广东广州市普通高中2017-2018学年上学期高二数学12月月考试题 03 Word版含答案
- 格式:doc
- 大小:721.27 KB
- 文档页数:7
广东省广州市 2017-2018学年高二数学上学期 10月段考试题一、选择题:本大题共 12小题,每小题 5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 Mx ln x 1, N1, 2,3,则 M N ( ) A .1 B .1,2 C .2,3D .1,2,32. 下列函数中,既是奇函数又在定义域上单调递增的是( )A . y x 3B . y 2xC . yx D . ysin 2x1x 3. 在“某中学生歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和 方差分别为( ) A .5和1.6 B .85和1.6 C. 85和 0.4 D .5和 0.44.在正方体 ABCD A B C D 中, E 是线段 BC 上的动点, F 是线段CD 上的动点,且 E ,F 不1 1 1 11重合,则直线 AB 与直线 EF 的位置关系是( )1A .相交且垂直B .共面C .平行D .异面且垂直x y 10,5.若 x , y 满足约束条件则的最大值是( ) x 2y 0,zx yx 2y 2 0,1 A . 3 B . C .1D .2326.在如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为 的大正方形,若直角三角形中较小的锐角 ,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是 (A )(B )(D )7. 过点 A a,0a0,且倾斜角为30 的直线与圆 O : xyrrB AB3OAB222相切于点 ,且 ,则的面积是( ) 13 A .B .C . 1D .2229. 执行如图所示的程序框图,输出的S的值是( )11 1 A .B .0C. D . 223 210.小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视 图如图所示,若网格纸上小正方形的边长为 ,则小明绘制的建筑物的体积为(A ) (B )(C ) (D ) 11. 已知函数(,), ,,若的最小值为 ,且的图象关 于点 对称,则函数 的单调递增区间是( )A. ,B. ,C.,D.,2x aa ln x , x12.若函数为奇函数,,则f (x )g (x )2 1 e , xxax不等式 g (x ) 1的解集为( ) 1 A . (,0) (0, ) B .C. D .(e ,)(,0) (0,e )(, 1)ee 二、填空题(每题 5分,满分 20分,将答案填在答题纸上)13. 要考察某公司生产的 500克袋装牛奶的质量是否达标,现从 400袋牛奶中抽取 5袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
上学期高二数学12月月考试题02时间:120分钟 分数:150分第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{1,2,3,4,5},{1,2,3},{3,4},()U U A B C A B ===⋃=则( ) A. {5} B. {3} C.{1,2,4,5} D.{1,2,3,4}2.“m .n<0”是“方程122=+ny mx 表示焦点在x 轴上的双曲线”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.已知命题p :0x ∃∈R ,021x =.则p ⌝是( ) A.0x ∀∈R ,021x ≠ B.0x ∀∉R ,021x ≠ C.0x ∃∈R ,021x ≠D.0x ∃∉R ,021x ≠4. 已知直线1l :32+=x y ,直线21//l l ,则2l 的斜率为( ) A .21 B.21- C. 2 D. -2 5.正数m 是2和8的等比中项,则椭圆221y x m+=的离心率为( )A. 2B.2或226.若n S 是等差数列{}n a 的前n 项和,且20......8654=++++a a a a ,则11S 的值为 ( ) A.22B.44C.2203D.887.椭圆221259x y +=上一点M 到焦点1F 的距离为2,则M 到另一个焦点2F 的距离为( ) A .3 B .6 C .8 D .以上都不对8.已知直线m 、n 、l 不重合,平面α、β不重合,下列命题正确的是( ) A.若ββ⊂⊂n m ,,α//m ,α//n ,则βα// B.若ββ⊂⊂n m ,,n l m l ⊥⊥,,则β⊥l C.若βαβα⊂⊂⊥n m ,,,则n m ⊥; D. 若n m m //,α⊥,则α⊥n9.从221x y m n-=(其中,{1,2,3}m n ∈-)所表示的椭圆或双曲线双曲线方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( )A .47B .12C .23D .3410.若不论k 为何值,直线b x k y +-=)1(与圆422=+y x 总有公共点,则b 的取值范围是( )A.(2,2)-B.[]2,2-C.(D.⎡⎣11.已知双曲线C :116922=-y x 的左、右焦点分别为F 1、F 2,P 为双曲线C 的右支上一点,且|PF 2|=|F 1F 2|,则ΔPF 1F 2的面积等于( ) A .96 B .48 C .24 D .1212.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过2F 的直线与圆222b y x =+相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为 ( )A B C D 第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.将答案填写在答题纸上) 13.过点A(1,2)且与OA (O 为坐标原点)垂直的直线方程是 14.直线1+=x y 被圆221x y +=所截的弦长为_________ 15. 一个西瓜切三刀,最多得到 块西瓜皮16.已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 已知命题222:8200,:210(0)p x x q x x m m -->-+->>,若p 是q 的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知函数f(x)=2sinxcosx +cos2x. (Ⅰ)求()4f π的值;(Ⅱ)求函数f(x)的最大值及取得最大值时x 的值。
