2),抛物线与x 轴两交点为(x 1,0),(x 2,0).15.(-1,-4)【解析】【分析】根据抛物线的顶点式直接得到答案.【详解】二次函数22(1)4y x =-+-图象的顶点坐标是(1,4)--.【点睛】本题考查二次函数的顶点式,二次函数的顶点式为y=a (x-h )2+k ,顶点坐标是(h ,k ),解决此题需注意坐标的符号问题.16.()211y x =-+【解析】【分析】沿直线y=x y=ax 2 (a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【详解】解:∵抛物线2y x =沿直线y x =向上平移,相当于抛物线()2y ax a 0=≠向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是()2y x 11=-+.故答案为:()2y x 11=-+.【点睛】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.>【解析】【分析】通过比较点M 和点N 到y 轴的距离的远近判断y 1与y 2的大小.【详解】解:抛物线y=x 2的对称轴为y 轴,而M (x 1,y 1)到y 轴的距离比N (x 2,y 2)点到y 轴的距离要远,所以y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用二次函数的图象比较二次函数值的大小比较简便.18.丙【解析】【分析】设甲乙正确,利用顶点时写出抛物线的解析式为y=5(x-1)2+3,然后计算自变量为-1和2对应的函数值,从而判断丙错误.【详解】若甲乙对,则抛物线的解析式为y=5(x-1)2+3,当x=-1时,y=23,此时丙错误;当x=2时,y=8,此时丁正确.而其中有且仅有一个说法是错误的,所以只有丙错误.故答案为丙.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.19.8【解析】【分析】根据公式法可求对称轴,可得关于b 的一元一次方程,解方程即可.【详解】∵抛物线y=2x 2-bx+3的对称轴经过点(2,-1),∴对称轴x=-22b =2, 解得:b=8.故答案为8.【点睛】此题考查二次函数的性质,掌握利用公式法求对称轴是解决问题的关键.20.y=x2﹣4x+3.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a(x﹣1)(x﹣3),则有:a(0﹣1)(0﹣3)=3,a=1;∴y=(x﹣1)(x﹣3)=x2﹣4x+3.故答案为y=x2﹣4x+3【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.21.(1)y=﹣(x+1)2+4(2)抛物线与 y 轴的交点 C(0,3)(3)6【解析】【分析】(1)根据配方法步骤将解析式配成顶点式可得;(2)求出y=0时x的轴可得点A、B的坐标,求出x=0时y的值可得点C的坐标;(3)根据抛物线的顶点坐标及其与坐标轴的交点可画出抛物线的图象,再由三角形的面积公式可得答案.【详解】(1)∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),对称轴为直线 x =﹣1; (2)当 y =0 时,﹣x 2﹣2x+3=0,解得:x =1 或 x =﹣3,∴抛物线与 x 轴的交点 A (﹣3,0)、B (1,0),当 x =0 时,y =3,∴抛物线与 y 轴的交点 C (0,3);(3)其函数图象如下图所示:S △ABC = AB•y C = ×4×3=6.【点睛】本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式.22.(1) D 的坐标为125,24⎛⎫-⎪⎝⎭;(2) 4x 1-<<. 【解析】【分析】 ()1根据抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-,可以求得该抛物线的解析式,然后将解析式化为顶点式,即可求得点D 的坐标;()2根据平移的特点,可以得到平移后抛物线的解析式,从而可以写出当y 0<时x 的取值范围.【详解】解:()1抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-, {c 642b c 0=-∴-+=,得{b 1c 6=-=-, ∴抛物线的解析式为22125y x x 6(x )24=--=--, ∴此抛物线的顶点D 的坐标为125,24⎛⎫- ⎪⎝⎭; ()2抛物线的解析式为2125y (x )24=--, ∴此图象沿x 轴向左平移2个单位长度后对应的函数解析式为:22125325y (x 2)(x )2424=-+-=+-, ∴平移后抛物线的对称轴为直线3x 2=-,当y 0=时,1x 4=-,2x 1=, ∴当y 0<时x 的取值范围是4x 1-<<.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.(1)当m =0时,△ABC 的面积最大为8;(2)Q 点的坐标为(﹣6,0)或(0,0).【解析】【分析】(1)把n =﹣4代入得到带有m 的解析式解析式y =x 2﹣6mx+9m 2﹣4,再用带有m 的值表示出A 、B 、C 的坐标,然后得出三角形面积判断最大值;(2)把n =4m+4代入原解析式得到y =(x ﹣3m )2+4m+4,得出顶点P 的坐标,再根据动点Q 到抛物线的顶点P 的距离最小时为PQ 的横坐标相同,即可得出Q 的坐标.【详解】解:(1)若n =﹣4,则y =x 2﹣6mx+9m 2﹣4,当x =0时,y =9m 2﹣4,∴C (0,9m 2﹣4),∵这个函数图象开口向上,与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,∴9m 2﹣4<0,当y =0时,x 2﹣6mx+9m 2﹣4=0,x 1=3m+2,x 2=3m ﹣2,∴A (3m+2,0),B (3m ﹣2,0),∵3m+2﹣(3m ﹣2)=4,∴AB =4,∴S △ABC =1•2C AB y =12×4•(﹣9m 2+4)=﹣2m 2+8, ∵﹣2<0,∴当m =0时,△ABC 的面积最大为8;(2)若n =4m+4,则y =x 2﹣6mx+9m 2+4m+4=(x ﹣3m )2+4m+4,∴P (3m ,4m+4),当动点Q 到抛物线的顶点P 的距离最小值为4时,则Q 为(3m ,0)且4m+4=±4, 解得m =﹣2或m =0,∴Q 点的坐标为(﹣6,0)或(0,0).【点睛】本题是二次函数的动点题型,此题综合性较强,难度较大,解题的关键是注意数形结合与方程思想的应用.24.(1)()0,3A ;(2)3y x =-+;(3)a<−1或a>3【解析】【分析】(1)抛物线C :y=ax 2-2ax+3与y 轴交于点A ,令x=0,即可求得A 的坐标;(2)令y=0,解方程即可求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式; (3)当a=3时,抛物线C 过点B (1,0),此时k=-3.当a=-1时,抛物线C 过点B (3,0),此时k=-1.结合图象即可求得.【详解】(1)∵抛物线C:y=ax 2−2ax+3与y 轴交于点A ,∴点A 的坐标为(0,3).(2)当a=−1时,抛物线C 为y=−x 2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴330bk b=⎧⎨+=⎩.解得13kb=-⎧⎨=⎩.∴直线l的解析式为y=−x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=−3.结合函数图象可得a>3.当a<0时,当a=−1时,抛物线C过点B(3,0),此时k=−1.结合函数图象可得a<−1.综上所述,a的取值范围是a<−1或a>3.【点睛】本题考查一次函数和二次函数综合,解题的关键是掌握待定系数法求解析式.25.使剪出的矩形DECF面积最大,点D应该选在AB的中点.【解析】【分析】根据直角三角形的性质求出BC,根据勾股定理求出AC,根据矩形的面积公式列出函数解析式,根据二次函数的性质解答即可.【详解】解:∵∠C=90°,∠A=30°,∴BC =12AB =3,由勾股定理得,AC ==在Rt △ADF 中,∠A =30°,∴AD =2DF ,AF DF ,∴CF =AC ﹣AF =,则矩形DECF 面积=DF ×()2=23)24DF -+当DF =32时,剪出的矩形DECF 面积最大, 则AD =2DF =3,∴使剪出的矩形DECF 面积最大,点D 应该选在AB 的中点.【点睛】本题考查的是勾股定理、二次函数的性质、矩形的性质,根据勾股定理、矩形的面积公式列出二次函数解析式是解题的关键.26.(1)顶点坐标为M (-1,-2),12x -<<;(2)四边形AMDN 是矩形,理由见解析;(3)a =329 【解析】【分析】(1)把222(0)y ax ax a a =++->化为顶点式()212y a x =+-,即可求出顶点坐标;根据图像即可求出次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围; (2)由两点间的距离公式求出MN 的长,用含a 的代数式表示出AD 的长,根据AD =MN列方程即可求出a 的值;由两点间的距离公式可求AN =MD ,AM =DN ,从而可证四边形AMDN是平行四边形,又AD =MN ,所以可证四边形AMDN 是矩形;(3)当B ,C 是线段AD 的三等分点时,分两种情况,根据两点间的距离公式求解:①点C 在点B 的左边,②点B 在点C 的左边.【详解】(1)∵222(0)y ax ax a a =++->∴()212y a x =+-,∴顶点坐标为M (-1,-2);∵M (-1,-2),N (2,2),∴当1x >-时, L 1 的y 值随着x 的增大而增大,当2x <时,L 2的y 值随着x 的增大而增大. ∴x 的取值范围是12x -<< .(2)如图1,MN =,当y=0时,即()2120a x +-=,解得1A x =--1B x =-+当y=0时,即()2220a x --+=,2C x =-2D x =+∴AD=(2+-(1--=3+当AD=MN 时,即3+,解得a =2. 当 a =2时,1A x =--2,2D x =3,∵==∴AN=DM,∵==,∴AM=DN,∴四边形AMDN 是平行四边形,∵AD=3-(-2)=5,MN=5,∴AD=MN,∴四边形AMDN 是矩形 ;(3)当B,C是线段AD的三等分点时,存在以下两种情况:①点C在点B的左边,如图2,BC=(21a-+-(22a-=232a-+AC=BD=3 ,即232a-+,解得29a=;②点B在点C的左边,如图3,CB=(22a--(21a-+=23a-AB=CD=22a,即22a23a-329a= .【点睛】本题考查了二次函数一般式与顶点式的互化,二次函数的图像与性质,两点间的距离公式,矩形的判定,数形结合及分类讨论的数学思想.掌握一般式化顶点式的方法是解(1)的关键;灵活运用两点间的距离公式是解(2)的关键;分两种情况求解是解(3)的关键.27.(1)am2+1;(2)a=﹣1;(3)0≤BC′≤94.【解析】【分析】(1)代入0x =求出y 值,此问得解;(2)设抛物线对称轴与x 轴交于点E ,由二次函数的对称性可得出ABD 为等腰直角三角形,进而可得出2AB DE =,利用二次函数图象上点的坐标特征可得出点B 、D 的坐标,由2AB DE =可得出关于a 的无理方程,解之即可得出a 值;(3)由(1)(2)可得出点B 、C 的坐标,由旋转的性质可得出点'C 的坐标,利用两点间的距离公式可求出2'2BC m m =-++,再利用二次函数的性质即可求出:当1522m -≤≤时,'BC 的长度范围. 【详解】解:(1)当x =0时,y =ax 2﹣2amx +am 2+1=am 2+1,∴点C 的纵坐标为am 2+1.故答案为am 2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax 2﹣2amx +am 2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax 2﹣2amx +am 2+1=0,即a (x ﹣m )2=﹣1,解得:x 1=m x 2=m∴AB =2, 解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m 2),点B 的坐标为(m +1,0).∵点C 绕O 逆时针旋转90°得到点C ′,∴点C ′的坐标为(m 2﹣1,0),∴BC ′=|m +1﹣(m 2﹣1)|=|﹣m 2+m +2|.∵﹣m 2+m +2=﹣(m ﹣12)2+94,﹣12≤m ≤52,∴当m=52时,﹣m2+m+2取得最小值,最小值为﹣74;当m=12时,﹣m2+m+2取得最大值,最大值为94,∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.【点睛】本题考查了二次函数图象上点的坐标特征、等腰直角三角形、解无理方程、两点间的距离公式以及二次函数的性质,解题的关键是:(1)代入0x 求出y值;(2)利用等腰直角三角形的性质找出关于a的无理方程;(3)利用二次函数的性质找出'BC的长度范围.28.(1)y=-12x2+ x+4;(2)当m=2时,PE2;(3)存在,满足题意的d3的值为2或665.【解析】【分析】(1)由直线y=-x+4得出B(4,0),C(0,4),即可得出A(-2,0),将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;(2)已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△OBC中,∠OCB=45°,根据平行线的性质得出∠PFD=45°,解直角三角形即可求出PD的表达式,利用二次函数的性质求出PD的最大值即可.(3)见解析.【详解】解:(1)由y=-x+4得当x=0时,y=4;当y=0时,x=4.∴B (4,0) ,C (0,4), ∴ OB =4.∴ OA =12OB =2, ∴ 点 A (-2,0). 把A (-2,0),B (4,0)分别代入抛物线y =ax 2+bx +4中,得4230,16430.a b a b -+=⎧⎨++=⎩ 解得1,21.a b ⎧=-⎪⎨⎪=⎩ ∴ 抛物线的解析式为 y =-12x 2+ x +4. (2)∵ 点P 的横坐标为m ,则P (m ,-12m 2+ m +4). 过点P 作PF ∥y 轴交BC 于点F ,则F (m ,-m +4) .∴ PF =-12m 2+ m +4-(-m +4)=-12m 2+2m . 在Rt △OBC 中,OB =4,OC =4.又 PF ∥y 轴, ∴ ∠PFD =∠OCB=45°.∴ PD =PF ·sin ∠PFD = PF ·sin ∠OCB =22(-12m 2+2m )=-24(m -2)22 ∵ 0<m <4,-24<0,∴ 当m =2时,PE 2 (3)存在,∵y =-12x 2+ x +4=-12(x-1)²+92, ∴C 点坐标为(1,3),如图,d 1= d 2=12d 3 ,满足题意的d3的值为2或6或655.【点睛】本题考查了二次函数的应用以及解析式的确定、解直角三角形等知识,主要考查学生数形结合思想的应用能力,。
初中数学二次函数的图象与性质能力达标测试题2(附答案详解)1.如图,抛物线y =ax 2+bx+c (a≠0)的图象交x 轴于点A (﹣2,0)和点B ,交y 轴负半轴于点C ,且OB =OC ,下列结论: ①﹣2b a <0;②a b c+>0;③ac =b ﹣1;④4a+c =2b 其中正确的结论个数有( )A .1个B .2个C .3个D .4个2.已知函数y =2x 与y =x 2﹣c(c 为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c 的值为( )A .0<c≤3或c =﹣1B .﹣l≤c <0或c =3C .﹣1≤c≤3D .﹣1<c≤3且c≠03.若二次函数y =x 2﹣2x ﹣m 与x 轴无交点,则一次函数y =(m+1)x+m ﹣1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知1(1)A y -,,2(2)B y ,是抛物线2(2)3y a x =++(0)a <上的两点,则1y ,2y 的大小关系为 A .12y y > B .12y y < C .12y y = D .不能确定5.已知二次函数y =ax 2+bx +c 的图象如图所示,则顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,二次函数223y x x =--的图象与x 轴交于,A B 两点,与y 轴交于点C ,则下列说法错误的是( )A .4AB = B .45OCB ∠=C .当3x >时,0y >D .当0x >时,y 随x 的增大而减小7.函数y =-2x 2,当x >0时图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.二次函数2y ax bx =-的图象如图,若方程20ax bx m -+=有实数根,则m 的最大值为( )A .-3B .3C .-6D .09.如图,抛物线y =ax 2+bx +c 与x 轴相交于A .B 两点,点A 在点B 左侧,顶点在折线M ﹣P ﹣N 上移动,它们的坐标分别为M (﹣1,4).P (3,4).N (3,1).若在抛物线移动过程中,点A 横坐标的最小值为﹣3.则a ﹣b +c 的最小值是( )A .﹣15B .﹣12C .﹣4D .﹣2 10.对于题目“当21x -≤≤时,二次函数()221y x m m =--++有最大值4,求实数m的值.”甲的结果是23374-,则( ) A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确 11.已知二次函数()()2131y a x x a a =-++-的图象过原点,则a 的值为_______.12.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示: x ……0 1 2 3 4 …… y…… 4 1 0 1 4 …… 点()11,A x y 、()22,B x y 在函数的图象上,当112x <<,234x <<时,1y 与2y 的大小关系是_______.13.把二次函数y =2x 2﹣8x +9,化成y =a (x ﹣h )2+k 的形式是:___.14.已知y =﹣x 2﹣3x+4,则x+y 的最大值为_____.15.将抛物线24y x x =-的图象向左平移3个单位后得到的抛物线是_________. 16.反比例函数1y x =-与二次函数2y x =的共同性质有______.(写出一条符合题意的即可)17.写出一个开口向上,且顶点为()1,2-的抛物线解析式为__________________。
