2018版高考数学大一轮复习 第八章 立体几何与空间向量 8.5 垂直关系试题 理 北师大版
- 格式:doc
- 大小:1.01 MB
- 文档页数:23
(江苏专用)2018版高考数学专题复习 专题8 立体几何与空间向量第51练 垂直的判定与性质练习 理BC =8,DF =5.求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC .2.(2016·福州质检)如图,在正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,O 为底面正方形对角线B 1D 1与A 1C 1的交点.(1)求证:AC 1⊥平面B 1D 1C ;(2)过E 构造一条线段与平面B 1D 1C 垂直,并证明你的结论.3.(2016·张掖第二次诊断)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,且△ABC 为正三角形,AA 1=AB =6,D 为AC 的中点.(1)求证:直线AB 1∥平面BC 1D ;(2)求证:平面BC 1D ⊥平面ACC 1A 1;(3)求三棱锥C -BC 1D 的体积.4.(2016·山东省实验中学质检)如图所示,ABC-A1B1C1是底面边长为2,高为32的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).(1)证明:PQ∥A1B1;(2)是否存在λ,使得平面CPQ⊥截面APQB?如果存在,求出λ的值;如果不存在,请说明理由.答案精析1.证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA .又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA =3, EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .2.(1)证明 ∵AA 1⊥平面A 1B 1C 1D 1, B 1D 1⊂平面A 1B 1C 1D 1,∴AA 1⊥B 1D 1,∵A 1C 1⊥B 1D 1,且AA 1∩A 1C 1=A 1,AA 1⊂平面AA 1C 1,A 1C 1⊂平面AA 1C 1,∴B 1D 1⊥平面AA 1C 1,∵AC 1⊂平面AA 1C 1,∴B 1D 1⊥AC 1.同理可得B 1C ⊥平面ABC 1,B 1C ⊥AC 1,∵B 1D 1∩B 1C =B 1,B 1D 1⊂平面B 1D 1C ,B 1C ⊂平面B 1D 1C ,∴AC 1⊥平面B 1D 1C .(2)解连结EO,则线段EO与平面B1D1C垂直.证明如下:∵E是AA1的中点,O是A1C1的中点,∴EO∥AC1.∵AC1⊥平面B1D1C,∴EO⊥平面B1D1C.3.(1)证明连结B1C交BC1于点O,连结OD,如图,则点O为B1C的中点.∵D为AC的中点,∴AB1∥OD.∵OD⊂平面BC1D,AB1⊄平面BC1D,∴直线AB1∥平面BC1D.(2)证明∵AA1⊥底面ABC,BD⊂底面ABC,∴AA1⊥BD.∵△ABC是正三角形,D是AC的中点,∴BD⊥AC.∵AA1∩AC=A,AA1⊂平面ACC1A,AC⊂平面ACC1A1,∴BD⊥平面ACC1A1.∵BD⊂平面BC1D,∴平面BC1D⊥平面ACC1A1.(3)解由(2)知,在△ABC中,BD⊥AC,BD=BC sin 60°=33,∴S △BCD =12×3×33=932, ∴V 三棱锥C -BC 1D =V 三棱锥C 1-BCD =13×932×6=9 3. 4.(1)证明 由正三棱柱的性质可知,平面A 1B 1C 1∥平面ABC ,又因为平面APQB ∩平面A 1B 1C 1=PQ ,平面APQB ∩平面ABC =AB ,所以PQ ∥AB .又因为AB ∥A 1B 1,所以PQ ∥A 1B 1.(2)解 假设存在这样的λ满足题意,分别取AB 的中点D ,PQ 的中点E ,连结CE ,DE ,CD .由(1)及正三棱柱的性质可知△CPQ 为等腰三角形,APQB 为等腰梯形,所以CE ⊥PQ ,DE ⊥PQ ,所以∠CED 为二面角A -PQ -C 的平面角.连结C 1E 并延长交A 1B 1于点F ,连结DF .因为C 1P C 1A 1=C 1E C 1F=λ, C 1A 1=2,C 1F =3, 所以C 1E =3λ,EF =3(1-λ).在Rt△CC 1E 中可求得CE 2=34+3λ2, 在Rt△DFE 中可求得DE 2=34+3(1-λ)2. 若平面CPQ ⊥截面APQB ,则∠CED =90°,所以CE 2+DE 2=CD 2,代入数据整理得3λ2-3λ+34=0,解得λ=12,即存在满足题意的λ,λ=12.。
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
第•八章.立体几何与空间向虽第1讲空间几何体的结构、三视图和直观图最新考纲I•认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3•会用平行投影方法画岀简单空间图形的三视图与直观图,了解空间图形的不同表示形式.椅理自测,理绥记忆知识梳理1•简单多面体的结构特征(1) 棱柱的侧棱都丫巾II相等,上、下底面是全等一且平行的多边形:(2) 棱锥的底面足任总多边形,侧面足有•个公共顶点的三角形:(3) 棱台可由JliLT-底面的平面截棱锥得到,其上、卜•底面是相似多边形.2.旋转体的形成3•三视图(1) 几何体的三视图包括正视图、侧视图、俯视图,分别足从儿何体的也方、生生方、生上方观察几何体画出的轮廓线.(2) 三视图的画法①基木要求:长对正,髙丫齐,宽相等.②在画三视图时,重叠的线只训一条,挡住的线要画成虚线.4. 直观图空间儿何体的直观图常用红二割画法來画,氏规则是:(I)原图形屮x轴、y轴、z轴两两垂fl,ft观图中,疋轴、轴的夹角为45°(或135°), z'轴与f轴、y,轴所在平面逢鱼.(2) 原图形中卩行J:坐标轴的线段,直观图中仍分别V仃「坐标轴.平行厲轴和2轴的线段在直观图中保持原长度不变, 平行于曲II的线段长度在直观图中变为原来的一半.诊断自测1 •判断正课(在括号内打“ J ”或“ X ”)斫精彩PPT展示(1) 有两个面平行,其余各面都是平行四边形的几何体是棱柱・()(2) 自一个面是多边形,其余各面都是三角形的儿何体是棱锥・()(3) 用斜二测画法画水平放置的ZA时,若Z4的两边分别平行于x轴和y轴,且ZA = 90° ,则在直观图中,ZA = 45° .()(4) 正方体、球、圆锥各自的三视图屮,三视图均相同・()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的Z人时,把川y轴画成相交成45。