上学期高二数学12月月考试题04第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 椭圆1222=+y x 上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是 A. 1B. 3C. 12-D. 122-2.若命题“q p ∧”为假,且“p ⌝”为假,则( )A. p 或q 为假B. q 假C. q 真D. 不能判断q 的真假3. 某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除一人,然后分层抽样 4. 同时掷2枚硬币,那么互为对立事件的是( )A.至少有1枚正面和恰好有1枚正面B.恰好有1枚正面和恰有2枚正面C.最多有1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面 5. 用秦九韶算法求n 次多项式0111)(a x a x a x a x f n n n n ++++=-- ,当0x x =时,求)(0x f 需要算乘法、加法的次数分别为( )A. n n ,2B. n n ,2C. n n 2,D. n n ,6. 某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( )A. 3.5B. -3C. 3D. -0.57. 双曲线14122222=--+m y m x 的焦距是( ) A .8B .4C .22D .与m 有关8. 已知21,F F 是椭圆14322=+y x 的两个焦点,M 是椭圆上一点,1||||21=-MF MF ,则21F MF ∆是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形9. 假设2,1==b a ,那么在执行程序语句b a b a a +=+=,1后b 的值为 ( )A. 4B. 3C. 2D. 110.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF ∆为等边三角形的椭圆的离心率是( )A.41 B.21 C.23 D.22 11.(理)若椭圆122=+ny mx 与直线01=-+y x 交于B A ,两点,过原点与线段AB 的中点的直线的斜率为22,则m n 的值为( )A.22B. 2C.23 D.92 (文)“0<ab ”是方程c by ax =+22表示双曲线的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 12. 下列正确的个数是( )(1) 在频率分布直方图中,中位数左边和右边的直方图的面积相等.(2) 如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变. (3)一个样本的方差是])3()3()3[(201222212-++-+-=n x x x s ,则这组数据的总和等于60.(4) 数据n a a a a ,,,,321 的方差为2σ,则数据n a a a a 2,,2,2,2321 的方差为24σ.A. 4B. 3C. 2D. 1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13. 将二进制数101101(2)化为十进制数,结果为 ;再将该数化为八进制数,结果为 .14. 对具有线性相关关系的变量x 和y ,测得一组数据如下:若已求得它们的回归方程的斜率为6.5,则这条直线的回归方程为 . 15.将曲线122=+y x 上的所有点的纵坐标保持不变,横坐标变为原来的2倍,则变化后的曲线方程为 .16. (理)椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点B A 、是它的焦点,长轴长为a 2,焦距为c 2,静放在点A 的小球(小球的半径忽略不计)从点A 沿直线出发,经椭圆壁反射后第一次回到点A 时,小球经过的路程是 .(文)如下图所示,一只蚂蚁在一直角边长为1 cm 的等腰直角三角形ABC (B ∠为直角)的边上爬行,则蚂蚁距A 点不超过1 cm 的概率(小数点后保留三位)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相邻整数的概率; (2)求取出的两个球上标号之和能被3整除的概率.18. (本小题满分12分)为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟的跳绳次数测试,将取得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5. (1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率约为多少.19. (本小题满分12分)已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥,2||||21=⋅PF PF ,求该双曲线的方程.20. (本小题满分12分)如图,已知P 是椭圆)0(12222>>=+b a by a x 上且位于第一象限的一点,F 是椭圆的右焦点,O 是椭圆的中心,B 是椭圆的上顶点,H 是直线ca x 2-=(c 是椭圆的半焦距)与x 轴的交点,若OF PF ⊥,OP HB //,试求椭圆的离心率的平方的值.21. (本小题满分12分)已知0>a ,设命题:p 函数x a y =在R 上单调递增;命题:q 不等式012>+-ax ax 对R x ∈∀恒成立。
上学期高二数学12月月考试题08一.选择题(共40分,每小题5分) 1. sin120︒= ( )A.12 B. 12- C.2D. 2-2. 一个年级有12个班,每个班同学以1-50排学号,为了交流学习经验,要求每班学号为14的同学参加交流,这里运用的是( )A.分层抽样;B.抽签法;C.随机数法; D 系统抽样.3. 下列命题正确的是 ( )A.||||a b a b =⇒=B. ||||a b a b >⇒>C. //a b a b ⇒=D. →→→=⇒=00||a a4. 某人一次掷出两枚骰子,点数和为5的概率是 ( )A41 B 91 C 361 D 181 5. 1tan151tan15+︒=-︒( )6. 函数2sin(2)2y x π=+是 ( )A. 周期为π的奇函数B. 周期为π的偶函数C. 周期为2π的奇函数D. 周期为2π的偶函数7.在∆ABC A B A B 中,··sin sin cos cos ,< 则这个三角形的形状是( ) A .锐角三角形 B.钝角三角形 C .直角三角形 D.等腰三角形8.在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为 ( ) A .9 B .12 C .16 D .17 二.填空题(共35分,每小题5分) 9.化简:→PB +→OP -→OB =_________. 10. 已知(1,2),(2,)a b k ==-,若a b ⊥, 则实数k 的值为 。
11. 执行右边的程序框图,若p =0.8,则输出 的n = .12.将二进制数10101(2)化为十进制是 . 13.在△ABC 中,已知a 23=,b=2,△ABC 的面积S=3,则第三边c= .14.等比数列{}n a 的各项均为正数,且 564718a a a a +=,则3132310log log log a a a ++= .15, 等差数列有如下性质:若数列{}n a 是等差数列,则当na a ab nn +++=21时,数列{}n b 也是等差数列;类比上述性质,相应地,若数列{}n c 是正项等比数列,当n d = 时,数列{}n d 也是等比数列. 三.解答题16.(本小题满分12分)某射手在一次射击中射中10环、9环、8环、7环, 7环以下的概率分别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中, (1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数不是8环的概率。