初中数学二次函数的图象与性质基础过关训练题1(附答案详解)1.在同一直角坐标系中,函数y =ax 2+b 与y =ax +b (a ,b 都不为0)的图象的相对位置可以是( )A .B .C .D .2.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .3.对于二次函数y =﹣(x ﹣2)2﹣3,下列说法中正确的是( ) A .当x =﹣2时,y 的最大值是﹣3 B .当x =2时,y 的最小值是﹣3 C .当x =2时,y 的最大值是﹣3 D .当x =﹣2时,y 的最小值是﹣34.下列m 的取值中,能使抛物线y =x 2+(2m ﹣4)x +m ﹣1顶点在第三象限的是( ) A .4 B .3 C .2 D .1 5.二次函数2616y x x =++的顶点坐标是() A .(-3,7)B .(3,7)C .(-3,-7)D .(3,-7)6.已知抛物线y =ax 2+bx+c(a >0)过(﹣2,0)、(2,3)两点,那么抛物线的对称轴( ) A .只能是x =﹣1B .可能是y 轴C .在y 轴右侧且在直线x =2的左侧D .在y 轴左侧7.抛物线y =(x -2)2-3的顶点坐标为( )A .(2,3)B .(2,-3)C .(-2,-3)D .(-2,3)8.如图,二次函数y =x 2﹣2x ﹣3的图象与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误的是( )A .AB =4 B .∠ABC =45° C .当x >0时,y <﹣3D .当x >1时,y 随x 的增大而增大9.若将抛物线y =x 2向下平移1个单位,则所得抛物线对应的函数关系式为( ) A .y =(x ﹣1)2 B .y =(x+1)2 C .y =x 2﹣1 D .y =x 2+1 10.若抛物线y =ax 2+2ax+4a(a >0)上有A(32-,y 1)、B(2,y 2)、C(32,y 3)三点,则y 1、y 2、y 3的大小关系为( ). A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 111.已知(1,y 1),(2,y 2),(3,y 3)是抛物线y =﹣2x 2+6x+c 上的点,则( ) A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1=y 2<y 3D .y 1=y 2>y 312.已知二次函数(1)(3)y x x =+-,则该二次函数的对称轴为_________________. 13.把抛物线y=x 2+4先向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为__________.14.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.15.已知二次函数212y x x =--和一次函数21y x =+的两个交点分别为A(−1,0),B(3,4),当12y y >时,自变量x 的取值范围是___. 16.反比例函数1y x=-与二次函数2y x =的共同性质有______.(写出一条符合题意的即可)17.抛物线y =x 2﹣6x +11的顶点为_____________.18.有一个二次函数的图象,三位学生分别说出它们的一些特点: 甲:对称轴是4x =;乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数的解析式:______.19.已知二次函数2y ax bx c =++的图像如图所示,顶点为(1,0)-,有下列结论:①0abc <;②240b ac -=;③2a >;④420a b c -+>,其中,正确结论有________.20.将抛物线y =x 2向右平移1个单位长度,再向上平移3个单位长度,平移后抛物线的解析式是_____.(写成顶点式)21.如果函数y=x2+4x﹣m的图象与x轴有公共点,那么m的取值范围是_____.22.已知点A(1,y1),B(-2,y2),C(-2,y3)在y=2(x+1)2-0.5的函数图像上,请用“<“号比较y1,y2, y3的大小关系_______________.23.二次函数y=4(x﹣3)2+7,开口_____,对称轴为_____,顶点坐标为_____.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣2,它的相关函数为()202(0)x xyx x⎧-+< =⎨-≥⎩(1)已知点A(﹣3,8)在一次函数y=ax﹣5的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣1.当点B(m,2)在这个函数的相关函数的图象上时,求m的值;25.已知二次函数y=﹣x2+bx+c,函数值y与自变量x之间的部分对应值如下表:x …﹣4 ﹣1 0 1 …y …﹣2 ﹣1 ﹣2 ﹣7 …(1)此二次函数图象的对称轴是直线,此函数图象与x轴交点个数为.(2)求二次函数的函数表达式;(3)当﹣5<x<﹣1时,请直接写出函数值y的取值范围.26.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.27.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A(−5,0),对称轴为直线x=−2,给出四个结论:①b 2>4ac ;②4a+b=0;③函数图象与x 轴的另一个交点为(2,0);④若点(−4,y 1)、(−1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .1个B .2个C .3个D .4个28.在平面直角坐标系xOy 中,抛物线y =mx 2﹣6mx +9m +1(m ≠0). (1)求抛物线的顶点坐标;(2)若抛物线与x 轴的两个交点分别为A 和B 点(点A 在点B 的左侧),且AB =4,求m 的值.(3)已知四个点C (2,2)、D (2,0)、E (5,﹣2)、F (5,6),若抛物线与线段CD 和线段EF 都没有公共点,请直接写出m 的取值范围.29.如图,已知直角坐标平面上的ΔABC ,AC=CB ,∠ACB=90°,且A(-1,0),B(m ,n),C(3,0).若抛物线23y ax x =+-经过A 、C 两点.(1)求a 、b 的值;(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式. 30.已知抛物线的顶点坐标为(﹣1,2),且经过点(0,4),求该函数的解析式. 31.已知二次函数y =ax 2+bx +c (a ≠0),函数y 与自变量x 的部分对应值如下表: x …… ﹣1 0 1 4 …… y……12622……(1)求二次函数的解析式;(2)直接写出不等式ax 2+bx +c ﹣2>0的解集是 .32.设函数y =k 1x +2k x,且k 1•k 2≠0,自变量x 与函数值y 满足以下表格: x…… -4-3-2-1-12 121 2 3 4 ……y …… -334 -223 -1120 112 -1120 112m n ……(1)根据表格直接写出y 与x 的函数表达式及自变量x 的取值范围______(2)补全上面表格:m =______,n =______;在如图所示的平面直角坐标系中,请根据表格中的数据补全y 关于x 的函数图象;(3)结合函数图象,解决下列问题: ①写出函数y 的一条性质:______; ②当函数值y ≥32时,x 的取值范围是______; ③当函数值y =-x 时,结合图象请估算x 的值为______(结果保留一位小数)33.小明按照列表、描点、连线的过程画二次函数的图象,下表与图是他所完成的部分表格与图象:(1)补全表格与图象;(2)直接写出此抛物线顶点坐标. x … ﹣1 0 2 4 _____ … y …59_____…34.如图,已知抛物线2123y x x =--与x 轴相交于点A ,B (点A 在点B 的左侧),与y 轴相交于点C ,直线2y kx b =+经过点B ,C .(1)求直线BC 的函数关系式;(2)当12y y >时,请直接写出x 的取值范围.35.我们定义:两个二次项系数之和为1,对称轴相同,且图象与y 轴交点也相同的二次函数互为友好同轴二次函数.例如:y =2x 2+4x ﹣5的友好同轴二次函数为y =﹣x 2﹣2x ﹣5.(1)请你写出y =13x 2+x ﹣5的友好同轴二次函数; (2)如图,二次函数L 1:y =ax 2﹣4ax+1与其友好同轴二次函数L 2都与y 轴交于点A ,点B 、C 分别在L 1、L 2上,点B ,C 的横坐标均为m (0<m <2)它们关于L 1的对称轴的对称点分别为B′,C′,连接BB′,B′C′,C′C ,CB .若a =3,且四边形BB′C′C 为正方形,求m 的值.参考答案1.A【解析】【分析】根据一次函数图象和二次函数图象性质,再根据每一选项中a、b的符号是否相符,逐一判断.【详解】解:A选项,由抛物线可知,a<0,b<0,由直线可知,a<0,b<0,故本选项正确,B选项,由抛物线可知a<0,由直线可知a>0,相矛盾,故本选项错误,C选项,由抛物线可知,a>0,b<0,由直线可知,a>0,b>0,相矛盾,故本选项错误,D选项,由抛物线可知,a>0,b>0,由直线可知,a<0,b>0,相矛盾,故本选项错误,故选A.【点睛】本题主要考查了一次函数和二次函数的图象,解决本题的关键是要熟练掌握一次函数,二次函数的图象与系数的关系.2.D【解析】【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A错误,D选项正确;故选D.【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.3.C 【解析】 【分析】根据抛物线的性质由a=-1得到图象开口向下,据此根据二次函数的性质解答可得. 【详解】解:对于二次函数y=-(x-2)2-3,由于-1<0,所以,当x=2时,y 取得最大值,最大值为-3. 故选:C . 【点睛】本题考查二次函数的最值,解题关键是熟练掌握二次函数的图象和性质. 4.B 【解析】 【分析】对于.y =ax ²+bx +c (a ≠0)中,顶点坐标是(24,24b ac b a a--),顶点坐标在第三象限,那么顶点坐标特点(-,-),即横纵坐标都小于0。
二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。
初中数学二次函数的图象与性质基础练习题1(附答案详解)1.将二次函数2y x 的图像向上平移1个单位,则所得的二次函数表达式为( ) A .2(1)y x =- B .21y x =+ C .2(1)y x =+ D .21y x =-2.如图,二次函数243y x x =-+的图象交x 轴于A ,B 两点,交y 轴于C ,则ABC的面积为( )A .6B .4C .3D .13.在平面直角坐标系中,二次函数y=2(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(1,﹣3)C .(﹣1,3)D .(﹣1,﹣3) 4.将二次函数y=x 2-4x+2化为顶点式,正确的是( )A .2y (x 2)2=--B .2y (x 2)3=-+C .2y (x 2)2=+-D .2y (x 2)2=-+5.二次函数2y 3x 4=-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .抛物线经过点()3,4C .抛物线的对称轴是直线x 1=D .抛物线与x 轴有两个交点6.抛物线y =-2x 2经过平移后得到抛物线y =-2x 2-4x -5,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位7.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x的大致图象是( ) A . B . C . D .8.若点()111,P y -,()222,P y -,()331,P y ,都在函数223y x x =-+的图象上,则( )A .213y y y << B .123y y y << C .213y y y >>D .123y y y >>9.已知二次函数y=x 2﹣bx+2(﹣2≤b≤2),当b 从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动10.如图,抛物线与x 轴交于点()1,0-和()3,0,与y 轴交于点()0,3-则此抛物线对此函数的表达式为( )A .223y x x =++B .223y x x =--C .223y x x =-+D .223y x x =+- 11.在平面直角坐标系中,若将抛物线y=2x 2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是__________。
中考数学专题复习《二次函数的图象与性质》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.在平面直角坐标系中,已知抛物线21:23C y x x =-+,将抛物线1C 绕顶点旋转180︒后得到抛物线2C ,则抛物线2C ( ) A .有最小值,且最小值为1 B .有最大值,且最大值为1 C .有最小值,且最小值为2D .有最大值,且最大值为22.对于二次函数()212y x =--+的图象,下列说法正确的是( ) A .当1x <时,y 随x 的增大而减小 B .当1x >时,y 随x 的增大而减小 C .图象有最低点,其坐标是()1,2 D .图象有最高点,其坐标是1,23.如图,A 、B 、C 三点均在二次函数2yx 的图像上,M 为线段AC 的中点,BM y ∥轴,且2MB =.设A 、C 两点的横坐标分别为1t 、2t (21t t >),则21t t -的值为( )A .3B .23C .22±D .24.已知二次函数()214y a x =-+的图象开口向上 若点()12,A y - ()21,B y - ()35,C y 都在该函数图象上 则1y 2y 3y 三者之间的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .312y y y <<5.已知点()3,2M - (),5N a 当M N 两点间的距离最短时 a 的值为( ) A .0B .2-C .3D .56.二次函数2y ax =与反比例函数ay x=在同一平面直角坐标系中的图像可能是( ) A . B . C . D .7.二次函数222y x x -=+的顶点坐标是( )A .()11,B .()22,C .()12,D .()11-,8.已知某二次函数上两点()()1122A x y B x y ,,, 当122x x <<时 ()()21210x x y y --> 当122x x <<时 ()()21210x x y y --< 则该二次函数的解析式可以是( )A . ()232y x =+ B . ()232y x =- C . ()232y x =-+D . ()232y x =--二 填空题9.二次函数235y x =-+的顶点坐标是 .10.点()11,y - ()23,y 在二次函数()2y x h =-图象上 若12y y < 写出一个符合题意的无理数h = .11.已知抛物线开口向上 对称轴是直线5x = 抛物线上两点坐标为(2 1y ) (4 2y ) 那么1y 2y .(填“>”或“<”)12.已知二次函数图象的顶点坐标是2,1 且与抛物线22y x =的形状和开口方向均相同 则这个二次函数的解析式是 .13.已知()()1122,,,M x y N x y 为抛物线2(0)y ax a =≠上任意两点 且120x x ≤<.若对于212x x -= 都有211y y -≥ 则a 的取值范围是三 解答题14.已知抛物线()22y a x h =--(a h 是常数 0a ≠) 与y 轴交于点C 点M 为抛物线顶点.(1)若1a = 点C 的坐标为(0)7,求h 的值 (2)若12a =当13x ≤≤时 对应函数值y 的最小值是52求此时抛物线的解析式 (3)直线16y x =--经过点M 且与抛物线交于另一点D .当CD x ∥轴时 求抛物线的解析式.15.已知函数2y x bx c =++(其中b c 为常数).(1)当1c =- 且函数图象经过点()1,2时 求函数的表达式及顶点坐标. (2)若该函数图象的顶点坐标为(),m k 且经过另一点(),k m 求m k -的值.(3)若该函数图象经过()11,A x y ()12,B x t y - ()132,C x t y -三个不同点 记21M y y =- 32N y y =- 求证:M N <.16.抛物线的部分图象如图所示 抛物线图象顶点()1,4A 与y 轴 x 轴分别交于点B 和点()3,0C 连接AB AC BC .