8.5空间中的垂直关系1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________.(2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的______________________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直.自查自纠:1.直角2.(1)直线l与平面α互相垂直l⊥α平面α的垂线直线l的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0°,90°]4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°]5.(1)直二面角(2)垂线(3)交线(2018·广东清远一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④解:①中l与m可能相交、平行或异面;②中结论正确;③中两平面α,β可能平行,也可能相交;④中结论正确.故选D.(2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.(2017·湖北武汉模拟)如图,在正方形ABCD 中,E,F分别是BC,CD的中点,连接AC,交EF于点G,沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解:根据折叠前AB⊥BE,AD⊥DF,得折叠后AH⊥HE,AH⊥HF,又HE∩HF=H,所以AH⊥平面EFH,B正确;因为过点A只有一条直线与平面EFH垂直,所以A不正确;因为AG⊥EF,EF⊥AH,AG∩AH=A,所以EF⊥平面HAG,又EF⊂平面AEF,所以平面HAG⊥平面AEF,过点H作直线垂直于平面AEF,所作直线一定在平面HAG内,所以C不正确;因为HG不垂直于AG,所以HG⊥平面AEF 不正确,所以D不正确.故选B.(2018·临沂检测)设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(用序号表示)解:若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.故填①③④⇒②(或②③④⇒①).(2017重庆八中适应性考试)在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC;④平面P AE⊥平面AB C.解:由DF∥BC可得BC∥平面PDF,故①正确;若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面P AE,故②正确;由PO⊥平面ABC,PO⊂平面P AE,可得平面P AE⊥平面ABC,故④正确,平面PDF不过PO,故③不正确.故填①②④.类型一线线垂直问题(2018·湖州模拟改编)如图所示,在四棱锥A-BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.求证:(1)AO⊥CD;(2)CE⊥AF.证明:(1)因为△ABE为等边三角形,O为BE 的中点,所以AO⊥BE.又因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO⊂平面ABE,所以AO⊥平面BCDE.又因为CD⊂平面BCDE,所以AO⊥C D.(2)连接BD,因为四边形BCDE为菱形,所以CE⊥B D.因为O,F分别为BE,DE的中点,所以OF∥BD,所以CE⊥OF.由(1)可知,AO⊥平面BCDE,因为CE⊂平面BCDE,所以AO⊥CE.因为AO∩OF=O,所以CE⊥平面AOF.又AF⊂平面AOF,所以CE⊥AF.点拨:本题主要考查线线、线面位置关系.证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直.(2017武汉市武钢第三子弟中学月考)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.解:(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥A B.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥A B.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC =OA 1=3.又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥O C .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积为V =S △ABC ×OA 1=3.类型二 线面垂直问题如图,在边长为4的菱形ABCD 中, ∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC 交EF 于点O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ; (2)求四棱锥P -BDEF 的体积.解:(1)证明:如图,因为点E ,F 分别是题图中菱形ABCD 的边CD ,CB 的中点,所以BD ∥EF .因为菱形ABCD 的对角线互相垂直,所以BD ⊥AC ,所以EF ⊥A C .所以EF ⊥AO ,EF ⊥PO .因为AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,所以EF ⊥平面POA ,所以BD ⊥平面PO A .(2)如图,设AO ∩BD =H ,连接BO .因为∠DAB =60°,所以△ABD 为等边三角形.所以BD =4,BH =2,HA =23,HO =PO =3. 在Rt △BHO 中,BO =7.在△PBO 中,BO 2+PO 2=10=PB 2,所以PO ⊥BO .因为PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,所以PO ⊥平面BFE D .因为梯形BFED 的面积为S =12(EF +BD )·HO =33,所以四棱锥P -BFED 的体积V =13S ·PO =3.点 拨:证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;题(2)的难点在于证明PO 即是所求四棱锥的高.