广东省广州市普通高中2017-2018学年下学期高二3月月考试题07时量:120分钟 分值:150分一、选择题 (本大题共8小题,每小题5分,共40分.) 1.12+与12-两数的等比中项是( )A 1B 1-C 1± D21 2.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( ) A .1 B .56 C .16 D .1303、对于任意实数a 、b 、c 、d ,命题①bc ac c b a >≠>则若,0,;②22,bc ac b a >>则若③b a bc ac >>则若,22;④b a b a 11,<>则若;⑤bd ac d c b a >>>>则若,,0.其中真命题的个数是( )(A)1 (B)2 (C)3 (D)44.已知一等比数列的前三项依次为33,22,++x x x ,那么4120-是此数列的第( )项 A 4 B 5 C 6 D 75.设0≤α<2π,若sin α>3cos α,则α的取值范围是( )A .(π3,π2)B .(π3,π) C .(π3,4π3) D .(π3,3π2) 6.等差数列{}n a 的前n 项和为S n ,若31710a a +=,则19s = ( )A .55B .100C .95D .不能确定7.若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( )A .4005B .4008C .4007D .40068.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是 ( )二、填空题(本大题共7小题,每小题5分,共35分)9.数列{}n a 中,11,211+==+nn a a a ,则=4a 10.等比数列}{n a 中a n >0,且243879236a a a a a a ++=,则38a a += ( )11.函数)12lg()(2--=x x x f 的定义域是 .12.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________ 13.若)0,0(01>>=-+y x y x ,则11++x y 的取值范围是___________。
上学期高二数学 11 月月考试题 01一、选择题(每题只有一个选项正确,每题4 分,共 40 分)1 以下四个命题中,正确的选项是 ()A 第一象限的角必是锐角B 锐角必是第一象限的角C 终边同样的角必相等D 第二象限的角必大于第一象限的角2.若会合={ | y =2x },={ | y = x 1 } ,则 ∩ 等于()M yP yM PA { y | y >1}B { y | y ≥ 1}C { y | y >0}D { y | y ≥ 0}3.若 , , c 成等比数列 , 则函数 =2+ +c 的图象与 x 轴交点的个数是()a by ax bxA 0B 1C 2D 0或 24 不等式11的解集是()xA . x x 1B . x x 1C . x 0 x 1D . x x 1或 x 05.函数 y=cosx (sinx+cosx )的最小正周期为()AB2CD246 将函数 ysin 2x 的图像向左平移6个单位 , 再向上平移 1 个单位后所得图像对应的函数分析式是 ()A . ysin( 2x) 1B .3C . ysin( 2x) 1 D .6ysin( 2x) 13ysin( 2x) 167 . 已 知 空 间 直 角 坐 标 系 O xyz 中 有 一 点 A 1, 1,2 , 点 B 是 xOy 平 面 内 的 直 线xy 1上的动点,则 A, B 两点的最短距离是 ()INPUT x3417 A6C 3DIF x<0 THENB22y=x+1 8.在右侧的程序中输入 3,运转结果是 ( )ELSEA 4 B 9IF x>5 THENC5D y =5y=3*x ELSEy=2*x-1 END IFEND IFPRINT y END(第 8 题 )9.若直线x y 2 被圆 (x a)2 y 2 4 所截得的弦长为 2 2 , 则实数 a 的值为( )A – 1 或 3B 1 或 3C –2 或 6D 0或 410设 P 是 60的二面角l内一点, PA 平面 , PB平面 , A,B 为 垂足,PA4, PB 2, 则 AB 的长为()A2 3B2 5C2 7D4 2二、填空题(每题 4 分,共 20 分)11.已知 cos1 , 为第三象限角,则 sin() =________2312y(log 1 a) x 在 R 上为减函数,则 aks5*/u213 已知等差数列a n 的公差 d 0 ,且 a 1 , a 3 , a 9 成等比数列,则 a 1a 3 a 9 的值是a 2a 4a1014.已知向量 a =(2,x) , b =(3,4) ,且 a 、 b 的夹角为锐角, 则 x 的取值范围是 _________15. 若函数 f (x) 为奇函数,且当0时, ( ) 10 x , 则 的值是 xf x f ( 2)_________三、解答题(每题8 分,共 40 分;写出必需的演算步骤和推理过程)16.( 8 分)如图,从参加环保知识比赛的学生中抽出60 名,将其成绩(均为整数)整理后画出的频次散布直方图以下:察看图形,回答以下问题:( 1) 79.5 到 89.5 这一组的频数、频次分别是多少? ( 2)预计此次环保知识比赛的及格率(60 分及以上为及格) .17 ( 8 分) 已知函数 f ( x)Asin( x ) b ( A 0, 0,0 2 ) 在同一周期内有最高点 ( ,1) 和最低点 (7, 3) ,( 1)求此函数 f ( x) 的分析式;( 2)函数 y f ( x) 的图像1212怎样由函数 y2 sin 2x 的图像变换获取 ?18.(8 分) 如图,已知四棱锥 P ABCD 的底面 ABCD 是菱形 ,PA 平面 ABCD , PAAD AC , 点 F 为 PC 的中点 .(Ⅰ)求证 : PA // 平面 BFD ;(Ⅱ)求二面角 CBF D 的正切值 .PFADBC19. ( 8 分)已知数列 { a n } 的前 n 项和为 S n ,且知足 a n2S n S n 10(n1 2), a 12(Ⅰ)求证: { 1} 是等差数列; ks5*/uS n(Ⅱ)求 a n 的表达式20. (8 分)某化工厂生产的某种化工产品,当年产量在150 吨至 250 吨以内,其年生产的总成本 y (万元)与年产量 x (吨)之间的关系可近似地表示为x 2 30x 4000y10( 1)当年产量为多少吨时,每吨的均匀成本最低,并求每吨最低均匀成本;( 2)若每吨均匀出厂价为16 万元,求年生产多少吨时,可获取最大的年收益,并求最大年收益 .参照答案一、选择题(每题只有一个选项正确,每题 4 分,共 40 分)1 至 5: B C A C C ; 6 至 10: A B C D C。