(1)求抛物线的解析式 (2)求ABC 的面积.17.在平面直角坐标系xOy 中 抛物线262y x mx n =-+-经过点()2,42m m -.(1)求该抛物线的顶点坐标(用含m 的式子表示) (2)()00,P x y 是抛物线上的点 ()00m x m t t ≤≤+> ①当0m = 2t =时 求0y 的取值范围①若无论m 为何值 都有满足02y ≥的点P 求t 的取值范围.18.如果抛物线C 1的顶点在抛物线C 2上 并且抛物线C 2的顶点也在抛物线C 1上 那么 我们称抛物线C 1与C 2关联.(1)已知抛物线①227y x x =+- 抛物线①()221y x =--+ 判断这两条抛物线是否关联 说明理由(2)把抛物线()212L y x =+-:绕顶点旋转180°得到抛物线()212M y x =-+-: 把抛物线M 先向上平移4个单位 再左右平移若干个单位得抛物线Q 若抛物线L 与Q 关联 请求出抛物线Q 的解析式.参考答案:1.D 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.()0,5 10.π- 11.>12.()2221y x =-- 13.14a ≥或14a ≤- 14.(1)解:当1a = ()22y x h =--将(0)7,代入 ()22y x h =--得 ()2702h =-- 解得3h =± ①h 的值为3±(2)解:当12a = ()2122y x h =-- ①0a >①当x h =时 y 有最小值为2①当13x ≤≤时 对应函数值y 的最小值是52①当1h ≤时 在1x =处 函数值y 的最小值是52当1x = ()2511222h =-- 解得 2h =- 4h =(舍去) ①()21222y x =+- 当3h ≥时 在3x =处 函数值y 的最小值是52当3x = ()2513222h =-- 解得 6h = 0h =(舍去) ①()21622y x =-- 综上所述 ()21222y x =+-或()21622y x =-- (3)解:由题意知 ()2M h -, ①直线16y x =--经过点M ①62h --=- 解得4h =-①()42M --, ①()242y a x =+- ①抛物线与y 轴交于点C 当0x = 162y a =-①()0162C a -, ①直线16y x =--与抛物线交于另一点D 且CD x ∥轴 ①C D 、关于直线4x =-对称 D 点纵坐标为162a -将162y a =- 代入16y x =-- 得1626a x -=-- 解得164x a =--①()164162D a a ---,①016442a --=- 解得14a =①()21424y x =+-. 15.(1)解:依题意 112c b c =-⎧⎨++=⎩ 解得:21b c =⎧⎨=-⎩ ①221y x x =+-①221y x x =+-()212x =+- ①顶点坐标为()1,2--(2)①2y x bx c =++中 二次项系数1a =该函数图象的顶点坐标为(),m k 设抛物线解析式为()2y x m k =-+①()2y x m k =-+的图象经过另一点(),k m①()2m k m k =-+ ①()2m k m k -=- 解得:0m k -=或1m k -=(3)解:①2y x bx c =++函数图象经过()11,A x y ()12,B x t y - ()132,C x t y -三个不同点①2111y x bx c =++ 0t ≠()()2211y x t b x t c =-+-+221112x x t t bx bt c =-++-+()()231122y x t b x t c =-+-+22111442x x t t bx bt c =-++-+①21M y y =-()222111112x x t t bx bt c x bx c =-++-+-++212x t t bt =-+-32N y y =-()22221111114422x x t t bx bt c x x t t bx bt c =-++-+--++-+2123x t t bt =-+-①()2221123220N M x t t bt x t t bt t -=-+---+-=>①M N <16.(1)解:设抛物线解析式为2(1)4y a x =-+把点()3,0C 代入得2(31)40a -+=解得1a =- 所以抛物线解析式为2(1)4y x =--+ (2)当0x =时 2(1)43y x =--+= 则点B 的坐标为()0,3 作AD y ⊥轴于点D 如图①1AD = 3OC = 4OD = 3OB = ①ABCABDOBCADOC SS SS=--梯形()1111341133222=⨯+⨯-⨯⨯-⨯⨯ 3=.17.(1)解:将点()2,42m m -代入262y x mx n =-+-得:2226242m m n m -+-=-解得29n m =则()22269232y x mx m x m =-+-=-- 所以该抛物线的顶点坐标为()3,2m -. (2)解:①当0m =时 22y x =- 当0m = 2t =时 002x ≤≤当0x =时 =2y - 当2x =时 2222y =-= 在002x ≤≤内 y 随x 的增大而增大 所以022y -≤≤①将点()00,P x y 代入函数()232y x m =--得:()20032y x m =--当02y ≥时 ()20322x m --≥ 即()20340x m --≥ 解方程()20340x m --=得:032x m =-或032x m =+ 画出函数()2034s x m =--的大致图象如下:由函数图象可知 在()00m x m t t ≤≤+>内 要使无论m 为何值 都有满足02y ≥(即0s ≥)的点P则()3232m t m m m +-≥+-- 解得4t ≥.18.(1)解:①①抛物线()222718y x x x =+-=+-的顶点坐标为()18--,①对于抛物线① 当=1x -时 2431438y x x =-+-=---=-①()18--,在抛物线①上 ①抛物线①()221y x =--+ 其顶点坐标为()21,对于抛物线① 2x =时 1y =①()21,在抛物线①上①抛物线① ①是关联的 (2)解:()212M y x =-+-:第一种情况是把抛物线()212M y x =-+-:先向上平移4个单位 再左平移()0a a >个单位得抛物线()212Q y x a =-+++:把抛物线()212L y x =+-:的顶点()12--,代入抛物线Q 得到222a -=-+①2a =± ①0a > ①2a =①抛物线Q 的解析式为()()2212232y x x =-+++=-++第二种情况是把抛物线()212M y x =-+-:先向上平移4个单位 再右平移()0b b >个单位得抛物线()212Q y x b =-+-+:把抛物线()212L y x =+-:的顶点()12--,代入抛物线Q 得到222b -=-+ ①2b =± ①0b > ①2b =①抛物线Q 的解析式为()()2212212y x x =-+-+=--+综上所示:抛物线Q 的解析式为()232y x =-++或()212y x =--+.。
初中数学二次函数的图象与性质能力达标测试题1(附答案详解)1.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )A .1个B .2个C .3个D .4个2.已知二次函数的图像y=ax²+bx+c(a≠0)如右图所示,下列结论⑴a+b+c=0 ⑵a -b+c ﹥0 ⑶abc ﹥0 ⑷b=-2a 其中正确的结论个数有( )A .1个B .2个C .3个D .4个3.已知点A (﹣2,a ),B (12,b ),C (52,c )都在二次函数y=﹣x 2+2x+3的图象上,那么a 、b 、c 的大小是( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a4.若抛物线y =(x -m)2+(1-m)的顶点在第一象限,则m 的取值范围为( )A .m>0B .m>1C .-1<m<0D .0<m<1 5.如图,抛物线()20y ax bx c a =++≠与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,顶点为D ,下列结论正确的是( )A .abc <0B .3a+c=0C .4a-2b+c <0D .方程ax 2+bx+c=-2(a≠0)有两个不相等的实数根6.如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1.①b 2>4ac ;②b <0;③y 随x 的增大而减小; ④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是( )A .①②④B .①④C .①③④D .②③④ 7.抛物线的图象一定经过( ) A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限 8.二次函数()20y ax bx c a =++≠的图象如图所示,下列四个结论:①0ac <;②0a b c ++>;③420a b c -+<;④240ac b ->.其中正确的结论有( )A .1B .2C .3D .49.如图,抛物线的表达式是( )A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +2 10.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.11.函数242y x x =++的最小值是________.12.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列5个结论: ①20a b +=;②b a c <+;③2124b a ac +=;④()a b m am b +>+,(1m ≠的实数); ⑤240b ac ->,其中正确的结论有________.13.若二次函数232y x x m =-+的最小值是2,则m =________.14.如果一条抛物线的形状与y=﹣2x 2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是________.15.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表:则此二次函数的对称轴为____.16.二次函数y =x (x ﹣6)的图象的对称轴是______.17.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是y 1_____y 2(填“>”、“<”、“=”)18.把抛物线y=2x 2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.19.已知抛物线y=ax 2经过点A (﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B (﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.20.已知抛物线y=ax 2﹣4x+c 经过点A (0,﹣6)和B (3,﹣9).(1)求出抛物线的解析式;(2)通过配方,写出抛物线的对称轴方程及顶点坐标.21.二次函数2y ax =与直线21y x =-的图象交于点()1,P m()1求a ,m 的值;()2写出二次函数的表达式,并指出x 取何值时该表达式y 随x 的增大而增大?()3写出该抛物线的顶点坐标和对称轴.22.某商场经营一种海产品,进价是20元/kg ,根据市场调查发现,每日的销售量y (kg )与售价x (元/kg )是一次函数关系,如图所示.(1)求y 与x 的函数关系式.(不求自变量的取值范围)(2)某日该商场销售这种海产品获得了21000元的利润,问:该海产品的售价是多少? (3)若某日该商场销售这种海产品的销量不少于650kg ,问:该商场销售这种海产品获得的最大利润是多少?23.如图,抛物线y=ax 2+bx+c 与x 轴交于A ,B (1,0)两点,与y 轴交于点C ,直线y=x ﹣2经过A ,C 两点,抛物线的顶点为D .(1)求抛物线的解析式;(2)求抛物线的顶点D 的坐标;(3)在y 轴上是否存在一点G ,使得GD +GB 的值最小?若存在,求出点G 的坐标;若不存在,请说明理由;(4)在直线AC 的上方抛物线上是否存在点P ,使△PAC 的面积最大?若存在,直接写出P 点坐标及△PAC 面积的最大值.24.如图,抛物线y=﹣x 2+bx+c 经过直线y=﹣x+3与坐标轴的两个交点A 、B .(1)求抛物线的解析式; (2)画出抛物线的图象.25.如图1,在平面直角坐标系xOy 中,已知点A 和点B 的坐标分别为()2,0A -,()0,6B -,将Rt AOB ∆绕点O 按顺时针分别旋转90,180得到1Rt AOC ∆,Rt EOF ∆,抛物线1C 经过点C ,A ,B ;抛物线2C 经过点C ,E ,F .(1)点C 的坐标为________,点E 的坐标为________;抛物线1C 的解析式为________,抛物线2C 的解析式为________;(2)如果点(),P x y 是直线BC 上方抛物线1C 上的一个动点.①若PCA ABO ∠=∠,求P 点的坐标;②如图2,过点P 作x 轴的垂线交直线BC 于点M ,交抛物线2C 于点N ,记2h PM NM BM =++,求h 与x 的函数关系式.当52x -≤≤-时,求h 的取值范围. 26.如图,已知抛物线y=ax 2+32x+4的对称轴是直线x=3,且与轴相交于A 、B 两点(B 点在A 点的右侧),与轴交于C 点.(1)A 点的坐标是 ;B 点坐标是 ;(2)直线BC 的解析式是: ;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由; (4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.参考答案1.A【解析】【分析】由抛物线开口向上得到a 大于0,再由对称轴在y 轴右侧得到a 与b 异号,即b 小于0,由抛物线与y 轴交于正半轴,得到c 大于0,可得出abc 的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c 小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a 大于0,得到-2a 小于0,在不等式两边同时乘以-2a ,不等号方向改变,可得出不等式,对(2)作出判断;由x=-1时对应的函数值大于0,将x=-1代入二次函数解析式得到a-b+c 大于0,又4a 大于0,c 大于0,可得出a-b+c+4a+c 大于0,合并后得到(4)正确,综上,即可得到正确的个数.【详解】解:由图形可知:抛物线开口向上,与y 轴交点在正半轴,∴a >0,b <0,c >0,即abc <0,故(3)错误;又x =1时,对应的函数值小于0,故将x =1代入得:a +b +c <0,故(1)错误;∵对称轴在1和2之间, ∴122b a<-<, 又a >0, ∴在不等式左右两边都乘以−2a 得:−2a >b >−4a ,故(2)正确;又x =−1时,对应的函数值大于0,故将x =1代入得:a −b +c >0,又a >0,即4a >0,c >0,∴5a −b +2c =(a −b +c )+4a +c >0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.【点睛】考查二次函数图象与系数的关系,掌握二次函数系数对图象的影响是解题的关键. 2.C【解析】【分析】解答本题,根据图象可知f(1)<0和f(-1)>0,结合函数解析式即可判断a+b+c 和a-b+c 是否大于0;由图可知,对称轴x=b2a-=-1,a<0,故可知b=2a<0;结合图像和函数解析式可知f(0)=c>0,据此即可判断abc是否大于0. 【详解】求f(1)和f(-1)得a+b+c=0,a-b+c>0;对称轴x=b2a-=-1,a<0,得b=2a<0,f(0)=c>0得abc>0.【点睛】本题考查对二次函数的理解,解题的关键是合理利用图像的坐标.3.C【解析】【分析】先计算对称轴为直线x=1,抛物线开口向下,再根据A、B、C三点与对称轴的远近,比较纵坐标的大小.【详解】比较A、B、C三点横坐标与坐标轴的距离,可知距离差分别为A :3 B:0.5 C:1.5 ∴b>c>a,选C.【点睛】本题考查了二次函数图像上点的坐标特征,解题的关键是掌握二次函数图像的性质.4.D【解析】分析:根据二次函数的解析式可得顶点坐标是(m,1-m),因为二次函数顶点坐标在第一象限,根据点在第一象限的符号特征可得:10mm>⎧⎨->⎩,解不等式组即可求解.详解:因为抛物线y=(x-m)2+(1-m)的顶点在第一象限,所以10mm>⎧⎨->⎩,解得0<m<1,故选D.点睛:本题主要考查二次函数的顶点坐标和平面直角坐标系内点的符号特征,解决本题的关键是要熟练根据二次函数解析式求二次函数的顶点坐标.5.B【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可得,a>0,b<0,c<0,∴abc>0,故选项A错误,∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,∴-13=22ba-+=1,得b=-2a,当x=-1时,y=a-b+c=a+2a+c=3a+c=0,故选项B正确,当x=-2时,y=4a-2b+c>0,故选项C错误,由函数图象可知,如果函数y=ax2+bx+c(a≠0)顶点的纵坐标大于-2,则方程ax2+bx+c=-2(a≠0)没有实数根,故选项D错误,故选B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.6.A【解析】【分析】根据图象与x轴有2个交点,确定b2-4ac>0,即可判断①;根据开口向上可判断a>0,-b2a=1,可得b=-2a<0,可判断②;根据二次函数的增减性可判断③;④.