(2017锦州市第二高级中学月考)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ; (2)直线AC 1⊥平面PQMN .证明:(1)如图,连接AD 1,由ABCD A 1B 1C 1D 1是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,DD 1的中点, 所以FP ∥AD 1,从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,则AC ⊥B D .由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥B D .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1. 因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1.同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .类型三 面面垂直问题如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.(1)求异面直线A 1M 和C 1D 1所成的角的正切值; (2)证明:平面ABM ⊥平面A 1B 1M .解:(1)因为C 1D 1∥B 1A 1,所以∠MA 1B 1为异面直线A 1M 和C 1D 1所成的角,因为A 1B 1⊥平面BCC 1B 1,所以∠A 1B 1M =90°.而A 1B 1=1,B 1M =B 1C 21+MC 21=2,故tan ∠MA 1B 1=B 1MA 1B 1=2.(2)证明:由A 1B 1⊥平面BCC 1B 1,BM ⊂平面BCC 1B 1,得A 1B 1⊥BM .① 由(1)知,B 1M =2,又BM =BC 2+CM 2=2,B 1B =2,B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .②又A 1B 1∩B 1M =B 1,由①②得BM ⊥平面A 1B 1M .而BM ⊂平面ABM ,所以平面ABM ⊥平面A 1B 1M .点 拨:求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.(2018·豫南九校质检)在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥CD ,△P AD 是等边三角形,已知AD =2,BD =23,AB =2CD =4.(1)设M 是PC 上一点,求证:平面MBD ⊥平面P AD ;(2)求四棱锥P -ABCD 的体积.解:(1)证明:在△ABD 中,AD =2,BD =23,AB =4,由勾股定理可得AD ⊥B D .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以BD ⊥平面P AD ,又BD ⊂平面MBD ,所以平面MBD ⊥平面P A D . (2)取AD 的中点O ,连接PO ,则PO 是四棱锥P -ABCD 的高,易得PO =3,底面四边形ABCD 的面积是12×(2+4)×2×234=33,所以四棱锥P -ABCD 的体积为13×33×3=3.类型四 垂直综合问题(2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图2所示的四棱锥A ′BCDE ,其中A′O =3.(1)证明:A ′O ⊥平面BCDE ; (2)求二面角A ′CD -B 的平面角的余弦值.解:(1)证明:在图1中,易得OC =3,AC =32,AD =22.如图示,连接OD ,OE ,在△OCD 中,由余弦定理可得OD =OC 2+CD 2-2OC ·CD cos45°=5.由翻折不变性可知A ′D =22,易得A ′O 2+OD 2=A ′D 2,所以A ′O ⊥O D .同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE . (2)过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H ,因为A ′O ⊥平面BCDE ,易知A ′H ⊥CD ,所以∠A ′HO 为二面角A ′CD -B 的平面角.结合图1可知,H 为AC 中点,又O 为BC 中点,故OH =12AB =322,从而A ′H =OH 2+OA ′2=302, 所以cos ∠A ′HO =OH A ′H =155.所以二面角A ′CD -B 的平面角的余弦值为155.点 拨:本题主要考查线面垂直及二面角的计算等.折叠要注意不变量;作二面角,往往要通过作垂线来实现.如图1,在矩形ABCD 中,AB =2,BC =4,E 为AD 的中点,O 为BE 的中点.将△ABE 沿BE 折起到A ′BE ,使得平面A ′BE ⊥平面BCDE (如图2).图1 图2 (1)求证:A ′O ⊥CD ;(2)求直线A ′C 与平面A ′DE 所成角的正弦值. 解:(1)证明:如图1,在矩形ABCD 中,因为AB =2,BC =4,E 为AD 中点,所以AB =AE =2,因为O 为BE 的中点,所以AO ⊥BE . 由题意可知,A ′O ⊥BE ,平面A ′BE ⊥平面BCDE .因为平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE . 因为CD ⊂平面BCDE ,所以A ′O ⊥C D . (2)取BC 中点为F ,连接OF ,由矩形ABCD 性质,可知OF ⊥BE ,由(1)可知,A ′O ⊥BE , A ′O ⊥OF ,以O 为原点,建立如图所示空间直角坐标系,在Rt △BAE 中,由AB =2,AE =2,则BE=22,OA =2,所以A ′(0,0,2),E (0,2,0),F (2,0,0),B (0,-2,0),C (22,2,0),D (2,22,0),则A ′C →=(22,2,-2),ED →=(2,2,0),A ′E →=(0,2,-2).设平面A ′DE 的一个法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·A ′E →=0,m ·ED →=0,⇒⎩⎨⎧2y -2z =0,2x +2y =0,令y =1,则x =-1,z =1,所以m =(-1,1,1).