下学期高二数学3月月考试题03一.选择题:(本大题共10小题,每小题5分,共50分 1.下列命题中是全称命题的是 A .圆有内接四边形 B.3> 2 C.3< 2D .若三角形的三边长分别为3、4、5,则这个三角形为直角三角形 2.给出下列四个命题:①若0232=+-x x ,则1=x 或2=x ②若32<≤-x ,则0)3)(2(≤-+x x ③若0==y x ,则022=+y x④若N y x ∈,,y x +是奇数,则y x ,中一个是奇数,一个是偶数,那么 A .①的逆命题为真 B .②的否命题为真 C .③的逆否命题为假 D .④的逆命题为假 3. 已知p :02<-x x ,那么p 的一个必要不充分条件是A.10<<xB.11<<-xC.3221<<x D.221<<x 4.⊙O 1与⊙O 2的半径分别为1和2,|O 1O 2|=4,动圆与⊙O 1内切而与⊙O 2外切,则动圆圆心轨迹是A .椭圆B .抛物线C .双曲线D .双曲线的一支 5.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是A .1617 B .87 C .1615 D .06.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为 A .3 B .6 C .9 D .127.现有A 、B 、C 、D 、E 、F 、G 、H 8位同学站成一排照像,要求同学A 、B 相邻,C 、D 相邻,而G 、H 不相邻,这样的排队照像方式有 A .36种 B .48种 C .42种 D .1920种8.为了培训十一届全运会的礼仪人员,从5位男礼仪教师和4位女礼仪教师中选出3人,派到3个小组任教,要求这3人中男女都有则不同的选派方案共有A .210种B .420种C .630种D .840种9.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为 A .7 B .47 C .27D .25710.直线l 过双曲线12222=-by a x 的右焦点,斜率2=k ,若l 与双曲线的两个交点分别在左、右两支上,则双曲线的离心率e 的范围是 A.2>e B.31<<e C.51<<e D.5>e第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,每小题5分,共25分.11.已知集合},102{Z x x x A ∈≤≤-=,A n m ∈,,方程122=+ny m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 个12.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米, 水面宽4米,水位下降1米后,水面宽 米.13.短轴长为5,离心率32=e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为________.14.已知命题p :“0],2,1[2≥-∈∀a x x ”,命题q :“R x ∈∃0,022020=-++a ax x ”,若命题“p 且q ”是真命题,则实数a 的取值集合是____ ____.15.给出下列四个命题:①如果椭圆221369x y +=的一条弦被点A (4,2)平分,那么这条弦所在的直线的斜率为21-;②过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线共有3条。
上学期高二数学期末模拟试题01一、选择题:本大题共12小题,每小题5分,共60分.每小题选项中只有一项符合题意要求。
1.下面四个条件中,使a b >成立的充分不必要条件为( ) A .1a b >+ B .1a b >- C .22a b > D .33a b >2.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 3.不等式x -1x +2>1的解集是( )A .{x|x<-2}B .{x|-2<x<1}C .{x|x<1}D .{x|x ∈R}4.设M =2a(a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M>N B .M ≥N C .M<N D .M ≤N5. 若双曲线()013222>=-a y ax 的离心率为2,则a 等于( ) A. 2 B. 3 C. 23D. 16.设a >0,b >0,若3是a 3与b3的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D.147. 已知△ABC 的顶点B ,C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,则椭圆的另一个焦点在BC 边上,则△ABC 的周长是( ) A. 32B. 6C. 34D. 128. 双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值是( )9.在△ABC 中,a =15,b =10,A =60°,则cosB =( ) A .-223 B.223 C .-63D.6310.若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( )A .a =﹣8 b =﹣10b =﹣9C .a =﹣1 b =9D .a =﹣1 b =211.已知1F 、2F 为双曲线右焦点,点P 在C 上,∠21PF F =060,则P12. 已知直线12--=k kx y 与曲线4212-=x y 有公共点,则k 的取值范围是 ( ) A.B. ⎪⎭⎫⎝⎛∞+⋃⎥⎦⎤ ⎝⎛-,2141,21 C. ⎪⎭⎫⎝⎛∞+⋃⎪⎭⎫ ⎝⎛--,2141,21D. ⎪⎭⎫⎝⎛∞+-,21 二、填空题:本大题共4个小题,每小题4分,共16分.把答案填在答题纸相应位置。
广东省广州市2017-2018学年高二数学上学期10月段考试题一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}ln 1,1,2,3M x x N =≤=,则M N ⋂=( ) A .{}1 B .{}1,2 C .{}2,3 D .{}1,2,32. 下列函数中,既是奇函数又在定义域上单调递增的是( )A .3y x =B .2x y =C .1y x x=- D .sin 2y x =3. 在“某中学生歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .5和6.1B .85和6.1 C. 85和4.0 D .5和4.04.在正方体1111ABCD A B C D -中,E 是线段BC 上的动点,F 是线段1CD 上的动点,且,E F 不重合,则直线1AB 与直线EF 的位置关系是( )A .相交且垂直B .共面C .平行D .异面且垂直5.若,x y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值是( )A .3-B .12 C .1 D .326.在如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为 的大正方形,若直角三角形中较小的锐角 ,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是(A )(B )(D )7. 过点()(),00A a a>,且倾斜角为30︒的直线与圆()222:0O x y r r +=>相切于点B ,且AB =则OAB ∆的面积是( )A .12B C . 1 D .28.