【详解】解:∵图象与x轴有2个交点,∴b2−4ac>0,b2>4ac,故①正确;∵−b2a=1,又a>0,∴b<0,故②正确;当x>1时,y随x的增大而增大,故③错误;由对称轴为x=1,当x=−2时和x=4时,函数值相等,根据函数性质,x=5的函数值大于x=4的函数值,∴y1<y2,故④正确.所以正确的是①②④,故选A.【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数图象与系数的关系. 7.B【解析】【分析】根据抛物线的开口方向以及顶点即可判断其图像所经过的象限.【详解】∵a<0,∴抛物线y=ax2的图像开口向下,由抛物线的解析式易知其顶点为(0,0),∴y=ax2的图像一定经过第三、四象限.故选B.【点睛】本题主要考查二次函数的图像与性质,熟练掌握相关知识点是解答此类问题的关键.8.B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴ac<0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②错误;由图象可知:当x=−2时,y<0,∴4a−2b+c<0,故③正确;由抛物线交x轴于两点,∴b2−4ac>0,∴4ac−b2<0,故④错误;故选:B.【点睛】考查二次函数与系数的关系.二次项系数a决定抛物线的开口方向,,a b共同决定了对称轴的位置,常数项c决定了抛物线与y轴的交点位置.9.D【解析】【分析】根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.【详解】解:根据题意,设二次函数的表达式为y=ax2+bx+c,抛物线过(-1,0),(0,2),(2,0),所以2420 a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得a=-1,b=1,c=2,这个二次函数的表达式为y=-x2+x+2.故选A.【点睛】本题考查了用待定系数法求函数表达式的方法,同时还考查了方程组的解法等知识,是比较常见的题目.10.12【解析】【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.【详解】∵在平面直角坐标系中,点A是抛物线y=a(x+32)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣32,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B 的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD 的周长为:3×4=12, 故答案为:12.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.11.-2【解析】【分析】将函数解析式写成顶点式便可得出最小值.【详解】解:242y x x =++=2442x x ++-=()22x +-2∴顶点坐标为(-2,2),且开口向上;∴函数242y x x =++的最小值是-2.故答案为:-2.【点睛】本题考查了二次函数的最值,关键将解析式写成顶点式.12.①③④⑤【解析】【分析】根据抛物线的对称轴可判断①;代入x=-1,结合图像可判断②;根据顶点坐标公式及图像中的顶点坐标可判断③;利用抛物线的最大值可判断④;根据抛物线与x 轴交点的个数可判断⑤.【详解】 由图像知2b a-=1,则20a b +=,①正确;当x=-1时,y=a-b+c ,由图像可知此时y <0,即a-b+c <0,则b >a+c ,②错误;由图可知顶点坐标为(1,3),则2434b ac a-=,即2124b a ac +=,③正确; 当x=1时,y=a+b+c 为最大值,当x=m 时,y=am 2+bm+c ,由于m≠1,故a+b+c >am 2+bm+c ,即a+b >am 2+bm=m(am+b),④正确;由图可知,抛物线与x 轴有两个交点,则b 2-4ac >0,⑤正确;故答案为:①③④⑤.【点睛】本题综合考察了二次函数的解析式和图像的性质特点,一定要深入理解二次函数解析式各项参数与图像的对应关系,同时对一些特殊值要有敏感度.13.178【解析】【分析】可以由函数解析式得出对称轴的表达式,运用该函数在对称轴处可以得到最小值即可得出答案.【详解】 对称轴33x==212⨯,所以带入可得m= 178,故填 178. 【点睛】本题考查了由二次函数图像得出最值,熟悉理解二次函数最值的取得是解决本题的关键. 14.y=﹣2(x ﹣4)2﹣2或y=2(x ﹣4)2﹣2【解析】试题解析:∵一条抛物线的形状与222y x =-+的形状相同,∴a =±2, 设抛物线的顶点式为22()y x h k =±-+,∵顶点坐标是(4,−2),∴抛物线的顶点式为22(4)2y x =---或22(4) 2.y x =--故答案为:22(4)2y x =---或22(4) 2.y x =--15.1x =-【解析】观察、分析表格中的数据可得,当20x x =-=,时,二次函数2y ax bx c =++的函数值相等,都是3-,∴此二次函数的对称轴为直线:2012x -+==-,即1x =-. 故答案为:1x =-.16.x =3.【解析】解:令y =0,得:x (x ﹣6)=0,解得:x =0或x =6,∴对称轴为直线x =062+ =3.故答案为x =3.17.<【解析】【分析】利用二次函数的性质解决问题.【详解】∵抛物线的对称轴为直线x=1,∴当x 1<x 2<1,∴y 1<y 2.故答案为<.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.18.y=2(x ﹣3)2﹣2.【解析】【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.【详解】∵y =2x 2的顶点坐标为(0,0),∴把抛物线右平移3个单位,再向下平移2个单位,得新抛物线顶点坐标为(3,﹣2),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=2(x﹣3)2﹣2.故答案为y=2(x﹣3)2﹣2.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.19.(1)y=﹣2x2;(2)顶点坐标为(0,0),对称轴为y轴;(3)不在;(4)(3,﹣6)或(﹣3,﹣6).【解析】分析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到关于a的方程,然后解方程即可.(2)根据图象和性质直接写出顶点坐标、对称轴即可.(3)把点B(-1,-4)代入解析式,即可判断;(4)把y=-6代入解析式,即可求得;详解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),∴a•(﹣2)2=﹣8,∴a=﹣2,∴此抛物线对应的函数解析式为y=﹣2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上;(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,解得x=±,∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).点睛:本题主要考查了待定系数法求解析式,二次函数的性质以及二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.20.(1)抛物线的解析式为:y=x 2﹣4x ﹣6;(2)对称轴方程为x=2;顶点坐标(2,﹣10).【解析】【分析】把A (0,﹣6)和B (3,﹣9)代入y =ax 2﹣4x +c ,用待定系数法即可求出抛物线的解析式; (2)根据配方法把y =x 2﹣4x ﹣6化为y =(x ﹣2)2﹣10解答即可.【详解】(1)依题意有,即,∴; ∴抛物线的解析式为:y=x 2﹣4x ﹣6.(2)把y=x 2﹣4x ﹣6配方得,y=(x ﹣2)2﹣10,∴对称轴方程为x=2;顶点坐标(2,﹣10).【点睛】本题考查了待定系数法求二次函数解析式及配方法的应用,熟练掌握待定系数法是解答(1)的关键;熟练掌握配方法是解答(2)的关键.21.(1)a=1;m=1;(2)2y x =, 当0x >时,y 随x 的增大而增大;(3)顶点坐标为()0,0,对称轴为y 轴.【解析】【分析】(1)把点P (1,m )分别代入二次函数y=ax 2与直线y=2x-1即可求出未知数的值; (2)把a 代入二次函数y=ax 2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【详解】()1点()1,P m 在21y x =-的图象上∴2111m =⨯-=代入2y ax =(2)二次函数表达式:2y x =因为函数2y x =的开口向上,对称轴为y 轴,当0x >时,y 随x 的增大而增大; (3)2y x =的顶点坐标为()0,0,对称轴为y 轴.【点睛】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.22.(1)y=-10x+1200;(2)该海产品的售价是50元或90元.(3)22750.【解析】【分析】(1),设y 与x 之间的函数关系式为y=kx+b ,将图形上已知的两点代入解方程组,即可求出k 与b 的值,进而确定y 与x 之间的函数关系式;(2)根据题目信息可得(-10x+1200)(x-20)=21000,接下来解方程即可使问题得解;(3) 设所获利润为W ,根据题目信息可得W=(-10x+1200)(x-20),然后对其进行配方,结合x 的取值范围与二次函数的性质进行解答即可.【详解】(1)设y 与x 的函数关系式为:y=kx+b ,将(25,950),(40,800)代入得:2595040800k b k b +⎧⎨+⎩==, 解得:101200k b -⎧⎨⎩==, 故y 与x 的函数关系式为:y=-10x+1200;(2)由(1)得:(-10x+1200)(x-20)=21000,解得:x 1=50,x 2=90,答:该海产品的售价是50元或90元.(3) 设所获利润为W ,则根据题目信息可得W=(-10x+1200)(x-20)=-10(x-70)2+25000.∵-10x+1200≥650,当x=55时,W有最大值.故W的最大值为:-10(55-70)2+25000=22750.【点睛】此题主要考查了一元二次方程的应用以及一次函数的应用,正确求出函数解析式是解题关键.23.(1)y=﹣x2+x﹣2;(2)顶点D(,);(3)存在点G(0,)使得GD+GB的值最小.理由见解析;(4)在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.理由见解析.【解析】【分析】(1)利用一次函数是性质求得点A、C的坐标,然后把点A、B、C的坐标分别代入二次函数解析式,利用待定系数法求得二次函数解析式即可;(2)将二次函数解析式转化为顶点式方程,可以直接得到答案;(3)利用轴对称﹣最短路径方法证得点G,结合一次函数图象上点的坐标特征求得点G的坐标;(4)利用分割法求得△PAC的面积为二次函数的形式,利用二次函数最值的求法进行解答.【详解】(1)把x=0代入y=x﹣2中得:y=﹣2,把y=0代入y=x﹣2中得:x=4,∴A(4,0),C(0,﹣2),把A(4,0),B(1,0),C(0,﹣2)分别代入y=ax2+bx+c,得,解得,则该抛物线的解析式为:y=﹣x2+x﹣2;(2)由(1)知,该抛物线的解析式为y=﹣x2+x﹣2,∴y=﹣x2+x﹣2=﹣(x﹣)2+,∴顶点D(,);(3)存在点G(0,)使得GD+GB的值最小.理由如下:如图1,作点B关于y轴的对称点B′,连接B′D交y轴于点G,则B′(﹣1,0).设直线B′D的解析式为y=kx+b.则,解得:,∴直线B′D的解析式为y=x+,把x=0代入,得y=,∴存在点G(0,)使得GD+GB的值最小;(4)在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.理由如下:如图2,过点P作PQ∥y轴交AC于Q,连接PC,PA.设P(x,﹣x2+x﹣2),则Q(x,x﹣2).∴PQ=﹣x2+x﹣2﹣(x﹣2)=﹣x2+2x=﹣(x﹣2)2+2.又∵S△PAC=S△PQC+S△PQA=x•PQ+(4﹣x)•PQ=2PQ,∴S△PAC=﹣(x﹣2)2+4,∴当x=2时,S△PAC最大值为4,此时﹣x2+x﹣2=1,∴在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.【点睛】本题考查的是二次函数综合题,涉及了轴对称的性质、一次函数的应用、待定系数法等知识,学会利用参数构建方程解决问题,学会用数形结合的思想思考问题是解题的关键. 24.(1) y=﹣x2+2x+3 ;(2)见解析.【解析】【分析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求得b,c 的值即可;(2)依据抛物线解析式为y=﹣x2+bx+c,列表,描点,连线即可.【详解】解:(1)将x=0代入AB的解析式y=﹣x+3得:y=3,∴B(0,3).将y=0代入AB的解析式y=﹣x+3得:﹣x+3=0,解得x=3,即A(3,0).将点A和点B的坐标代入y=﹣x2+bx+c,解得:b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)列表:抛物线的图象如下:【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.25.(1)(6,0)C -,(2,0)E ,1C :21462y x x =---,2C :21262y x x =--+.(2)①符合条件的点P 的坐标为810(,39P -)或414(,39P --).②1721h ≤≤. 【解析】分析:(1)根据旋转的性质,可得C ,E ,F 的坐标,根据待定系数法求解析式;(2)①根据P 点关于直线CA 或关于x 轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P 、N 、M 纵坐标,根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据x 取值范围讨论h 范围. 详解:(1)由旋转可知,OC=6,OE=2,则点C 坐标为(-6,0),E 点坐标为(2,0),分别利用待定系数法求C 1解析式为:y=-12x 2−4x −6,C 2解析式为:y=-12x 2−2x +6 (2)①若点P 在x 轴上方,∠PCA=∠ABO 时,则CA 1与抛物线C 1的交点即为点P ,如图,设直线CA 1的解析式为:y=k 1x+b 1∴111062k b b -+⎧⎨⎩== 解得11132k b ⎧⎪⎨⎪⎩==∴直线CA 1的解析式为:y=13x+2 联立:21462123y x x y x ⎧---⎪⎪⎨⎪+⎪⎩==,解得1183109x y ⎧-⎪⎪⎨⎪⎪⎩==或2260x y =-⎧⎨=⎩(舍去), ∴P(810,39-) 若点P 在x 轴下方,∠PCA=∠ABO 时,则CH 与抛物线C 1的交点即为点P ,如图,易知OH=OA,∴H(0,-2)设直线CH的解析式为:y=k2x+b2∴222062k bb-+⎧⎨-⎩==解得11132kb⎧-⎪⎨⎪-⎩==∴直线CH的解析式为:y=13-x-2联立:21462123y x xy x⎧---⎪⎪⎨⎪--⎪⎩==,解得1143149xy⎧-⎪⎪⎨⎪-⎪⎩==或226xy=-⎧⎨=⎩(舍去),∴414(,39P--);∴符合条件的点P的坐标为810(,39P-)或414(,39P--).②设直线BC的解析式为:y kx b=+,∴066k bb=-+⎧⎨-=⎩,解得16kb=-⎧⎨=-⎩,∴直线BC的解析式为:6y x=--,过点B作BD MN⊥于点D,则2BM BD=,设P(x ,-12x 2−4x −6) ∴222BM BD x ==,2h PM NM BM =++()()2P M N M y y y y x =-+-+ 22P N M y y y x =+--()2211462626222x x x x x x =-----+---- 2612x x =--+,2612h x x =--+,()2321h x =-++,当3x =-时,h 的最大值为21.∵52x -≤≤-,当5x =-时,()2532117h =--++=;当2x =-时,()2232120h =--++=;当52x -≤≤-时,h 的取值范围是1721h ≤≤.点睛:本题考查二次函数综合题,解(1)的关键是利用旋转的性质得出C ,E 的坐标,又利用了待定系数法;解(2)①的关键是利用解方程组,要分类讨论,以防遗漏;解(2)②的关键是利用平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标得出二次函数,又利用了二次函数的性质.26.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4,0),(541+,0),(541-,0).【解析】【分析】可得a 的值,求出解析式.由解析式可得出C 和B 的坐标,从而得出直线的解析式.运用假设法,连接辅助线可以设出P,D 的坐标,表达出相应△PBC 的面积解析式,分析可得出结果.由平行四边形的定义可求出答案.【详解】(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)假设存在点P ,连结PB 、PC ,过点P 作PD ∥y 轴交直线BC 于点D ,设点P (m ,213442m m -++) 则点D (m ,142m -+) 所以PD =213442m m -++- 142m ⎛⎫-+ ⎪⎝⎭ =2124m m -+ ∴211128224PBC S PD OB m m ⎛⎫=⨯⨯=⨯-+⨯ ⎪⎝⎭()228416m m m =-+=--+∵点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合)∴08m <<∴当4m =时,△PBC 的面积最大,最大面积是16∴存在点P ,使△PBC 的面积最大,最大面积是16(4)(8-,0),(4, 0),(5+0),(5,0) .【点睛】本题考查了一元二次方程的解析式的结构,和直线解析式的求解,以及品行四边形的定义,熟练掌握这些是解决本题的关键.。