设直线A ′C 与平面A ′DE 所成角为θ,sin θ=|cos 〈A ′C →,m 〉|=|A ′C →·m ||A ′C →|·|m |=23,所以直线A ′C 与平面A ′DE 所成角的正弦值为23.1.判断(证明)线线垂直的方法 (1)根据定义.(2)如果直线a ∥b ,a ⊥c ,则b ⊥c . (3)如果直线a ⊥面α,c ⊂α,则a ⊥c .(4)向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法 (1)利用判定定理:两相交直线a ,b ⊂α,a ⊥c ,b ⊥c ⇒c ⊥α.(2)a ∥b ,a ⊥α⇒b ⊥α. (3)利用面面平行的性质:α∥β,a ⊥α⇒a ⊥β. (4)利用面面垂直的性质:α⊥β,α∩β=m ,a⊂α,a ⊥m ⇒a ⊥β;α⊥γ,β⊥γ,α∩β=m ⇒m ⊥γ.3.证明面面垂直的主要方法 (1)利用判定定理:a ⊥β,a ⊂α⇒α⊥β. (2)用定义证明.只需判定两平面所成二面角为直二面角. (3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:α∥β,α⊥γ⇒β⊥γ. 4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.垂直关系的相互转化6.线面角、二面角求法 求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)⇒证⇒求(算)三步曲.也可用射影法:设斜线段AB 在平面α内的射影为A ′B ′,AB 与α所成角为θ,则cos θ=||A ′B ′||AB ;设△ABC 在平面α内的射影三角形为△A ′B ′C ′,平面ABC 与α所成角为θ,则cos θ=S △A ′B ′C ′S △ABC.1.(2017·唐山三模)已知平面α⊥平面β,则“直线m ⊥平面α”是“直线m ∥平面β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若α⊥β,且m ⊥α,则m ∥β或m ⊂β;若α⊥β,且m ∥β,则m ∥α或m 与α相交或m ⊂α.故选D .2.(2018·上饶质检)已知P 是△ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 一定是△ABC 的 ( )A .内心B .外心C .垂心D .重心解:因为P 到AB ,AC ,BC 三边的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 到AB ,AC ,BC 三边的距离也相等,即点O 为△ABC 的内切圆的圆心,即△ABC 的内心.故选A .3.(2018·福建泉州)如图,在下列四个正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面,则在各个正方体中,直线BD 1与平面EFG 不垂直的是 ()A BC D解:如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,M ,N ,Q 均为所在棱的中点,图形EFMNQG 是一个平面图形,直线BD 1与平面EFMNQG 垂直,而选项A ,B ,C 中的平面EFG 与这个平面重合,D 中EF ∥BB 1,而BB 1与BD 1不垂直,即BD 1与平面EFG 不垂直.故选D .4.(2017沈阳市第一中学月考)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:当α⊥β时,由面面垂直的性质定理知b ⊥α,则b ⊥a .所以“α⊥β”是“a ⊥b ”的充分条件.而当a ⊂α,且a ∥m 时,因为b ⊥m ,所以b ⊥a ,而此时平面α与平面β不一定垂直.所以“α⊥β”不是“a ⊥b ”的必要条件.故选A .5.(2018·广东模拟)如图所示是一个几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为所在棱P A ,PD 的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P A D.其中正确结论的个数是()A.1 B.2 C.3 D.4解:画出该几何体的直观图,如图所示,①因为E,F分别是P A,PD的中点,所以EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是P A,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确;④无法判定平面BCE⊥平面P AD,故④不正确.故选B.6.(2017瓦房店市高级中学月考)如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④EF⊥平面GSD;⑤GD⊥平面SEF.正确的是()A.①和③B.②和⑤C.①和④D.②和④解:因为正方形中折叠前后都有SG⊥GE,SG ⊥GF,所以SG⊥平面EFG.①正确,②错误.因为SG⊥GF,SG⊥GD,所以GF并不垂直于SF,GD并不垂直于SD,即③⑤错误.因为EF⊥GD,EF⊥SG,GD∩SG=G,所以EF⊥面GS D.④正确.故选C.7.在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD′E为平行四边形,①正确;若四边形BFD′E是正方形,则BE⊥ED′,又A′D′⊥EB,A′D′∩ED′=D′,所以BE⊥面ADD′A′,与已知矛盾,②错;易知四边形BFD′E在底面ABCD内的投影是正方形ABCD,③正确;当E,F分别为棱AA′,CC′的中点时,EF∥AC,又AC⊥平面BB′D,所以EF⊥面BB′D,④正确.故填①③④.8.(教材改编)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中:①平面ADC⊥平面ABC;②平面ADC⊥平面ABD;③平面ADC⊥平面BD C.其中正确的是____________.(写出所有正确结论的编号)解:在四边形ABCD中,由已知可得BD⊥C D.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD,所以CD⊥A B.又AD⊥AB,AD∩CD =D ,所以AB ⊥平面ADC ,从而平面ABC ⊥平面AD C .故填①②.9.(2017钟祥市实验中学月考)如图,在四棱锥P -ABCD 中,底面是边长为a 的正方形,侧棱 PD =a ,P A =PC =2a .求证:(1)PD ⊥平面ABCD ; (2)平面P AC ⊥平面PB D . 证明:(1)因为PD =a ,DC =a ,PC =2a ,所以PC 2=PD 2+DC 2,所以PD ⊥D C . 