已知单位向量,a b 满足a b a b +=-,则a 与b a -的夹角的大小是( ) A .6π B .3π C .4π D .34π9. 执行如图所示的程序框图,输出的S 的值是( )A . 12-B .0 C.12D10.小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为 ,则小明绘制的建筑物的体积为(A ) (B )(C ) (D )11. 已知函数(,),,,若的最小值为,且的图象关于点对称,则函数的单调递增区间是( )A. ,B. ,C.,D.,12.若函数122)(++=x x a x f 为奇函数,⎩⎨⎧≤>=0,0,ln )(x e x x a x g ax ,则不等式1)(>x g 的解集为( )A .)1,0()0,(e ⋃-∞B .),(+∞e C. ),0()0,(e ⋃-∞ D .)1,(e-∞二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 要考察某公司生产的500克袋装牛奶的质量是否达标,现从400袋牛奶中抽取5袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
2017-2018学年广东省广州市天河区普通高中高二(上)11月月考数学试卷(8)一.选择题(每小题4分,共计48分,将答案填入答题卡内)1.(4分)抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.102.(4分)经过点P(4,﹣2)的抛物线的标准方程为()A.y2=﹣8x B.x2=﹣8y C.y2=x或x2=﹣8y D.y2=x或y2=8x3.(4分)已知m,n∈R,则“mn<0”是“曲线mx2+ny2=1为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.(4分)双曲线两条渐近线互相垂直,那么它的离心率为()A.B.C.2 D.5.(4分)椭圆2x2+3y2=12的两焦点之间的距离为()A.2B. C.2 D.6.(4分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.47.(4分)椭圆+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则||=()A.B.C.D.48.(4分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.49.(4分)已知A(2,3),F为抛物线y2=6x焦点,P为抛物线上动点,则|PF|+|PA|的最小值为()A.5 B.4.5 C.3.5 D.不能确定10.(4分)设P为椭圆上的一点,F1、F2为该椭圆的两个焦点,若∠F1PF2=60°,则△F1PF2的面积等于()A.3 B.C.2 D.211.(4分)直线y=kx+1(k∈R)与焦点在x轴上的椭圆总有公共点,则m的取值区间是()A.(0,5) B.(0,1) C.(1,5) D.[1,5)12.(4分)已知点P是双曲线=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF 1F2的内心,若S=S S成立,则双曲线的离心率为()A.4 B.C.2 D.二、填空题(每小题4分,共计16分,将答案填入答题卡内)13.(4分)一动点到y轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为.14.(4分)已知P1,P2,…,P8抛物线y2=4x上的一点,它们的横坐标依次为x1,x2,…x8,F是抛物线的焦点,若x1+x2+…+x8=10,则绝对值|P1F|+|P2F|+…+|P8F|=.15.(4分)过椭圆+=1内一点M(2,1)引一条弦,使得弦被M点平分,则此弦所在的直线方程为.16.(4分)如果双曲线过点P(6,),渐近线方程为,则此双曲线的方程为.三、解答题(本题满分共56分,把正确答案写在答题卡的相应位置,并写清必要的解题过程及文字说明)17.(10分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.18.(10分)双曲线与椭圆有相同焦点,且经过点(,4).(1)求双曲线的方程;(2)求双曲线的离心率.19.(12分)求过点M(0,1)且和抛物线C:y2=4x仅有一个公共点的直线l 的方程.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(1)求椭圆C的方程;(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求直线l的方程.21.(12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0)(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线恒有两个不同的交点A和B,且•>2(其中O为原点),求k的取值范围.2017-2018学年广东省广州市天河区普通高中高二(上)11月月考数学试卷(8)参考答案与试题解析一.选择题(每小题4分,共计48分,将答案填入答题卡内)1.(4分)抛物线y2=10x的焦点到准线的距离是()A.B.5 C.D.10【分析】根据抛物线的标准方程,可求得p,再根据抛物线焦点到准线的距离是p,进而得到答案.【解答】解:2p=10,p=5,而焦点到准线的距离是p.故抛物线y2=10x的焦点到准线的距离是5故选B【点评】本题主要考查了抛物线的性质.属基础题.2.(4分)经过点P(4,﹣2)的抛物线的标准方程为()A.y2=﹣8x B.x2=﹣8y C.y2=x或x2=﹣8y D.y2=x或y2=8x【分析】由于点P(4,﹣2)在第四象限,故抛物线可能开口向右,也可能开口向上.故可设抛物线的标准方程为y2=2px,或x2=﹣2my,把点P(4,﹣2)代入方程可得p值,即得抛物线方程.【解答】解:由于点P(4,﹣2)在第四象限,故抛物线可能开口向右,也可能开口向上.故可设抛物线的标准方程为y2=2px,或x2=﹣2my,把点P(4,﹣2)代入方程可得p=,或m=4,故抛物线的标准方程y2=x 或x2=﹣8y,故选C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,设抛物线的标准方程为y2=2px,或x2=﹣2my,是解题的关键.3.(4分)已知m,n∈R,则“mn<0”是“曲线mx2+ny2=1为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据双曲线的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:当mn<0时,若m>0,则n<0,此时曲线mx2+ny2=1等价为﹣=1,表示焦点在x轴上的双曲线,若n>0,则m<0,此时曲线mx2+ny2=1等价为﹣=1,表示焦点在y轴上的双曲线,此时充分性成立,若曲线mx2+ny2=1为双曲线,则曲线mx2+ny2=1等价为+=1,则满足<0,即mn<0,即必要性成立,综上“mn<0”是“曲线mx2+ny2=1为双曲线”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线方程的性质是解决本题的关键.4.