练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点6.抛物线y=-b +3的对称轴是___,顶点是___。
7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。
初中数学二次函数的图象与性质基础过关测试题2(附答案详解)1.如图,抛物线y =ax 2+bx +c (c≠0)过点(-1,0)和点(0,-2),且顶点在第四象限,设P =a +b +c ,则P 的取值范是( )A .-2<P <-1B .-2<P <0C .-4<P <0D .-4<P <-2 2.已知两点A (﹣3,y 1)、B (5,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点C (x 0,y 0)是该抛物线的顶点,若y 1>y 2≥y 0,则x 0的取值范围是( )A .x 0>﹣3B .x 0≥5C .1<x 0≤5D .x 0>13.已知a <0,二次函数y=-ax 2的图象上有三个点A (-2,y 1),B (1,y 2),C (3,y 3),则有( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 34.二次函数2(1)(3)y x x =-+的对称轴为( )A .直线1y =-B .直线1x =-C .直线1y =D .直线1x = 5.二次函数y =ax 2与一次函数y =ax+a 在同一坐标系中的图象大致为( )A .B .C .D .6.抛物线y=5x 2向右平移2个单位,再向上平移3个单位,得到的新抛物线的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3) 7.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b 2>4ac ;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是( )A .1个B .2个C .3个D .4个8.抛物线y =(x +1)2+1上有点A (x 1,y 1)点B ( x 2,y 2)且x 1<x 2<﹣1,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定9.已知二次函数2y ax bx c =++的图像与x 轴交于点(-2,0)、(2x 0,),且21x 2<<,与y 轴的正半轴的交点在(0,2)的下方,则下列结论中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c ,其中正确的结论有( ).A .1个B .2个C .3个D .4个10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①ac >0;②b 2>4ac ;③4a+2b+c >0;④3a+c >0.其中正确的有( )A .1个B .2个C .3个D .4个11.将抛物线y =2(x ﹣1)2+3绕它的顶点旋转180°后得到的抛物线的函数表达式为_____.12.已知一元二次方程(1)(3)5x x --=的两个实数根分别为1x ,2x .则抛物线()()125y x x x x =--+与x 轴的交点坐标为_____.13.若二次函数y =()2321m m m x ---的图象开口向下,则m 的值为__________.14.已知实数x ,y ,w 满足x ﹣12+y 2=0,w =2x 2﹣3x +y 2﹣1,则w 的最小值为___ 15.抛物线y=ax 2+bx+c 经过A (-1,0), B (3,0), C (0,1)三点,则a=_____, b=_____, c=_____16.已知抛物线经过点(-3,0)和(1,0),则该抛物线的对称轴是_____.17.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表: x⋯ 4- 3- 2- 1- 0 1 ⋯ y ⋯ 4.5- 2- 0.5- 0 0.5- 2-⋯ 则当y 4.5<-时,x 的取值范围是______.18.如图所示,直线2y ax 4ax b =-+交x 轴于A ,B 两点,交y 轴于点C ,若A 的坐标为()1,0,且ABC 的面积为3,则抛物线的解析式为________.19.把抛物线()2y a x h k =++先向左平移2个单位长度,再向上平移4个单位长度,得到抛物线()21112y x =+-. (1)试确定,,a h k 的值;(2)作原抛物线关于x 轴对称的图形,求所得抛物线的函数表达式.20.如图,二次函数y =x 2﹣4x +m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,直接写出满足kx +b ≥x 2﹣4x +m 的x 的取值范围.(3)在抛物线的对称轴上是否存在一点P 使得PA +PC 最小,求P 点坐标及最小值. 21.以x 为自变量的函数()()222243y x m x m m =-++-+-中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.22.分别求出满足下列条件的二次函数的解析式.(1)图象经过点A (1,0),B (0,﹣3),对称轴是直线x =2;(2)图象顶点坐标是(﹣2,3),且过点(1,﹣3);23.已知二次函数24y ax x c =++,当2x =-时,5y =-;当1x =时,4y = (1)求这个二次函数表达式.(2)此函数图象与x 轴交于点A ,B (A 在B 的左边),与y 轴交于点C ,求点A ,B ,C 点的坐标及ABC ∆的面积.24.如图,在平面直角坐标系xOy 中,Rt △AOB 的直角边OA 在x 轴正半轴上,OB 在y 轴负半轴上,且OA=3,OB=1,以点B 为顶点的抛物线经过点A .(1)求出该抛物线的解析式.(2)第二象限内的点M ,是经过原点且平分Rt △AOB 面积的直线上一点.若OM=2,请判断点M 是否在(1)中的抛物线上?并说明理由.(3)点P 是经过点B 且与坐标轴不平行的直线l 上一点.请你探究:当直线l 绕点B 任意旋转(不与坐标轴平行或重合)时,是否存在这样的直线l ,在直线l 上能找到点P ,使△PAB 与Rt △AOB 相似(相似比不为1)?若存在,求出直线l 的解析式;若不存在,说明理由.25.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).26.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.27.已知:抛物线y=-2x +bx+c 经过A (-1,0)、B (5,0)两点,顶点为P .求:(1)求b ,c 的值;(2)求△ABP 的面积;(3)若点C (1x ,1y )和点D (2x ,2y )在该抛物线上,则当1201x x <<<时,请写出1y与2y的大小关系.参考答案1.C【解析】【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把点(−1,0)和点(0,−2)代入求出b=a-2,把x=1代入得出P=a+b+c=2a-4,求出2a-4的范围即可.【详解】∵抛物线过点(−1,0)和点(0,−2).∴0=a−b+c,−2=c,∴b=a−2,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a−2−2=2a−4,∵顶点在第四象限,a>0,∴b=a−2<0,∴a<2,∴0<a<2,∴−4<2a−4<0,即−4<P<0.故选C.【点睛】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象与系数的关系和计算.2.D【解析】【分析】根据题意和二次函数的性质,可以求得x0的取值范围,本题得以解决.【详解】解:∵两点A(﹣3,y1)、B(5,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,y1>y2≥y0,∴该函数图象开口向上,有最小值,∴x 0>-3+52, 即x 0>1故选:D .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 3.D【解析】【分析】由二次函数y =-ax 2可知,此函数的对称轴为x =0,顶点坐标为(0,0),二次项系数-a >0,故此函数的图象开口向上,有最小值;函数图象上的点与对称轴y 轴越接近,则函数值越小,因而比较A 、B 、C 三点与对称轴的距离的大小即可.【详解】解:二次函数y =-ax 2对称轴为x =0,开口向上,有最小值,∵点A 到对称轴x =0的距离是2;点B 到对称轴x =0的距离是1;点C 到对称轴x =0的距离是3.∴y 3>y 1>y 2.即y 2<y 1<y 3故选:D 。
初中数学二次函数的图象与性质能力达标练习题(附答案详解)1.抛物线y =2(x -1)2的对称轴是( )A .1B .直线x =1C .直线x =2D .直线x =-12.抛物线y=ax 2+bx+c (a≠0)中自变量x 和函数值y 的部分对应值如下表:x … ﹣32﹣1 ﹣12 0 12 1 32 … y … ﹣54 ﹣2 ﹣94 ﹣2 ﹣54 0 74 …从上表可知,下列说法正确的个数是( )①抛物线与x 轴的一个交点为(﹣2,0);②抛物线与y 轴的交点为(0,﹣2);③抛物线的对称轴是:x=1;④在对称轴左侧,y 随x 增大而增大.A .1B .2C .3D .43.已知抛物线2(2)2(0)y ax a x a =+-->的图像与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①当0a >的条件下,无论a 取何值,点A 是一个定点;②当0a >的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于2-;④若AB AC =,则152a +=.其中正确的结论有( )个.A .1个 B .2个 C .3个 D .4个4.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个5.二次函数2(1)3y a x =+-的图象的顶点坐标是( )A .(l,-3)B .(-1,3)C .(-1,-3)D .(1,3)6.已知抛物线y =-(x -1)2+k 的图象经过点(2,0),则使得函数值y <0成立的x 的取值范围是( ).A .x <-4或x >2B .x <0或x >2C .-4<x <2D .0<x <27.如图,在同一直角坐标系中,作出函数①23y x =;②212y x =;③2y x =的图象,则从里到外的三条抛物线对应的函数依次是( )A .①②③B .①③②C .②③①D .③②①8.要由抛物线2y 2x =-平移得到2y 2x 4x 2=---,则平移的方法是() A .向左平移1个单位 B .向上平移1个单位C .向下平移1个单位D .向右平移1个单位9.抛物线2y (x 1)3=-++的顶点坐标是()A .()13--,B .()13-, C .()13-, D .()13, 10.若抛物线y=﹣x 2+bx+c 经过点(﹣2,3),则2c ﹣4b ﹣9的值是( )A .5B .﹣1C .4D .1811.如果抛物线C: y=ax 2+bx+c (a≠0)与直线l :y=kx+d (k≠0)都经过y 轴上一点P ,且抛物线C 的顶点Q 在直线l 上,那么称此直线l 与该抛物线C 具有“一带一路”关系.如果直线y=mx+1与抛物线y=x 2-2x+n 具有“一带一路”关系,那么m+n=_________. 12.函数231y ax ax x =-++的图象与x 轴有且只有一个交点,写出a 所有可能的值________.13.已知将二次函数2y x bx c =++的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为245y x x =--,则b =_____,c =_____。
初中数学二次函数的图象与性质基础过关测试题1(附答案详解)1.已知抛物线y=ax 2+bx+c 与x 轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为( )A .x=﹣1 B .x=1 C .x=2 D .y 轴2.已知抛物线y=ax 2+bx+c (a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A .ac <0B .a+b+c <0C .b 2﹣4ac <0D .b=8a 3.如图,半径为1的A 的圆心A 在抛物线y=(x-3)2-1上,AB //x 轴交 A 于点B(点B 在点A 的右侧),当点A 在抛物线上运动时,点B 随之运动得到的图象的函数表达式为( )A .y=(x-4)2-1B .y=(x-3)2C .y=(x-2)2-1D .y=(x-3)2-2 4.若抛物线()20y ax bx c a =++≠只经过第一、二、四象限,则该抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数()2y ax bx c a 0=++≠的图象经过点()1,0,则a b c b c a c a b +++++的值是( )A .-3B .3C .1 2D .-126.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点的坐标为(,1),下列结论:①c >0;②b 2﹣4ac >0;③a+b=0;④4ac ﹣b 2>4a ,其中错误的是( )7.若123351,,,,,444A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数245y x x =+-的图象上的三点,则123y y y 、、的大小关系是( )A .123y y y >>B .213y y y >>C .312y y y >>D .132y y y >> 8.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为()20y ax bx c a =++≠,则下列结论中正确的有( )()10a >;()20c <;()320a b -=;()40a b c ++>.A .1个B .2个C .3个D .4个9.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3B .y=(x+2)2﹣3C .y=(x ﹣2)2+3D .y=(x ﹣2)2﹣310.二次函数()20y ax bx c a =++≠的图象如图所示,下列四个结论: ①0ac <;②0a b c ++>;③420a b c -+<;④240ac b ->.其中正确的结论有( )A .1B .2C .3D .411.如果点A (0,2)和点B (4,2)都在二次函数y=x 2+bx+c 的图象上,那么此抛物线在直线_____的部分是上升的.(填具体某直线的某侧)12.已知抛物线的对称轴为1x =,且经过点()0,2和()4,0,则抛物线的解析式为________.13.已知抛物线2y x bx c =++过点()0,1和()1,0,则b =________,c =________.14.已知抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的有______________.15.将抛物线2y x =向左平移4个单位,再向上平移6个单位,所得的抛物线的解析式为________.16.若抛物线y=ax 2+bx+c 与抛物线y=2x 2-4x-1的顶点重合,且与y 轴的交点的坐标为(0,1),则抛物线y=ax 2+bx+c 的表达式是__.17.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表: x… ﹣1 0 1 2 3 4 … y … 10 5 2 1 2 5 …若A (m ,y 1),B (m ﹣1,y 2)两点都在该函数的图象上,当m 满足范围_____时,y 1<y 2.18.已知二次函数y=x 2-8x+m 的最小值为1,那么m 的值等于________.19.将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____20.二次函数223y x =的图象如图所示,点A 0位于坐 标原点,点A 1,A 2,A 3,…,A 2017在y 轴的正半轴上,点B 1, B 2, B 3,…,B 2017在二次函数223y x =位于第一象限的图象上,△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2016B 2017A 2017都为等边三角形,则等边△A 2016B 2017A 2017的高为_____.21.已知抛物线的顶点为(1,4),与y轴交点为(0,3),求该抛物线的解析式. 22.已知二次函数y=ax2+bx﹣3.(1)若函数图象经过点(1,﹣4),(﹣1,0),求a,b的值;(2)证明:若2a﹣b=1,则存在一条确定的直线始终与该函数图象交于两点.23.已知二次函数的图象与x轴交于A(﹣2,0)、B(4,0)两点,且函数经过点(3,10).(1)求二次函数的解析式;(2)设这个二次函数的顶点为P,求△ABP的面积;(3)当x为何值时,y≤0.(请直接写出结果)24.