同理可证PD ⊥AD ,又AD ∩DC =D , 所以PD ⊥平面ABC D .(2)由(1)知PD ⊥平面ABCD ,所以PD ⊥AC ,而四边形ABCD 是正方形, 所以AC ⊥BD ,又BD ∩PD =D ,所以AC ⊥平面PD B .同时AC ⊂平面P AC ,所以平面P AC ⊥平面PB D .10.(2018·河北石家庄联考)如图,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形, ∠BAD =60°.PB =PD =2,P A =6.(1)证明:PC ⊥BD ;(2)若E 为P A 上一点,记三棱锥P -BCE 的体积和四棱锥P ABCD 的体积分别为V 1和V 2,当V 1∶V 2=1∶8时,求EPAE的值.解:(1)证明:连接AC 交BD 于点O ,连接PO . 因为四边形ABCD 是菱形,所以BD ⊥AC ,且O 为BD 的中点,因为PB =PD ,所以PO ⊥BD ,又AC ∩PO =O ,所以BD ⊥平面P AC ,又 PC ⊂平面P AC ,所以BD ⊥P C .(2)因为AB =PB =2,AD =PD =2,BD =BD ,所以△ABD ≌△PBD ,所以AO =PO =3,因为P A =6,所以P A 2=OA 2+OP 2,所以PO ⊥A C . 又PO ⊥BD ,AC ∩BD =O ,所以PO ⊥平面ABC D .过点E 作EF ∥PO ,交AC 于点F , 所以EF ,PO 分别是三棱锥E -ABC 和四棱锥P -ABCD 的高. 又V 1=V P ABC -V E ABC =13S △ABC ·(PO -EF ),V 2=13S 菱形ABCD ·PO ,由V 1V 2=18,得S △ABC ·(PO -EF )S 菱形ABCD ·PO =18,即4(PO -EF )=PO ,所以PO EF =43.因为EF ∥PO ,所以△AEF ∽△APO , 所以PO EF =AP AE =AE +EP AE =43,所以EP AE =13.11.(2018·北京西城一模)如图1,在△ABC中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,F 为A 1C 的中点,如图2所示.(1)求证:EF ∥平面A 1BD ;(2)求证:平面A 1OB ⊥平面A 1OC ;(3)在线段OC 上是否存在点G ,使得OC ⊥平面EFG ?请说明理由.解:(1)证明:如图,取线段A 1B 的中点H ,连接HD ,HF .因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以DE ∥BC ,且DE =12B C .因为H ,F 分别为A 1B ,A 1C 的中点,所以HF ∥BC ,且HF =12BC ,所以HF ∥DE ,且HF =DE .所以四边形DEFH 为平行四边形,所以EF ∥H D .因为EF ⊄平面A 1BD ,HD ⊂平面A 1BD , 所以EF ∥平面A 1B D .(2)证明:因为在△ABC 中,AB =AC ,D ,E 分别为AB ,AC 的中点,所以AD =AE ,所以A 1D =A 1E ,又O 为DE 的中点,所以A 1O ⊥DE .因为平面A 1DE ⊥平面BCED ,且平面A 1DE ∩平面BCED =DE ,A 1O ⊂平面A 1DE ,所以A 1O ⊥平面BCED ,所以CO ⊥A 1O . 又易求得OB =OC =22,所以OB 2+OC 2=BC 2,所以CO ⊥BO , 又A 1O ∩BO =O ,A 1O ⊂平面A 1OB ,BO ⊂平面A 1OB ,所以CO ⊥平面A 1OB ,又CO ⊂平面A 1OC ,所以平面A 1OB ⊥平面A 1O C .(3)在线段OC 上不存在点G ,使得OC ⊥平面EFG .理由如下:假设在线段OC 上存在点G ,使得OC ⊥平面EFG ,连接GE ,GF ,则必有OC ⊥GF ,OC ⊥GE .在Rt △A 1OC 中,由F 为A 1C 的中点,得G 为OC 的中点.在△EOC 中,因为OC ⊥GE , 所以EO =EC ,这显然与EO =1,EC =5矛盾. 所以在线段OC 上不存在点G ,使得OC ⊥平面EFG .(2018·大连二模)如图所示,在几何体ABCDEF 中,底面ABCD 为矩形,EF ∥CD ,CD ⊥EA ,CD =2EF =2,ED =3,M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(1)求证:ED ⊥CD ; (2)求证:AD ∥MN ; (3)若AD ⊥ED ,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC 的值;若不能,请说明理由.解:(1)证明:因为底面ABCD 为矩形,所以CD ⊥A D .又因为CD ⊥EA ,AD ∩EA =A ,所以CD ⊥平面EAD ,所以CD ⊥E D .(2)证明:因为底面ABCD 为矩形,所以AD ∥B C .因为AD ⊄平面FBC ,BC ⊂平面FBC ,所以AD ∥平面FB C .又因为平面ADMN ∩平面FBC =MN ,所以AD ∥MN .(3)平面ADMN 与平面BCF 可以垂直.证明如下:连接DF .因为AD ⊥ED ,AD ⊥CD ,ED ∩CD =D , 所以AD ⊥平面CDEF , 所以AD ⊥DM .因为AD ∥MN ,所以DM ⊥MN . 因为平面ADMN ∩平面BCF =MN , 若使平面ADMN ⊥平面BCF ,则需DM ⊥平面BCF ,即DM ⊥F C .在梯形CDEF 中,因为EF ∥CD ,ED ⊥CD ,CD =2EF =2,ED =3,所以DF =DC =2.所以若使DM ⊥FC 能成立,则M 为FC 的中点.所以FM FC =12.。
由此还原为原图形如图 2 所示,是直角梯形A′B′C′D′. 2 在梯形A′B′C′D′中,A′D′=1,B′C′= 2 +1,A′B′=∴这块菜地的面积 S=2(A′D′+
B′C′·A′B′=+1+=2+ 2 . 2 答案 2+ 2
[思想方法] 1.画三视图的三个原则: (1画法规则:“长对正,宽相等,高平齐”. (2摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方. (3实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和
圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.