(4分)双曲线两条渐近线互相垂直,那么它的离心率为()A.B.C.2 D.【分析】设出双曲线的标准方程,则可表示出其渐近线的方程,根据两条直线垂直,推断出其斜率之积为﹣1进而求得a和b的关系,进而根据c=求得a和c的关系,则双曲线的离心率可得.【解答】解:设双曲线方程为=1,则双曲线的渐近线方程为y=±x∵两条渐近线互相垂直,∴×(﹣)=﹣1∴a2=b2,∴c==a∴e==故选A【点评】本题主要考查了双曲线的简单性质.考查了学生转化和化归思想和对双曲线基础知识的把握.5.(4分)椭圆2x2+3y2=12的两焦点之间的距离为()A.2B. C.2 D.【分析】把椭圆方程化为标准形式,求出a,b然后求出焦距即可.【解答】解:椭圆2x2+3y2=12化为,所以a2=6;b2=4,所以c2=2,所以2c=.椭圆2x2+3y2=12的两焦点之间的距离为:.故选C.【点评】本题是基础题,考查椭圆的基本性质,注意a,b,c,的换算关系即可.6.(4分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.4【分析】根据题意,求出长半轴和短半轴的长度,利用长轴长是短轴长的两倍,解方程求出m的值.【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.【点评】本题考查椭圆的简单性质,用待定系数法求参数m的值.7.(4分)椭圆+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则||=()A.B.C.D.4【分析】先根据椭圆的方程求得椭圆的左准线方程,进而根据椭圆的第二定义求得答案.【解答】解:椭圆的左准线方程为x=﹣=﹣.∵=e=,∴|PF2|=.故选:C.【点评】本题主要考查了椭圆的定义.也可以利用通经与第定义求解,属基础题.8.(4分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.4【分析】线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知|AB|的值.【解答】解:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.【点评】本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,积累解题方法.9.(4分)已知A(2,3),F为抛物线y2=6x焦点,P为抛物线上动点,则|PF|+|PA|的最小值为()A.5 B.4.5 C.3.5 D.不能确定【分析】由题意画出图形,过P作PM⊥准线l,垂足为M.则|PF|=|PM|,当且仅当A,P,M三点共线时,|PF|+|PA|取得最小值|AM|.【解答】解:如图所示,过P作PM⊥准线l,垂足为M.则|PF|=|PM|,当且仅当A,P,M三点共线时,|PF|+|PA|取得最小值为2+==3.5,故选:C.【点评】本题考查抛物线的简单性质,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.10.(4分)设P为椭圆上的一点,F1、F2为该椭圆的两个焦点,若∠F1PF2=60°,则△F1PF2的面积等于()A.3 B.C.2 D.2【分析】根据题意,由椭圆的定义及余弦定理即可求得|PF1|•|PF2|=4,进而由三角形面积公式计算可得答案.【解答】解:根据题意,椭圆的方程为,其中a==2,b=,则c==1,设|PF1|=m,|PF2|=n,由椭圆的定义可得m+n=4,变形可得m2+n2+2mn=16,①由∠F1PF2=60°,利用余弦定理可得(2c)2=m2+n2﹣2mncos60°,变形可得m2+n2﹣mn=4,②,①﹣②可得:3mn=12,即mn=4,则有|PF1|•|PF2|=4,则△F1PF2的面积S=mnsin60°=;故选:B.【点评】本题考查椭圆的几何性质,关键是求出|PF1|•|PF2|的值.11.(4分)直线y=kx+1(k∈R)与焦点在x轴上的椭圆总有公共点,则m的取值区间是()A.(0,5) B.(0,1) C.(1,5) D.[1,5)【分析】因为直线y=kx+1与椭圆总有公共点,所以直线上的定点总在椭圆内部,再结合椭圆中长轴与短轴长度的比较,即可求出m的范围.【解答】解:∵椭圆焦点在x轴上,∴0<m<5∵直线y=kx+1过定点(0,1),若直线y=kx+1与椭圆总有公共点,则(0,1)在椭圆内部或椭圆上.∴m≥1,∴1≤m<5故选D【点评】本题主要考查了点与椭圆,直线与椭圆的位置关系的判断,属于综合题.12.(4分)已知点P是双曲线=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF 1F2的内心,若S=S S成立,则双曲线的离心率为()A.4 B.C.2 D.【分析】设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式S=S S,化简可得|PF1|﹣|PF2|=|F1F2|,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.【解答】解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是:△IF1F2,△IPF1,△IPF2的高,∴S=×|PF 1|×|IF|=|PF1|,|×|IG|=|PF2|,=×|PFS=×|F 1F2|×|IE|=|F1F2|,其中r是△PF1F2的内切圆的半径.∵S=S S,∴|PF1|=|PF2|+|F1F2|,两边约去得:|PF1|=|PF2|+|F1F2|,∴|PF1|﹣|PF2|=|F1F2|,根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c,∴2a=c⇒离心率为e=2,故选:C.【点评】本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.二、填空题(每小题4分,共计16分,将答案填入答题卡内)13.(4分)一动点到y轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为y2=8x(x≥0)或y=0(x<0).【分析】根据题意,设动点为M,其坐标为(x,y),结合题意分析可得=|x|+2,将其变形整理即可得答案.【解答】解:根据题意,设动点为M,其坐标为(x,y),又由动点M到y轴的距离比到点(2,0)的距离小2,则有=|x|+2,整理,得y2=4x+|4x|,∴当x≥0时,动点M的轨迹C的方程为y2=8x.当x<0时,动点M的轨迹C的方程为y=0.动点的轨迹方程为y2=8x(x≥0)或y=0(x<0);故答案为:y2=8x(x≥0)或y=0(x<0).【点评】本题考查动点的轨迹方程,是中档题,关键是得到关于x、y的方程.14.(4分)已知P1,P2,…,P8抛物线y2=4x上的一点,它们的横坐标依次为x1,x2,…x8,F是抛物线的焦点,若x1+x2+…+x8=10,则绝对值|P1F|+|P2F|+…+|P8F|= 18.【分析】根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.