已知二次函数y=(x-m)2-2(x-m)(m为常数).(1)求该二次函数图象与x轴的交点坐标;(2)求该二次函数图象的顶点P的坐标;(3)如将该函数的图象向左平移3个单位,再向上平移1个单位,得到函数y=x2的图象,直接写出m的值.25.已知:二次函数y=2x2+bx+c过点(1,1)和点(2,10),求二次函数的解析式,并用配方法求二次函数图象的顶点坐标.26.下表给出一个二次函数的一些取值情况:x…0 1 2 3 4 …y… 3 0 -1 0 3 …(1)请在直角坐标系中画出这个二次函数的图象;(2)根据图象说明:当x取何值时,y的值大于0?27.已知关于x 的一元二次方程()2mx 3m 1x 30+++=. ()1当m 取何值时,此方程有两个不相等的实数根;()2当抛物线()2y mx 3m 1x 3=+++与轴两个交点的横坐标均为整数,且m 为正整数时,求此抛物线的解析式.28.已知二次函数y =x 2+(a ﹣5)x +5.(1)该抛物线与y 轴交点的坐标为 ;(2)当a =﹣1时,求该抛物线与x 轴的交点坐标;(3)已知两点A (2,0)、B (3,0),抛物线y =x 2+(a ﹣5)x +5与线段AB 恰有一个交点,求a 的取值范围.参考答案1.C【解析】分析:根据抛物线的对称性得到点A 和点B 是抛物线上的对称点,所以点A 和点B 的对称轴即为抛物线的对称轴.详解:∵抛物线y=ax 2+bx+c 与x 轴交点为A (-2,0),B (6,0),∴该二次函数的对称轴为直线x=2.故选:C .点睛:本题考查了抛物线与x 轴的交点:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).解决本题的关键是掌握抛物线的对称性.2.D【解析】根据二次函数的性质即可得出a ,b ,c 的符号以及a +b +c 的值,利用图象与x 轴交点个数得出b 2﹣4ac 符号,以及利用对称轴得出b =8a .解:∵图象开口向上,对称轴为直线:x =﹣4,∴a ,b 同号,∵图象与y 轴交在y 轴正半轴上,∴c >0,∴A .ac >0,故此选项错误;B .当x =1对应的函数图形上x 轴上方,所以x =1,y =a +b +c >0,故此选项错误;C .∵图象与x 轴有两个交点,∴b 2﹣4ac >0,故此选项错误;D .∵x =﹣2b a=﹣4, ∴b =8a ,故此选项正确.故选:D .3.A【解析】分析:根据题意可知点B 运动的抛物线就是将抛物线y=(x-3)2-1向右平移一个单位,根据二次函数平移的规律:上加下减,左加右减,可解答此题.详解:∵半径为1的⊙A 的圆心A 在抛物线y=(x-3)2-1上,AB∥x 轴∴点B 运动的抛物线就是将抛物线y=(x-3)2-1向右平移一个单位∴点B 随之运动得到的图象的函数表达式为:y=(x-4)2-1故选:A.点睛:此题主要考查了坐标与图形变化﹣平移,二次函数的实际应用-动态几何问题,关键是根据题意得到点B的轨迹是抛物线的平移.4.D【解析】【分析】由于抛物线y=ax2+bx+c(a≠0)只经过第一、二、四象限,不过第三象限,则抛物线开口必向上,即a>0,而抛物线过第四象限,所以该抛物线的顶点只能在第四象限.【详解】解:∵抛物线y=ax2+bx+c(a≠0)只经过第一、二、四象限,∴抛物线开口向上,即a>0,∴该抛物线的顶点一定在第四象限.故选:D.【点睛】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上,函数有最小值;抛物线的对称轴为直线x=-b2a,顶点坐标为(-b2a,24ac-b4a).5.A【解析】【分析】把(1,0)代入y=ax2+bx+c(a≠0)整理出a+b=-c,a+c=-b,b+c=-a,然后代入原式化简即可求解.【详解】把(1,0)代入y=ax2+bx+c(a≠0)得a+b+c=0,∴a+b=−c,a+c=−b,b+c=−a,则原式=−aa−bb−cc=−3.故答案选A. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是熟练的掌握二次函数图象上点的坐标特征的相关知识点.6.D【解析】【分析】①根据抛物线与y轴的交点坐标即可确定;②根据抛物线与x轴的交点情况即可判定;③根据抛物线的对称轴即可判定;④根据抛物线的顶点纵坐标即可判定.【详解】解:①抛物线与y轴正半轴相交,∴c>0,故①正确;②抛物线与x轴相交于两个交点,∴b2﹣4ac>0,故②正确;③∵抛物线的对称轴为x=,∴x=﹣=,∴a+b=0,故③正确;④∵抛物线顶点的纵坐标为1,∴=1,∴4ac﹣b2=4a,故④错误;其中错误的是④.故选D.【点睛】此题主要考查二次函数图象与系数之间的关系.会利用对称轴的范围求2a与b的关系,以及二次函数的自变量与对应的函数值,顶点坐标的熟练运用是解此题的关键.7.D【解析】【分析】将二次函数y=x2+4x-5配方,得y=x2+4x-5=(x+2)2-9,可知二次函数的图象开口向上,对称轴是x =-2;再求出A 、B 、C 三点与对称轴的距离,根据开口方向向上,距离对称轴越远y 值越大,即可判断y l ,y 2 ,y 3的大小.【详解】∵二次函数y =x 2+4x -5,a =1>0,开口向上,对称轴为直线x=-2.又A 、B 、C 三点到对称轴的距离分别为|34-(-2)|=114,|-54-(-2)|=34,|14-(-2)|=94, ∵A 、B 、C 三点中,B 点离对称轴最近,A 点离对称轴最远,∴y 1>y 3>y 2,故选D.【点睛】本题考查了二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.重点是判断函数的开口方向和对称轴,由点到对称轴的距离比较出各点纵坐标的大小;当二次项系数a >0时,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大;a <0时,在对称轴的左边,y 随x 的增大而增大,在对称轴的右边,y 随x 的增大而减小. 8.D【解析】【分析】如图是y=ax 2+bx+c 的图象,根据开口方向向上知道a >0,又由与y 轴的交点为在y 轴的负半轴上得到c <0,由对称轴x=−2b a=-1,可以得到2a-b=0,又当x=1时,可以判断a+b+c 的值.由此可以判定所有结论正确与否.【详解】如图,(1)∵将其向左平移2个单位后的图象的函数解析式为y=ax 2+bx+c (a≠0)(如虚线部分), ∴y=ax 2+bx+c 的对称轴为:直线x=-1;∵开口方向向上,∴a >0,故①正确;(2)∵与y 轴的交点为在y 轴的负半轴上∴c <0,故②正确;(3)∵对称轴x=−2b a=-1, ∴2a-b=0,故③正确;(4)当x=1时,y=a+b+c >0,故④正确.故选D .【点睛】考查二次函数y=ax 2+bx+c 系数符号的确定.9.A【解析】【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,二次函数y=x 2的图象向左平移2个单位得到y=(x+2)2, 由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.10.B【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴ac<0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②错误;由图象可知:当x=−2时,y<0,∴4a−2b+c<0,故③正确;由抛物线交x轴于两点,∴b2−4ac>0,∴4ac−b2<0,故④错误;故选:B.【点睛】考查二次函数与系数的关系.二次项系数a决定抛物线的开口方向,,a b共同决定了对称轴的位置,常数项c决定了抛物线与y轴的交点位置.11.x=2右侧【解析】分析:利用待定系数法,把点A、B的坐标代入解析式,根据待定系数法求得解析式,利用配方法把二次函数解析式的一般式写成顶点式,求出抛物线对称轴,然后根据二次函数的性质即可求得答案.详解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴21642cb c⎧⎨++⎩==,解得:42bc-⎧⎨⎩==,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为x=2右侧.点睛:考查了二次函数图象上点坐标特征、二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.219(1)44y x =--+ 【解析】【分析】根据对称轴可设二次函数的解析式为y=a(x-1)2+k ,把(0,2)(4,0)两点代入求出a 、k 的值即可.【详解】∵对称轴为x 1=,∴设抛物线解析式为:y=a(x-1)2+k ,∵抛物线经过点()0,2和()4,0, ∴209a k a k=+⎧⎨=+⎩, 解得:1494a k ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y=14-(x-1)2+94, 故答案为:y=14-(x-1)2+94, 【点睛】本题考查求二次函数解析式,选用适当的二次函数解析式的表示形式是解题关键.13.2- 1【解析】【分析】直接把两已知点的坐标代入y =x 2+bx +c 得到关于b 、c 的方程组,然后解方程组即可.【详解】把(0,1)和(1,0)代入线y =x 2+bx +c 得:110c b c =⎧⎨++=⎩,解得:b =﹣2,c =1. 故答案为:﹣2,1.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.14.①②④【解析】【分析】①由抛物线的对称轴结合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=-4a 、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a-b+c >0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x <2时,y 随x 增大而减小,结论⑤错误.综上即可得出结论.【详解】①∵抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0), ∴抛物线与x 轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=2,且抛物线过原点,∴-2b a=2,c=0, ∴b=-4a ,c=0,∴4a+b+c=0,结论②正确;③∵当x=-1和x=5时,y 值相同,且均为正,∴a-b+c >0,结论③错误;④当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c )+b=b ,∴抛物线的顶点坐标为(2,b ),结论④正确;⑤观察函数图象可知:当x <2时,y 随x 增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故答案为:①②④.【点睛】本题考查了抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.15.y=x2+8x+22【解析】【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移4个单位得到y=(x+4)2,由“上加下减”的原则可知,将二次函数y=(x+4)2的图象向上平移6个单位可得到函数y=(x+4)2+6,即y=x2+8x+22.故答案为:y=x2+8x+22.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.16.y=4x²-8x+1【解析】【分析】先求得抛物线y=2x2-4x-1的顶点坐标为(1,-3),由抛物线y=ax2+bx+c与抛物绒y=2x2-4x-1的顶点重合,可得抛物线y=ax2+bx+c的顶点坐标为(1,-3),由此可设此抛物线为y=a(x-1)2-3,把(0,1)代入求得a值,化为一般式即可.【详解】∵y=2x2-4x-1=2(x-1)2-3,∴抛物绒y=2x2-4x-1的顶点坐标为(1,-3),∵抛物线y=ax2+bx+c与抛物绒y=2x2-4x-1的顶点重合,∴抛物线y=ax2+bx+c的顶点坐标为(1,-3),∴设此抛物线为y=a(x-1)2-3,∵与y轴的交点的坐标为(0,1),∴1=a-3,解得a=4,∴此抛物线为y=4(x-1)2-3=4x2-8x+1.故答案为:y=4x2-8x+1.本题考查了二次函数的三种形式的转化、用待定系数法求函数的解析式,求得抛物线y=2x 2-4x-1的顶点坐标是解题的关键.17.m <52. 【解析】由表中数据可知,抛物线过点(0,5)和(4,5),且当2x >时,y 随x 的增大而增大, ∴抛物线的对称轴为直线0422x +==,且抛物线开口向上, ∵12y y <,∴点A 比点B 离对称轴2x =更近,又∵m >m ﹣1,∴点A 在对称轴2x =的右侧,点B 在对称轴2x =的左侧,∴2﹣(m ﹣1)>m ﹣2,∴m <52. 即当:m <52时,12y y <. 18.17【解析】试题分析:y 最小值==4644m -=1, 解得:m=17.考点:二次函数的最值19.25(5)3y x =-+-【解析】【分析】 根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.∵抛物线y=-5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.20.20173【解析】试题解析:如图,设A0A1=a,∵△A0B1A1是等边三角形,∴点B13,纵坐标为12a,∴B1(32a,12a),∵B1在二次函数y=23x2位于第一象限的图象上,∴23×(32a)2=12a,解得a=1,∴B112),∴△A0B1A1的高为2,同理,设A1A2=b,则B2,12b+1),代入二次函数解析式得,23×)2=12b+1,解得b=2,b=-1(舍去),B21),所以,△A1B2A2设A2A3=c,则B3,12c+1+2),代入二次函数解析式得,23×)2=12c+1+2,解得c=3,c=-2(舍去),所以,B332),所以,△A2B3A3的高为2,…,以此类推,B2017(220172),所以,△A2016B2017A2017的高21.y=-(x-1)2+4.【解析】【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a(x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.22.(1)a=1,b=﹣2;(2)见解析.【解析】【分析】(1)把点(1,﹣4),(﹣1,0)代入y=ax2+bx﹣3即可求解;(2)把b=2a代入y=ax2+bx﹣3,得出两点的坐标,验证即可.【详解】(1)∵二次函数y=ax2+bx﹣3的图象经过点(1,﹣4),(﹣1,0),∴代入得:,解得:a=1,b=﹣2;(2)证明:∵2a﹣b=1,∴b=2a﹣1,∴y=ax2+bx﹣3=ax2+(2a﹣1)x﹣3=(x2+2x)a﹣x﹣3,令x=0时,y=﹣3,令x=﹣2时,y=﹣1,则二次函数y=ax2+bx﹣3的图象经过定点(0,﹣3)和(﹣2,﹣1),∴若直线过(0,﹣3)和(﹣2,﹣1),则永远与二次函数交于两点,此直线的解析式是y=﹣x﹣3.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是理解题意根据二次函数图象上点的坐标得出关系式.23.(1)y=﹣2x2+4x+16;(2)54;(3)x≤﹣2或x≥4.【解析】【分析】(1)因为A(﹣2,0)、B(4,0)两点在x轴上,所以可设抛物线解析式为y=a(x+2)(x﹣4),然后把(3,10)代入求解;(2)把化为顶点式即可求出顶点坐标,然后根据三角形面积公式即可求出△ABP的面积;(3)根据二次函数的图像直接观察位于x轴下方部分图像对应的x的取值即可解答. 【详解】(1)设抛物线解析式为y=a(x+2)(x﹣4),把(3,10)代入得5×(﹣1)a=10,解得a=﹣2,所以抛物线解析式为y=﹣2(x+2)(x﹣4),即y=﹣2x2+4x+16;(2)∵y=﹣2x2+4x+16=﹣2(x﹣1)2+18,∴顶点P的坐标为(1,18),∴△ABP的面积=12×(4+2)×18=54;(3)x≤﹣2或x≥4.【点睛】本题考查了待定系数法求二次函数解析式,一般式与顶点式的转化,二次函数的图像与性质,解答本题的关键是求出二次函数解析式.24.(1)(m,0),(m+2,0)(2)(m+1,-1);(3)m=2【解析】分析:(1)根据题意,令y=0,解方程即可求出含m的解;(2)利用配方法求解函数的顶点即可;(3)根据(2)的顶点式,由二次函数的平移规律:上加下减,左加右减,直接求解即可. 详解:(1)令y=0,得(x-m)2-2 (x-m)=0 ,即(x-m) (x-m-2)=0,解得x1=m,x2=m+2.∴该函数图像与x轴的交点坐标为(m,0),(m+2,0).(2)y=(x-m)2-2(x-m)=(x-m)2-2(x-m) +1-1=(x-m-1)2-1,∴该函数图像的顶点P 的坐标为(m +1,-1);(3)m =2.点睛:此题主要考查了二次函数的图像与性质,构造一元二次方程后解方程,利用配方法把二次函数的解析式化为顶点式是解题关键.25.y=2x 2+3x -4;顶点坐标为(-34,-418). 【解析】 试题分析:利用待定系数法把A (1,1),C (2,10)代入)二次函数y=2x 2+bx+c 中,即可算出b 、c 的值,进而得到函数解析式,然后通过配方化成顶点式,即可得到顶点坐标.试题解析:把(1,1)和(2,10)分别代入y=2x 2+bx+c 得:218210b c b c ++=⎧⎨++=⎩,解得.34b c =⎧⎨=-⎩, ∴二次函数的解析式为:y=2x 2+3x -4y=2x 2+3x -4=2(x 2+32x+916)-98-4=2(x 2+32x+916)-418,=2(x+34)2-418, ∴二次函数的顶点坐标为(-34,-418). 