[易错防范] 1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同. 3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽
视实虚线的画法.。
位置关系真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何8.6 空间向量及其运算和空间位置关系真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何8.6 空间向量及其运算和空间位置关系真题演练集训理新人教A版的全部内容。
间位置关系真题演练集训 理 新人教A 版“两向量同向"意义不清致误分析[典例] 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[错因分析] 将a ,b 同向和a∥b 混淆,没有搞清a∥b 的意义:a ,b 方向相同或相反.[解析] 由题意知,a∥b ,所以错误!=错误!=错误!,即错误!把①代入②,得 x 2+x -2=0,(x +2)(x -1)=0,解得x =-2或x =1。
当x =-2时,y =-6;当x =1,y =3.当错误!时,b =(-2,-4,-6)=-2a ,两向量a ,b 反向,不符合题意,所以舍去.当⎩⎨⎧ x =1,y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎨⎧ x =1,y =3.[答案] 1,3温馨提醒1.两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.2.若两向量a ,b 满足a =λb (b ≠0)且λ>0,则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例且比值为正值.。
1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )1.(2017·烟台质检)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉=m ·n |m ||n |=11×2=22,即〈m ,n 〉=45°.∴两平面所成的二面角为45°或180°-45°=135°.2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150° 答案 A解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.故选A.3.(2016·郑州模拟)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55 B.53 C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=0+4-14+4+1×0+4+1=15=55,故选A. 4.(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.答案 π6解析 以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线为坐标轴(如图)建立空间直角坐标系,设D 为A 1B 1中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22),AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos ∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)×(1,0,22)12×9=32,又∵∠C 1AD ∈⎣⎡⎦⎤0,π2,∴∠C 1AD =π6. 5.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22a ×b cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 (2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.如图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线B ′D ′上,∠HDA =60°.求DH 与CC ′所成的角的大小.解 如图所示,以D 为原点,DA 为单位长度,建立空间直角坐标系Dxyz ,则DA →=(1,0,0),CC ′→=(0,0,1). 设DH →=(m ,m,1)(m >0), 由已知,〈DH →,DA →〉=60°,由DA →·DH →=|DA →|·|DH →|·cos 〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22, ∴DH →=(22,22,1),∵cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,又∵〈DH →,CC ′→〉∈[0°,180°], ∴〈DH →,CC ′→〉=45°, 即DH 与CC ′所成的角为45°. 题型二 求直线与平面所成的角例2 (2016·全国丙卷)如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧ n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成角的正弦值为8525.思维升华 利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD . ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧ n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ, 则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63. 题型三 求二面角例3 (2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角FBCA 的余弦值.(1)证明 设FC 的中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角FBCA 的余弦值为77. 思维升华 利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2016·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(1)求证:EG ∥平面ADF ; (2)求二面角O —EF —C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.(1)证明 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0), D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).依题意,AD →=(2,0,0),AF →=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0, 即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0,不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →·n 1=0,又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →=(-1,1,2). 设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0, 不妨取 x 2=1,可得n 2=(1,-1,1). 因此有cos 〈OA →,n 2〉=OA →·n 2|OA →|·|n 2|=-63,于是sin 〈OA →,n 2〉=33.所以二面角O —EF —C 的正弦值为33. (3)解 由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2), 所以AH →=25AF →=⎝⎛⎭⎫25,-25,45, 进而有H ⎝⎛⎭⎫-35,35,45,从而BH →=⎝⎛⎭⎫25,85,45.因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以直线BH 和平面CEF 所成角的正弦值为721. 题型四 求空间距离(供选用)例4 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.解 如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为△BCD 与△MCD 都是边长为2的正三角形, 所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0),BM →=(0,3,3). 设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ⊥BC →,n ⊥BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0,取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.思维升华 求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离; (2)等体积法;(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2016·四川成都外国语学校月考)如图所示,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63?若存在,求出PQQD的值;若不存在,请说明理由.解 (1)在△P AD 中,P A =PD ,O 为AD 中点, ∴PO ⊥AD .又∵侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , ∴PO ⊥平面ABCD .在△P AD 中,P A ⊥PD ,P A =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,AB ⊥AD , ∴OC ⊥AD .以O 为坐标原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,如图所示,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), ∴PB →=(1,-1,-1).