【解答】解:∵抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,∴根据抛物线的定义,P i(i=1,2,3,…,8)到焦点的距离等于P i到准线的距离,即|P i F|=x i+1,可得|P1F|+|P2F|+…|P8F|=(x1+1)+(x2+1)+…+(x8+1)=(x1+x2+…+x8)+8,∵x1+x2+…+x8=10,∴|P1F|+|P2F|+…|P8F|=10+8=18.故答案为:18.【点评】本题着重考查了抛物线的定义、标准方程和简单几何性质等知识,正确运用抛物线的定义是关键,属于中档题.15.(4分)过椭圆+=1内一点M(2,1)引一条弦,使得弦被M点平分,则此弦所在的直线方程为x+2y﹣4=0.【分析】设A(x1,y1),B(x2,y2),由题意可得,两式相减,结合中点坐标公式可求直线的斜率,进而可求直线方程【解答】解:设直线与椭圆交于点A,B,设A(x1,y1),B(x2,y2)由题意可得,两式相减可得由中点坐标公式可得,,==﹣∴所求的直线的方程为y﹣1=﹣(x﹣2)即x+2y﹣4=0故答案为x+2y﹣4=0【点评】本题主要考查了直线与椭圆相交关系的应用,要掌握这种设而不求的方法在求解直线方程中的应用.16.(4分)如果双曲线过点P(6,),渐近线方程为,则此双曲线的方程为.【分析】可设双曲线的方程为y2﹣=m(m≠0),代入点P(6,),解方程即可得到所求双曲线的方程.【解答】解:双曲线过点P(6,),渐近线方程为,可设双曲线的方程为y2﹣=m(m≠0),可得m=3﹣=﹣1,即有双曲线的方程为﹣y2=1.故答案为:﹣y2=1.【点评】本题考查双曲线的方程的求法,注意运用共渐近线方程的双曲线方程的设法,考查方程思想和运算能力,属于基础题.三、解答题(本题满分共56分,把正确答案写在答题卡的相应位置,并写清必要的解题过程及文字说明)17.(10分)求适合下列条件的抛物线的标准方程:(1)过点(﹣3,2);(2)焦点在直线x﹣2y﹣4=0上.【分析】(1)由已知分析可得要求的抛物线开口向左或开口向上,然后分情况求出抛物线的方程;(2)求出直线与坐标轴交点坐标,可得抛物线焦点的坐标,则抛物线的方程可求.【解答】解:(1)抛物线过点(﹣3,2),则其开口向左或开口向上,若其开口向左,设其方程为y2=﹣2px,将(﹣3,2)代入方程可得:22=﹣2p×(﹣3),解得,p=,此时其标准方程为:y2=﹣x,若其开口向上,设其方程为x2=2py,将(﹣3,2)代入方程可得:(﹣3)2=2p×2,解得,p=,此时其标准方程为:x2=y,综合可得,抛物线的方程为:或;(2)直线l:x﹣2y﹣4=0与坐标轴交点为(4,0)和(0,﹣2).则所求抛物线的焦点为(4,0)或(0,﹣2),若其焦点为(4,0),则其方程为y2=16x,若其焦点为(0,﹣2),则其方程为x2=﹣8y,∴抛物线的方程为:y2=16x或x2=﹣8y.【点评】本题考查抛物线的标准方程求法,注意要先确定抛物线焦点的位置,如不能确定,需要分情况讨论,是中档题.18.(10分)双曲线与椭圆有相同焦点,且经过点(,4).(1)求双曲线的方程;(2)求双曲线的离心率.【分析】(1)求得椭圆的焦点,可设双曲线﹣=1(a>0,b>0),可得a,b的方程组,解方程即可得到所求方程;(2)求得a,c,运用离心率公式,即可得到所求值.【解答】解:(1)椭圆的焦点为(0,3),(0,﹣3),可设双曲线﹣=1(a>0,b>0),可得c=3,即a2+b2=9,点点(,4)在双曲线上,代入得﹣=1,解得a=2,b=,则双曲线的方程为﹣=1;(2)由(1)得a=2,c=3,∴双曲线的离心率.【点评】本题考查双曲线的方程的求法和离心率的求法,考查方程思想和运算能力,属于基础题.19.(12分)求过点M(0,1)且和抛物线C:y2=4x仅有一个公共点的直线l 的方程.【分析】由题意画出图形,对直线斜率分类讨论求解得答案.【解答】解:如图,点M(0,1)在抛物线C:y2=4x的外部,当直线斜率不存在时,直线方程为x=0;当直线斜率为0时,直线方程为y=1;当直线斜率存在且不为0时,设直线方程为y=kx+1.联立,得ky2﹣4y+4=0.由△=16﹣16k=0,得k=1.∴直线方程为y=x+1,即x﹣y+1=0.∴过点M(0,1)且和抛物线C:y2=4x仅有一个公共点的直线l的方程为x=0或y=1或x﹣y+1=0.【点评】本题考查抛物线的简单性质,考查数形结合的解题思想方法与分类讨论的数学思想方法,是中档题.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(1)求椭圆C的方程;(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求直线l的方程.【分析】(1)由题意可设椭圆的标准方程,并求出椭圆两个焦点的坐标,又点(1,)在椭圆C上,利用椭圆定义可求出长轴长,从而求出椭圆C的方程;(2)为避免讨论可设过F1的直线l的方程为x=ty﹣1,和椭圆方程联立后化为关于y的一元二次方程,利用根与系数的关系求出直线和椭圆两个交点纵坐标的和与积,△AF2B的面积就是=,由此求出t的值,则直线l的方程可求.【解答】解:(1)由题意可设椭圆C的方程为(a>b>0),由|F1F2|=2得c=1,∴F1(﹣1,0),F2(1,0),又点(1,)在椭圆C上,∴,a=2.则b2=a2﹣c2=4﹣1=3.∴椭圆C的方程为;(2)如图,设直线l的方程为x=ty﹣1,A(x1,y1),B(x2,y2),把x=ty﹣1代入,得:(3t2+4)y2﹣6ty﹣9=0,∴==,∴,解得:(舍)或t2=1,t=±1.故所求直线方程为:x±y+1=0.【点评】本题考查了利用定义求椭圆的标准方程,考查了直线与圆锥曲线的位置关系,采用了设而不求的数学方法,该题把直线l的方程设为x=ty﹣1,避免了讨论直线斜率存在和不存在的情况,此题属中档题.21.(12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0)(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线恒有两个不同的交点A和B,且•>2(其中O为原点),求k的取值范围.【分析】(1)由题意设出双曲线的方程,再由已知a和c的值求出b2的值,则双曲线C的方程可求;(2)直接联立直线方程和双曲线方程,化为关于x的方程后由二次项系数不等于0且判别式大于0求解k的取值范围,然后结合•>2得答案.【解答】解:(1)设双曲线方程为,由已知得,∴b2=c2﹣a2=1.∴双曲线C的方程为;(2)将y=kx+代入得:,∵直线l:y=kx+与双曲线C恒有两个不同的交点,∴,解得:或或.结合•>2,可得或.∴k的取值范围是或.【点评】本题考查了双曲线方程的求法,考查了直线与圆锥曲线的关系,训练了利用判别式法判断直线与圆锥曲线的交点个数,是中档题.。