【点睛】本题主要考查了待定系数法求二次函数解析式,以及利用配方法求顶点的坐标,解题的关键是掌握配方法进行配方.26.(1)见解析(2)当x <1或x >3时,y >0.【解析】【分析】(1)利用描点、连线的方法即可画出函数图象;(2)找出函数图象位于x 轴上方时,自变量x 的范围即可.【详解】(1)画图如图所示:(2)根据图象知,当x <1或x >3时,y >0.【点睛】本题主要考查了描点法画函数的图象,数学结合是解决此题的关键.27.(1)当m 0≠且1m 3≠时,此方程有两个不相等的实数根;(2)抛物线的解析式为2y x 4x 3=++.【解析】【分析】(1)利用一元二次方程的定义和判别式的意义得到m 的范围;(2)先利用公式法解方程mx 2+(3m+1)x+3=0得x 1=-1m ,x 2=-3,则根据抛物线与x 轴的交点问题得到抛物线与轴两个交点的横坐标为-1m、3,则利用有理数的整除性易得m 为1,从而得到抛物线的解析式.【详解】 () 1m 0≠,22(3m 1)4m 3(3m 1)=+-⋅=-,0>时,1m 3≠, 所以当m 0≠且1m 3≠时,此方程有两个不相等的实数根; ()()22mx 3m 1x 30+++=.()()3m 13m 1x 2m-+±-=, 则11x m=-,2x 3=-, 所以抛物线与轴两个交点的横坐标为1m-、3,因为抛物线与轴两个交点的横坐标均为整数,且m 为正整数时,所以m 为1,所以抛物线的解析式为2y x 4x 3=++.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了判别式的意义.28.(1)(0,5);(2)(1,0),(5,0);(3)13≤a <12或a=﹣, 【解析】【分析】(1)当x=0时,y=5.即抛物线与y 轴的交点坐标为(0,5)(2)由题意可得抛物线解析式,当y=0时,可求抛物线与x 轴的交点坐标.(3)分抛物线的顶点在线段AB 上,抛物线与x 轴的其中一个交点在线段AB 上两种情况讨论,列不等式组可求a 的取值范围.【详解】(1)当x=0时,y=5.即抛物线与y 轴的交点坐标为(0,5)(2)当a=-1时,抛物线解析式为y=x 2-6x+5.当y=0时,0=x 2-6x+5解得:x 1=1,x 2=5∴抛物线与x 轴的交点坐标为(1,0),(5,0)(3)①∵抛物线y=x 2+(a-5)x+5与线段AB 恰有一个交点∴△=(a-5)2-20=0∴a=±∵2≤-52a -≤3 ∴-1≤a≤1∴②∵抛物线y=x 2+(a-5)x+5与线段AB 恰有一个交点∴()()4255093550a a ⎧+-+⎪⎨+-+≥⎪⎩<或()()4255093550a a ⎧+-+≥⎪⎨+-+⎪⎩<解得:13≤a<12或无解综上所述:13≤a<12或【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,利用分类讨论思想解决问题是本题的关键.。
初中数学二次函数的图象与性质能力达标测试题(附答案详解) 1.顶点为(-6,0),开口方向、形状与函数y=12x 2的图象相同的抛物线所对应的函数是( )A .y=12(x-6)2 B .y=12(x+6)2 C .y=-12(x-6)2 D .y=-12(x+6)2 2.抛物线y =-x 2+2x +3的顶点坐标为( ) A .(1,3)B .(-1,4)C .(-1,3)D .(1,4)3.二次函数2y ax bx c =++与一次函数y=ax+c 在同一直角坐标系内的大致图象是( ) A .B .C .D .4.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y=﹣x 2+4x+2的一部分,曲线BC 是双曲线y=kx的一部分,由点C 开始不断重复“A ﹣B ﹣C”的过程,形成一组波浪线,点P (2017,m )与Q (2025,n )均在该波浪线上,过点P 、Q 分别作x 轴的垂线,垂足为M 、N ,连结PQ ,则四边形PMNQ 的面积为( )A .72B .36C .16D .9 5.已知两点均在抛物线上,点是该抛物线的顶点,若,则的取值范围是( )A .B .C .D .6.将抛物线y =2x ²向右平移4个单位,再向上平移3个单位,得到的图象的表达式为( )A .y =2(x -4)²-3B .y =2(x +4)²+3C .y =2(x -4)²+3D .y =2(x +4)²-3 7.对于函数的图象,下列说法不正确的是( ) A .开口向下B .对称轴是C .最大值为0D .与轴不相交8.已知点(-2,1y ),(0,2y ),(1,3y )都在函数2y x =的图象上,则( )C .3y >2y >1yD .2y >1y >3y9.抛物线向右平移3个单位长度,得到新抛物线的表达式为( ) A .B .C .D .10.若将抛物线y=5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( ) A .y=5(x ﹣2)2+1B .y=5(x+2)2+1C .y=5(x ﹣2)2﹣1D .y=5(x+2)2﹣111.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.12.已知A (3,y 1)、B (4,y 2)都在抛物线y=x 2+1上,试比较y 1与y 2的大小:__________.13.已知二次函数y =(x ﹣3)2+4,当x ≤1时y 随x 的增大而________.14.将二次函数y=x 2﹣2x ﹣5化为y=a (x ﹣h )2+k 的形式为y=______________. 15.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则抛物线与x 轴的另一个交点坐标为__.16.若抛物线y =x 2-kx +k -1的顶点在轴上,则k = . 17.把抛物线21(1)22y x =-+向左平移1个单位,再向下平移2个单位,则所得抛物线的解析式为_____.18.把抛物线y=-x 2向左平移1个单位,再向下平移3个单位后所得的抛物线解析式为______.19.小萌利用描点法画抛物线2y ax bx c =++时列出的部分数据如下表:x0 1 2 4 y3-3-53请你根据上述信息写出:当x =3时,则y 的值为_________.20.如果抛物线y=(2+k )x 2﹣k 的开口向下,那么k 的取值范围是_____.21.已知抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),求这个二次函数的解析式.22.已知,在平面直角坐标系中,点A, B 的坐标分别是(a, 0),(b, 0)且420a b ++-=. (1)求a, b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位?写出此时点Q 的坐标.23.二次函数2(0)y ax bx c a =++≠212y x x c =++的大致图象如题19图所示,根据该二次函数图象回答问题: (1)写出二次函数对称轴方程; (2)当x 取什么值时,y > 0.24.已知直线y=2x ﹣5与x 轴和y 轴分别交于点A 和点B ,抛物线y=﹣x 2+bx+c 的顶点M 在直线AB 上,且抛物线与直线AB 的另一个交点为N . (1)如图,当点M 与点A 重合时,求抛物线的解析式; (2)在(1)的条件下,求点N 的坐标和线段MN 的长;(3)抛物线y=﹣x 2+bx+c 在直线AB 上平移,是否存在点M ,使得△OMN 与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标.26.佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x 轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.27.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.(1)求直线AC的解析式.(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O/处?28.如图,在x轴上有两点A(m,0),B(n,0)(n>m>0),分别过点A,B作x轴的垂线交抛物线y=x2于点C,D,直线OC交直线BD于点E,直线OD交直线AC于点F.点E,F的纵坐标分别为y E,y F.(1)特例探究(填空):当m=1,n=2时,y E=____,y F=____;当m=3,n=5时,y E=____,y F=____.(2)归纳证明:对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.(3)拓展应用:连结EF,AE,当S四边形OFEB=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.参考答案1.B【解析】可设抛物线解析式为y=a(x+6)2,再由条件可求得a的值,可求得答案.解:∵顶点为(−6,0),∴可设抛物线解析式为y=a(x+6)2,∵开口方向,形状与函数y=12x2的图象相同,∴a=12,∴抛物线解析式为y=12(x+6)2,故选B.2.D【解析】【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】根据配方法,把函数配方可得:y=-x 2+2x+3=-x2+2x-1+4=(x-1)2+4,故顶点的坐标是(1,-4).故选D.3.D【解析】A. 由抛物线知,a<0,c>0;由直线知a>0,c<0,a的值矛盾,故本选项错误;B. 由抛物线知,a>0,c<0;由直线知a>0,c>0,c的值矛盾,故本选项错误;C. 由抛物线知,a>0,c>0;由直线知a<0,c<0,a的值矛盾,故本选项错误;D. 由抛物线知,a<0,c>0;由直线知a<0,c>0,两结论一致,故本选项正确。
初中数学二次函数的图象与性质基础过关测试题(附答案详解)1.二次函数y=ax 2+bx+c (a≠0),自变量x 与函数y 的对应值如下表:则下列说法正确的是( ) x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y … 4.9 0.06 ﹣2 ﹣2 0.06 4.9 …A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最大值是6D .抛物线的对称轴是x=﹣2.已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1,其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④ 3.抛物线216242y x x =-+的顶点是( ) A .()6,6-- B .()6,6- C .()6,6 D .()6,6-4.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x+1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x+1)2+3D .y=﹣5(x ﹣1)2+35.已知二次函数y=(x+1)2+(x ﹣3)2 , 当函数y 取最小值时,x 的值是( ) A .x=﹣1 B .x=3 C .x=2 D .x=16.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断二次函数的解析式为( )x …1- 0 1 2 … y… 1- 74- 2- 74- … A .2y x x 424=-- B .2y x x 424=+- C .2117y x x 424=--+ D .2117y x x 424=-++7.二次函数y=mx 2+(6﹣2m )x+m ﹣3的图象如图所示,则m 的取值范围是( )A .m >3B .m <3C .0≤m≤3D .0<m <3 8.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <0 9.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣3 10.已知抛物线235y x bx c =++与y 轴交于点()0,3A ,与x 轴交于点()1,0B ,则此抛物线的解析式为( )A .2318355y x x =++ B .2353518y x x =-+ C .2318355y x x =-- D .2318355y x x =-+ 11.将抛物线y=(x+m )2向右平移2个单位后,对称轴是y 轴,那么m 的值是_____. 12.如果点P 1(-a,3)和P 2(1,b)关于y 轴对称,则经过原点和点A(a,b)的直线的函数关系式为______.13.已知二次函数y=ax 2+bx+c 的图象如图所示,则点P (a ,bc )在第_____象限.14.把抛物线y 1向右平移2个单位,再绕原点旋转180°得到抛物线y 2=2x 2+4x +4,则y 1的解析式为______.15.一条抛物线的顶点是A (2,1),且经过点B (1,0),则该抛物线的函数表达式是_____.16.抛物线2483y x x =-+-的开口方向向______,对称轴是__________,最高点的坐标是_________,函数值得最大值是________.17.已知点A (-3,y 1),B (-1,y 2),C (2,y 3)在抛物线y = x 2上,则y 1,y 2,y 3的大小关系是__________________.18.抛物线的顶点坐标是________.19.与抛物线223y x x =-+关于x 轴对称的抛物线解析式是__________.20.将抛物线y=﹣3x 2向右平移2个单位,再向上平移3个单位,则它的关系式为 .21.用配方法求二次函数y=x 2﹣10x+3的顶点坐标.22.已知一元二次方程x 2+px+q+2=0的一根为3.(1)求q 关于p 的关系式;(2)求证:抛物线y=x 2+px+q 与x 轴有两个交点;(3)设抛物线y=x 2+px+q 与x 轴相交于A (x 1,0)、B (x 2,0)两点,且x 1+x 2﹣5x 1x 2+1=0,求抛物线的解析式.23.如图,已知:二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,其中A 点坐标为(-3,0),与 y 轴交于点 C (0,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点 P ,求出当 PB+PC 最小时点 P 的坐标;(3)若抛物线上有一动点Q ,使△ABQ 的面积为6,求Q 点坐标.24.用适当的方法解下列方程:(1)2x 2-8x=0;(2)x 2-3x -4=0.求出抛物线的开口方向、对称轴、顶点坐标.(3)y=12x 2-x+3(公式法).25.已知抛物线过点(,)和点(1,6),(1)求这个函数解析式;(2)当x为何值时,函数y随x的增大而减小;26.抛物线y=ax2+bx+c与y=x2的形状相同,对称轴是直线x=2,且顶点在直线y=12x+3上.求此抛物线的解析式.27.对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{2,2}=2.类似地,若函数y1、y2都是x的函数,则y=min{y1,y2}表示函数y1和y2的“取小函数”.(1)设y1=x,y2=1x,则函数y=min{x,1x}的图象应该是中的实线部分.(2)请在图1中用粗实线描出函数y=min{(x﹣2)2,(x+2)2}的图象,并写出该图象的三条不同性质:①;②;③;(3)函数y=min{(x﹣4)2,(x+2)2}的图象关于对称.28.如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(0,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P (x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>0.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.参考答案1.D【解析】【分析】直接利用表格中数据得出函数的增减性以及对称轴进而得出答案. 【详解】解:由数据可得:当x=﹣3和﹣2时,对应y 的值相等,故函数的对称轴为:直线,且数据从x=﹣5到﹣3对应的y 值不断减小,故函数有最小值,没有最大值,则其开口向上,时,y 随x 的增大而增大. 故选项A ,B ,C 都错误,只有选项D 正确.故选:D .【点睛】此题主要考查了二次函数的性质,正确理解对应数据的意义是解题关键.2.A【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵抛物线的开口向上,∴a >0,∵与y 轴的交点为在y 轴的负半轴上,∴c <0,∵对称轴为x=-2b a>0, ∴a 、b 异号,即b <0,又∵c <0,∴abc >0,故本选项正确;②∵对称轴为x=-2b a >0,a >0, -2b a<1, ∴-b <2a ,∴2a+b >0;故本选项错误;③当x=1时,y 1=a+b+c ;当x=m 时,y 2=m (am+b )+c ,当m >1,y 2>y 1;当m <1,y 2<y 1,所以不能确定; 故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c >0;∴(a+b+c )(a-b+c )=0,即(a+c )2-b 2=0,∴(a+c )2=b 2故本选项错误;⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0,∴a+c=1,∴a=1+(-c )>1,即a >1;故本选项正确;综上所述,正确的是①⑤.故选A .3.C【解析】【分析】 化为顶点式表达式即可求出抛物线216242y x x =-+的顶点坐标. 