易证OA ⊥平面POC ,∴OA →=(0,-1,0)为平面POC 的法向量, cos 〈PB →,OA →〉=PB →·OA →|PB →||OA →|=33,∴PB 与平面POC 所成角的余弦值为63. (2)∵PB →=(1,-1,-1),设平面PCD 的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP →=-x +z =0,u ·PD →=y -z =0.取z =1,得u =(1,1,1).则B 点到平面PCD 的距离d =|PB →·u ||u |=33.(3)假设存在,且设PQ →=λPD →(0≤λ≤1).∵PD →=(0,1,-1),∴OQ →-OP →=PQ →=(0,λ,-λ), ∴OQ →=(0,λ,1-λ), ∴Q (0,λ,1-λ).设平面CAQ 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AC →=x +y =0,m ·AQ →=(λ+1)y +(1-λ)z =0.取z =1+λ,得m =(1-λ,λ-1,λ+1). 平面CAD 的一个法向量为n =(0,0,1), ∵二面角Q -AC -D 的余弦值为63, ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=63. 整理化简,得3λ2-10λ+3=0. 解得λ=13或λ=3(舍去),∴存在,且PQ QD =12.6.利用空间向量求解空间角典例 (12分)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 规范解答(1)证明 依题意,以点A 为原点建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).[1分]由E 为棱PC 的中点,得E (1,1,1). BE →=(0,1,1),DC →=(2,0,0), 故BE →·DC →=0,所以BE ⊥DC .[3分] (2)解 BD →=(-1,2,0), PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的一个法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,[5分]可得n =(2,1,1).于是有cos 〈n ,BE →〉=n ·BE →|n ||BE →|=26×2=33,所以,直线BE 与平面PBD 所成角的正弦值为33.[7分](3)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1, 故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ). 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF →=(-12,12,32).[9分]设n 1=(x ,y ,z )为平面F AB 的一个法向量, 则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0, 即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1). 取平面ABP 的法向量n 2=(0,1,0), 则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-310×1=-31010. 易知,二面角F -AB -P 是锐角, 所以其余弦值为31010.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系; 第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标; 第四步:计算向量的夹角(或函数值); 第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30°答案 C解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ. 则sin β=|cos γ|=|cos 120°|=12.又∵β∈[0°,90°],∴β=30°,故选C.2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150° B .45° C .60° D .120°答案 C解析 如图所示,二面角的大小就是〈AC →,BD →〉.∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →. ∴CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12,∴〈AC →,BD →〉=60°,故二面角为60°.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=(1,0,-12).设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.(2016·长春模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15 B.255 C.55 D.25 答案 C解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (12,0,0),E (12,12,0),F (0,12,1).∴P A →=(0,0,-2),DE →=(0,12,0),DF →=(-12,12,1).设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55.故选C. 5.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1到平面BDE 的距离为( ) A .2 B. 3 C. 2 D .1 答案 D解析 以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE . 设n =(x ,y ,z )是平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量, 又DA →=(2,0,0),∴点A 到平面BDE 的距离是 d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1.故直线AC 1到平面BDE 的距离为1.6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52B .-14C.14 D .-52答案 B解析 建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ), ∴PD →·PB 1→=0+0+(2-z )(3-z )=(z -52)2-14,故当z =52时,PD →·PB 1→取得最小值为-14.7.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________. 答案 13解析 如图,建立空间直角坐标系Dxyz ,则D 1(0,0,1),C 1(0,2,1),A 1(1,0,1),B (1,2,0). ∴D 1C 1→=(0,2,0),A 1C 1→=(-1,2,0),A 1B →=(0,2,-1),设平面A 1BC 1的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·A 1C 1→=(x ,y ,z )·(-1,2,0)=-x +2y =0,n ·A 1B →=(x ,y ,z )·(0,2,-1)=2y -z =0,得⎩⎪⎨⎪⎧x =2y ,z =2y ,令y =1,得n =(2,1,2), 设直线D 1C 1与平面A 1BC 1所成角为θ,则 sin θ=|cos 〈D 1C 1→,n 〉|=|D 1C 1→·n ||D 1C 1→||n |=22×3=13,即直线D 1C 1与平面A 1BC 1所成角的正弦值为13.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________. 答案 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=|n ·DC →||n ||DC →|=23.9.(2016·石家庄模拟)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________. 答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E (1,1,13),F (0,1,23),AE →=(0,1,13),AF →=(-1,1,23),设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10. (1)求证:BD ⊥平面POA ; (2)求二面角B -AP -O 的正切值.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点, ∴BD ∥EF .∵菱形ABCD 的对角线互相垂直, ∴BD ⊥AC ,∴EF ⊥AC , ∴EF ⊥AO ,EF ⊥PO . ∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O , ∴EF ⊥平面POA ,∴BD ⊥平面POA . (2)解 设AO ∩BD =H ,连接BO . ∵∠DAB =60°,∴△ABD 为等边三角形, ∴BD =4,BH =2,HA =23,HO =PO =3, 在Rt △BHO 中,BO =HB 2+HO 2=7. 在△PBO 中,BO 2+PO 2=10=PB 2, ∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0), ∴AP →=(0,33,3),AB →=(2,23,0). 设平面P AB 的法向量为n =(x ,y ,z ), 由n ⊥AP →,n ⊥AB →,得⎩⎨⎧33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面P AB 的一个法向量为n =(-3,1,-3). 由(1)知平面P AO 的一个法向量为BH →=(-2,0,0), 设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913,∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303,∴二面角B -AP -O 的正切值为303. 