上学期高二数学12月月考试题03一、 选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1、已知角α的终边上一点的坐标为(sin 2π3,cos 2π3),则角α的最小正值为( )A. 11π6B. 5π3C. 5π6D. 2π32、数列{n a }的通项公式是n a =122+n n (n ∈*N ),那么n a 与1+n a 的大小关系是( )A.n a >1+n aB.n a <1+n aC.n a = 1+n aD.不能确定 3、已知函数f (x )=sin(ωx +π3)(ω>0)的最小正周期为π,则该函数图象( )A. 关于直线x =π4对称B. 关于点(π3,0)对称C. 关于点(π4,0)对称D. 关于直线x =π3对称4、)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是( )A .1813 B .2213 C .223 D .615、函数b x A y ++=)sin(ϕω的图像如图所示,则它的解析式是( )6、若等差数列{}n a 满足234a S +=,3512a S +=,则47a S +的值是( )A .20B .24C .36D .72 7、数列2211,(12),(122),,(1222)n -+++++++的前n 项和为 ( ) A. 21n-B. n n n-⋅2 C. 12n n +- D. 122n n +--8、已知正项等比数列}{n a 满足:5672a a a +=,若存在两项n m a a 、,使得14a a a n m =,则n m +的值为 ( ) A.10 B.6 C.4 D.不存在9、数列{}()()=⊥+===+10011,,1,,,,1a b a n a b a n a a a n n n 则且中 ( )A .99100 B .—99100 C . 100 D .—10010、将正偶数集合{} ,6,4,2从小到大按第n 组有n 2个偶数进行分组:{}{}{} ,24,22,20,18,16,14,12,10,8,6,4,2则2120位于第( )组A.33B.32C.31D.3011、数列{}n a 满足21(*)2n n n a a a n N ++=∈,且121,2a a ==,则数列{}n a 的前2011项的乘积为 ( ) A .20092B .20102C .20112D .2012212、数列{}n a 满足2*113,1()2n n n a a a a n N +==-+∈,则122009111m a a a =+++的整数部分是( )A .0B .1C .2D .3 二、填空题(每题5分,共20分。
把答案填在答题纸的横线上)13、数列 121, 241, 381, 4161, 5321, …, 的前n 项之和等于 .14、一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东060,行驶h 4后,船到达C 处,看到这个灯塔在北偏东015,这时船与灯塔距离为__________km. 15、已知数列{}n a 满足=n a __________.16. 已知()1,11f =,()()**,,f m n N m n N ∈∈,且对任意*,m n N ∈都有: ①()(),1,2f m n f m n +=+ ②()()1,12,1f m f m +=给出以下三个结论:(1)()1,59f =; (2)()5,116f =; (3)()5,626f = 其中正确结论为 ____________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17、在ABC ∆中,,,b AC a BC ==且b a ,是方程02322=+-x x 的两根,.1)cos(2=+B A(1)求角C 的度数; (2)求AB 的长; (3)求ABC ∆的面积18、数列{})(*N n b n ∈是递增的等比数列,且,4,53131==+b b b b(1)求数列{}n b 的通项公式; (2)若3log 2+=n n b a ,求证:数列{}n a 是等差数列.19、已知数列{}n a 满足11=a ,且n n n a a 221+=-(n ≥2且*N n ∈).(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项之和n S ,求n S .20、某地区位于沙漠边缘地带,到2010年年底该地区的绿化率只有30%,计划从2011年开始加大沙漠化改造的力度,每年原来沙漠面积的16%将被植树改造为绿洲,但同时原有绿洲面积的4%还会被沙漠化.设该地区的面积为1, 2010年年底绿洲面积为a 1=310,经过一年绿洲面积为a 2,…,经过n 年绿洲面积为1+n a , (1)求经过n 年绿洲面积1+n a 的通项公式;(2)至少需要经过多少年努力,才能使该地区的绿洲面积超过60%?(取lg 2=0.3)21、(本小题满分12分) 已知数列{}n a 满足125a =,且对任意n *∈N ,都有11422n n n n a a a a +++=+.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n a 的通项公式; (2)令,1+⋅=n n n a a b n n b b b b T++++= 321,22、(本小题满分12分)在数列{}n a 中,已知()111,31*n n a a S n n N +=-=+-∈。
(1)求数列{}n a 的通项公式;(2)若()()1313n nnn ba λ-=+-∙∙+(λ为非零常数),问是否存在整数λ,使得对任意的*n N ∈都有1n nbb +>?若存在,求出λ的值;若不存在,请说明理由。
答案一、ABBCC BDBDA BB 13、(1)1122nn n +⎛⎫+- ⎪⎝⎭14、23015、①②③17、18、(1)12-=n n b ;(2),1)2(2)1(,21=+-++=-+=+n n a a n a n n n 所以数列{}n a 是以3为首项,1为公差的等差数列.19、解: (Ⅰ)122(2,nn n a a n -=+≥且n ∈N*),11122n n nn a a --∴=+,即11122nn nn a a ---=(2n ≥,且n ∈N*),所以,数列{}2n n a 是等差数列,公差1=d ,首项21,于是111(1)(1)1,2222nn a n d n n =+-=+-⋅=-1()22nn a n ∴=-⋅.(Ⅱ)1231351222()22222nn S n =⋅+⋅+⋅++-⋅①234113512222()22222n n S n +∴=⋅+⋅+⋅++-⋅ ②23111222()22n n n S n +-=++++--⋅23112222()212n n n +=++++--⋅-12(12)1()21(32)23,122nn nn n +-=--⋅-=-⋅-- (23)23(nnn S n n =-⋅+>-⋅20、解析:(1)设2010年年底沙漠面积为b 1,经过n 年治理后沙漠面积为b n +1,则a n +b n=1.依题意,a n +1由两部分组成,一部分是原有的绿洲面积减去沙漠化剩下的面积,a n -4%a n=96%a n ,另一部分是新植树绿洲化的面积15%b n ,于是a n +1=96%a n +16%b n =96%a n +16%(1-a n )=80%a n +16%=45a n +425.由于a n +1=45a n +425两边减去45得:a n +1-45=45⎝⎛⎭⎪⎫a n -45.∴ ⎩⎨⎧⎭⎬⎫a n +1-45是以a 1-45=-12为首项,45为公比的等比数列.所以a n +1=45-12⎝ ⎛⎭⎪⎫45n,依题意(2)45-12⎝ ⎛⎭⎪⎫45n >60%,即⎝ ⎛⎭⎪⎫45n <25,两边取对数得n >52log54=lg 2-lg 52lg 2-lg 5=1-2lg 21-3lg 2=1-0.61-0.9=4. 故至少需要5年才能达到目标. 21、(2))511(4221+-=⋅=⋅=+n a a b n n n22、。