【详解】 解:抛物线2211624(6)622y x x x =-+=-+, 所以抛物线216242y x x =-+的顶点是()6,6. 故选C .【点睛】考查二次函数一般式和顶点式之间的转化,掌握它们之间的转化方法是解题的关键. 4.A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.5.D【解析】【分析】将二次函数整理成一般式,根据开口方向,在对称轴处取得最小值,求出对称轴即可解题. 【详解】y=x2+2x+1+x2-6x+9=2x2-4x+10,∵二次函数开口向上,∴函数有最小值,当x=-b2a=1时,y有最小值=8故选D.【点睛】本题考查了二次函数图像的性质,属于简单题,求出二次函数的对称轴是解题关键. 6.A【解析】【分析】根据表中数据得到抛物线过点(0,-74)和(2,-74),则利用抛物线的对称性得抛物线的对称轴为直线x=1,而x=1时,y=-2,则抛物线的顶点坐标为(1,-2),于是设顶点式y=a(x-1)2-2,然后把(-1,-1)代入求出a的值即可.【详解】解:∵抛物线过点(0,-74)和(2,-74),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,-2)设抛物线解析式为y=a(x-1)2-2,把(-1,-1)代入得4a-2=-1,解得a=14,∴抛物线解析式为y=14(x-1)2-2=14x2-12x-74.故选A.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.7.D【解析】【分析】由抛物线的开口向上知m>0,由对称轴在y轴的左侧可与得到x=﹣622mm-<0,由二次函数与y轴交于负半轴可以推出m﹣3<0,又抛物线与x轴有两个交点(b2﹣4ac>0),可以得到(6﹣2m)2﹣4m(m﹣3)>0,然后利用前面的结论即可确定m的取值范围.【详解】解:∵抛物线的开口向上,∴m>0,①∵对称轴在y轴的左侧,∴x=﹣622mm-<0,②∵二次函数与y轴交于负半轴,∴m﹣3<0,③∵抛物线与x轴有两个交点(b2﹣4ac>0),∴(6﹣2m)2﹣4m(m﹣3)>0,④联立①②③④解得:0<m<3,∴m的取值范围是0<m<3.故选D.【点睛】本题考查了二次函数图象的图象和性质.由图象得出各种条件是解答本题的关键.8.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax 2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a 与b 的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax 2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax 2+bx ﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a<0. ∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.9.A【解析】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x 2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x 2-1+2,即y=2x 2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.10.D【解析】【分析】将A (0,3),B (1,0)两点代入抛物线y =35x 2+bx +c 中,列方程组求b 、c 即可. 【详解】将A (0,3),B (1,0)两点代入抛物线y =35x 2+bx +c 中, 得3{305c b c =++=,解得18{53b c =-=, 即y =35x 2185-x +3. 故选D .【点睛】本题考查了待定系数法求二次函数解析式的一般方法,需要熟练掌握.11.2【解析】【分析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m )2向右平移2个单位后,得到抛物线解析式为y=(x+m-2)2.其对称轴为:x=2-m=0,解得m=2.故答案是:2.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.12.y=3x【解析】【分析】设正比例函数的解析式为()0y kx k =≠,先利用关于y 轴对称的点的坐标特征求出a 、b ,确定A 点坐标为()1,3,然后把A ()1,3代入y kx =,计算出k 即可.【详解】解:设正比例函数的解析式为y kx =()0k ≠点()3a -,和()21P b ,关于y 轴对称, 13a b ∴==,,()1,3A ∴点坐标为,把()1,3代入y kx =,解得k=3,∴ 所求的直线解析式为3y x =.3y x =故答案为.【点睛】本题考查了待定系数法求正比例函数的解析式:先设正比例函数的解析式为y kx =()0k ≠,再把图象上的一个已知点的坐标代入,然后计算出k 的值即可确定正比例函数解析式.也考查了关于x 轴、y 轴对称的点的坐标特征.13.三.【解析】∵抛物线的开口向下,∴a <0,∵对称轴在y 轴左边,∴a ,b 同号即b <0,∵抛物线与y 轴的交点在正半轴,∴c >0,∴bc <0,∴点p (a ,bc )在第三象限.故填空答案:三.14.y 1=﹣2(x +1)2﹣2.【解析】∵y 2=2x 2+4x +4,=2(x 2+2x +1)+2,=2(x +1)2+2,∴抛物线y 2的顶点坐标为(﹣1,2),∵抛物线y 1向右平移2个单位,绕原点旋转180°得到抛物线y 2,∴抛物线y 1向右平移2个单位的顶点坐标为(1,﹣2),∵抛物线y 1向右平移2个单位,∴抛物线y 1的顶点坐标为(﹣1,﹣2),∴抛物线y 1的解析式为y 1=﹣2(x +1)2﹣2.故答案为:y 1=﹣2(x +1)2﹣2.15.2(2)1y x =--+(或243y x x =-+-)【解析】设抛物线解析式为y=a (x-2)2+1,把B (1,0)代入得a+1=0,解得a=-1,所以抛物线解析式为y=-(x-2)2+1,即y=-x 2+4x-3故答案为:()221y x =--+(或y=-x 2+4x-3).【点睛】本题考查了待定系数法求二次函数的解析式,关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.16.下 直线x=1 (1,1) 1【解析】y=-4x 2+8x-3=-4(x 2-2x+1)+1=-4(x-1)2+1,∴开口方向向下,对称轴是直线x=1,最高点的坐标是(1,1),函数值的最大值是1. 故答案为下;直线x=1;(1,1);1. 点睛:函数y=ax 2+bx+c=a(x+2b a )2+244ac b a -,其对称轴为直线x=-2b a ,最高点坐标为(-2b a ,244ac b a -),函数的最值为244ac b a-(a>0时是最小值,a<0时是最大值). 17.y 1>y 3>y 2【解析】∵当x=−3时,y 1=x 2=9;当x=−1时,y 2= x 2=1;当x=2时,y 3=x 2=4,∴y 1>y 3>y 2.故答案为y 1>y 3>y 2.18.(-3,1)【解析】【分析】由二次函数的顶点式方程y=a (x-k )2+h 的顶点坐标是(k ,h )即可得出答案.【详解】解:抛物线的顶点坐标是(-3,1).故答案为:(-3,1).【点睛】本题考查了二次函数的性质.二次函数的顶点式方程y=a (x-k )2+h 的顶点坐标是(k ,h ),对称轴方程是x=k .19.223y x x =-+-【解析】分析:把原抛物线解析式转化为顶点式形式,求出顶点坐标,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出描出的抛物线的顶点坐标,然后根据描出的抛物线与原抛物线形状相同,开口方向向下写出解析式即可.详解:∵2223(1)2y x x x =-+=-+,∴顶点(1,2),∴顶点关于x 轴,对称点为(1,2)-且开口向下,∴22(1)223y x x x =---=-+-.故答案为:223y x x =-+-.点睛:此题主要考查了二次函数的图像与性质,关键是求出关键点—顶点的对称坐标,然后根据对称性求出函数的解析式,是常考题.20.y=﹣3(x ﹣2)2+3.【解析】试题分析:∵将抛物线y =﹣3x 2向右平移2个单位,再向上平移3个单位,∴平移后的抛物线的解析式为:y=﹣3(x﹣2)2+3.故答案为:y=﹣3(x﹣2)2+3.点睛:本题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.21.(5,﹣22)【解析】【分析】利用配方法把二次函数y=x2-10x+3从一般式转化为顶点式,直接利用顶点式的特点求解.【详解】解:∵y=x2﹣10x+3=(x﹣5)2﹣22,∴二次函数的顶点坐标为(5,﹣22).【点睛】本题考查了二次函数的三种形式,解题的关键是熟练的掌握二次函数的三种形式. 22.(1)q=﹣3p﹣11;(2)详见解析;(3)y=x2﹣4x+1.【解析】【分析】(1)直接代入x=3即可;(2)由一元二次方程x2+px+q+2=0的一根为3可知该方程的△≥0,基于此证明x2+px+q=0的△>0即可;(3)由韦达定理得到x1+x2﹣5x1x2+1=﹣p﹣5q+1=0,再结合(1)中结论即可求解.【详解】(1)解:把x=3代入得32+3p+q+2=0,∴q=﹣3p﹣11;(2)证明:∵一元二次方程x2+px+q+2=0的一根为3,∴p2﹣4q-8≥0,∴p2﹣4q≥8>0,∴一元二次方程x2+px+q=0有两个不相等的实根,∴抛物线y=x2+px+q与x轴有两个交点;(3)解:∵x1,x2是方程x2+px+q=0的两个根,∴x1+x2=﹣p,x1x2=q,∵x1+x2﹣5x1x2+1=0,∴﹣p﹣5q+1=0,由(1)得q=﹣3p﹣11,解得,∴抛物线的解析式为y=x2﹣4x+1.【点睛】本题考查了二次函数与一元二次方程的关系.23.(1)y=x2+2x-3;(2)点 P 的坐标为(-1,-2);(3)点 Q 的坐标为(-1+7,3),(-1-7,3),(0,-3)或(-2,-3).【解析】【分析】(1)根据题目中点A 和点C 的坐标可以求得该抛物线的解析式;(2)根据二次函数图象具有对称性和两点之间线段最短可以求得点P 的坐标;(3)根据(1)中求得的函数解析式可以求得点B 的坐标,然后根据△ABQ 的面积为6,可以求得点Q 的纵坐标的绝对值,然后根据点Q 在抛物线上,即可求得点Q 的坐标.【详解】(1)∵二次函数y=x2+bx+c的图象过点A(-3,0)和点C(0,-3),∴930 {3b cc-+=-=,得2{3 bc=-=,即抛物线的解析式为y=x2+2x-3;(2)∵抛物线解析式为y=x2+2x-3=(x+1)2-4,如图:∴该抛物线的对称轴为直线x=-1,∵点P 为抛物线的对称轴上的一动点,点A 和点B 关于直线x=-1对称,∴点P 到点A 的距离等于点P 到点B 的距离,∵两点之间线段最短,∴连接点A 和点C 与直线x=-1的交点就是使得PB+PC 最小时的点P ,设过点A (-3,0)和点C (0,-3)的直线解析式为y=kx+m ,30{3k m m -+=-=,得1{3k m -=-=, 即直线AC 的函数解析式为y=-x-3,当x=-1时,y=-(-1)-3=-2,即点P 的坐标为(-1,-2);(3)∵抛物线解析式为y=x 2+2x-3,当y=0时,x=-3或x=1,∴点B 的坐标为(1,0),∵点A 的坐标为(-3,0),∴AB=1-(-3)=4,∵抛物线上有一动点Q ,使△ABQ 的面积为6,∴设点Q 的纵坐标的绝对值为:624⨯=3,当点Q 的纵坐标为3时,则3=x 2+2x-3,得x 1,x 2,当点Q 的纵坐标为-3时,则-3=x 2+2x-3,得x 3=0或x 4=-2,∴点Q 的坐标为(,3),(,3),(0,-3)或(-2,-3).【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、待定系数法求二次函数解析式、最短路线问题,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 24.(1) x 1=0, x 2=4;(2) x 1=4,x 2=-1;(3) 抛物线对称轴为x=1,顶点坐标为(1,52). 【解析】试题分析:(1)利用因式分解法求解即可;(2)利用因式分解法求解即可;(3)利用顶点坐标公式求解.试题解析:(1)原方程可化为x 2-4x=0,因式分解可得x (x-4)=0,∴x=0或x-4=0,∴x 1=0,x 2=4;(2)因式分解可得(x-4)(x+1)=0,∴x-4=0或x+1=0,∴x 1=4,x 2=-1;(3)在y=12x 2-x+3中, ∵a=12>0, ∴抛物线开口向上,∵-2b a =-1122-⨯=1,22143(1)45214242ac b a ⨯⨯---==⨯, ∴抛物线对称轴为x=1,顶点坐标为(1,52). 25.(1)239y x =-+;(2)x>0 【解析】试题分析:(1)利用待定系数法即可求出函数的关系式.(2)由开口及对称轴即可判定出当为何值时,函数y 随x 的增大而增大.试题解析:(1)把点(-2,-3)和点(1,6)代入y=ax 2+b 得436a b a b +-⎧⎨+⎩==, 解得39a b -⎧⎨⎩==, 所以这个函数的关系式为y=-3x 2+9;(2)∵这个函数的关系式为y=-3x 2+9;∴对称轴x=0,∵a=-3<0,∴抛物线开口向下,∴当x<0时,函数y随x的增大而增大.26.抛物线为y=x2-4x+8或y=-x2+4x.【解析】【分析】根据题意得出a的值和顶点坐标,从而可求出解析式. 【详解】∵抛物线的形状与y=x2相同,∴a=±1.又∵抛物线的对称轴是直线x=2,顶点在y=12x+3上,∴顶点为(2,4).∴所求抛物线为y=±(x-2)2+4,即y=x2-4x+8或y=-x2+4x.【点睛】本题考查的是待定系数法求二次函数的解析式,解答此题的关键是根据题意得出a的值和顶点坐标,进而得出抛物线的解析式.27.(1)B,(2)对称轴为y轴; x<﹣2时y随x的增大而减小;最小值为0;(3) x=1.【解析】【分析】(1)依据函数解析式,可得当x≤-1时,x≤1x;当-1<x<0时,x>1x;当0<x<1时,x≤1x;当x≥1时,x>1x;进而得到函数y=min{x,1x}的图象;(2)依据函数y=(x-2)2和y=(x+2)2的图象与性质,即可得到函数y=min{(x-2)2,(x+2)2}的图象及其性质;(3)令(x-4)2=(x+2)2,则x=1,进而得到函数y=min{(x-4)2,(x+2)2}的图象的对称轴.【详解】(1)当x≤﹣1时,x≤1x;当﹣1<x<0时,x>1x;当0<x<1时,x≤1x;当x≥1时,x>1x;∴函数y=min{x,1x}的图象应该是故选B;(2)函数y=min{(x﹣2)2,(x+2)2}的图象如图中粗实线所示:性质为:对称轴为y轴;x<﹣2时y随x的增大而减小;最小值为0.故答案为对称轴为y轴;x<﹣2时y随x的增大而减小;最小值为0;(3)令(x﹣4)2=(x+2)2,则x=1,故函数y=min{(x﹣4)2,(x+2)2}的图象的对称轴为:直线x=1.故答案为直线x=1.【点睛】本题主要考查的是反比例函数以及二次函数图象与性质的综合应用,本题通过列表、描点、连线画出函数的图象,然后找出其中的规律,通过画图发现函数图象的特点是解题的关键.28.(1)y=x2﹣4x+3;(2)①0<x3<4,②m的值为1131721.【解析】【分析】(1)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c 求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣1),当直线l2经过点D时求得m=﹣1;当直线l2经过点C时求得m=3,再由x2>x1>0,可得﹣1<y3<3,即可﹣1<﹣x3+3<3,所以0<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可. 【详解】(1)在y=﹣x+3中,令x=0,则y=3;令y=0,则x=3;得B(3,0),C(0,3),将点B(3,0),C(0,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y1=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为D(2,﹣1),当直线l2经过点D时,m=﹣1;当直线l2经过点C时,m=3∵x2>x1>0,∴﹣1<y3<3,即﹣1<﹣x3+3<3,得0<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x1>0,∴x3﹣x2=x2﹣x1,即x3=2x2﹣x1,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l1对称,又抛物线的对称轴l1为x=2,∴2﹣x1=x2﹣2,即x1=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=0,解得x2=,(负值已舍去),∴m=()2﹣4×+3=113172-如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l1对称,∴点N在抛物线的对称轴l1:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=1,即m=1.故m 11317-1.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(1)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.。