11.(2016·四川)如图,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .E为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角PCDA 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED . 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD ,从而CD ⊥PD . 所以∠PDA 是二面角PCDA 的平面角, 所以∠PDA =45°,设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知P A ⊥平面ABCD ,从而P A ⊥CE ,且P A ∩AH =A ,于是CE ⊥平面P AH . 又CE ⊂平面PCE , 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE , 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322. 所以sin ∠APH =AH PH =13.方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0). 所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α, 则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+(-2)2+12=13.所以直线P A 与平面PCE 所成角的正弦值为13.*12.(2017·潍坊月考)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)判断点M 的位置,使得平面BDM 与平面ABF 所成的锐二面角为π3.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2, 又AD =2,AB =2,∴AD 2+BD 2=AB 2, ∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD , ∴BD ⊥平面ADEF , 又BD ⊂平面BDM , ∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N , ∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD , ∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0), 设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1), ∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ), ∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0,又DM →=(0,λ,2(1-λ)),DB →=(1,1,0),∴⎩⎨⎧λy +2(1-λ)z =0,x +y =0,令x =1,得y =-1,z =λ2(1-λ),故n 1=(1,-1,λ2(1-λ))是平面BDM 的一个法向量.∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos 〈n 1,DN →〉|=11+1+λ22(1-λ)2=12,得λ=23, ∴M (0,23,23),∴点M 在线段CE 的三等分点且靠近点C 处.。
第八章 立体几何与空间向量 8.5 垂直关系试题 理 北师大版1.直线与平面垂直a ⊥b ,bα(b 为α内的任意一条直线)a ⊥m ,a ⊥n ,m 、nα,m ∩n =Oa ⊥α,bα2.平面与平面垂直 (1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理⎭⎪⎬⎪⎫l βl ⊥α⇒α⊥β【知识拓展】 重要结论:(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β⇒a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )1.(教材改编)下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ 答案 A解析 根据面面垂直的性质,知A 不正确,直线l 可能平行平面β,也可能在平面β内. 2.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b ⊥α,又aα,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.(2016·宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是( )A.①② B.②③C.②④ D.①④答案 D解析①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD ,而AD平面AMD,故BC⊥AD.④设A在平面BCD内的投影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.4.(2016·济南模拟)如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是( )A.MC⊥ANB.GB∥平面AMNC.平面CMN⊥平面AMND.平面DCM∥平面ABN答案 C解析显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB平面AMN,MH 平面AMN,所以GB∥平面AMN,所以B正确;因为AB∥CD,DM∥BN,且AB∩BN=B,CD∩DM =D,所以平面DCM∥平面ABN,所以D正确.5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的投影为点O.(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG平面PGC,∴AB ⊥CG ,即CG 为△ABC 边AB 的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 (2016·全国甲卷改编)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.证明:D ′H ⊥平面ABCD . 证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF 平面ABCD ,所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2015·江苏)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE平面AA1C1C,AC平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1平面BCC1B1,BC 平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1平面B1AC,所以BC1⊥AB1.题型二 平面与平面垂直的判定与性质例2 如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面PAD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取PA 的中点H ,连接EH ,DH .又E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH平面PAD ,CE 平面PAD .所以CE ∥平面PAD . 方法二 连接CF .因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF 平面PAD ,AD 平面PAD ,所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又EF 平面PAD ,PA 平面PAD ,所以EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE平面CEF ,所以CE ∥平面PAD .(2)因为E 、F 分别为PB 、AB 的中点,所以EF ∥PA . 又因为AB ⊥PA ,所以EF ⊥AB ,同理可证AB ⊥FG . 又因为EF ∩FG =F ,EF 平面EFG ,FG平面EFG .所以AB ⊥平面EFG .又因为M ,N 分别为PD ,PC 的中点, 所以MN ∥CD ,又AB ∥CD ,所以MN ∥AB , 所以MN ⊥平面EFG . 又因为MN 平面EMN ,所以平面EFG ⊥平面EMN .引申探究1.在本例条件下,证明:平面EMN ⊥平面PAC . 证明 因为AB ⊥PA ,AB ⊥AC , 且PA ∩AC =A ,所以AB ⊥平面PAC . 又MN ∥CD ,CD ∥AB ,所以MN ∥AB , 所以MN ⊥平面PAC . 又MN平面EMN ,所以平面EMN ⊥平面PAC .2.在本例条件下,证明:平面EFG ∥平面PAC .证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF平面PAC,PA平面PAC,所以EF∥平面PAC.同理,FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,aα⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F 在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE平面A1C1F,A1C1平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1,∵B 1D 平面ABB 1A 1,∴A 1C 1⊥B 1D ,又∵A 1F ⊥B 1D ,且A 1F ∩A 1C 1=A 1, ∴B 1D ⊥平面A 1C 1F , 又∵B 1D平面B 1DE ,∴平面B 1DE ⊥平面A 1C 1F .题型三 垂直关系中的探索性问题例3 如图,在三棱台ABC -DEF 中,CF ⊥平面DEF ,AB ⊥BC .(1)设平面ACE ∩平面DEF =a ,求证:DF ∥a ;(2)若EF =CF =2BC ,试问在线段BE 上是否存在点G ,使得平面DFG ⊥平面CDE ?若存在,请确定G 点的位置;若不存在,请说明理由. (1)证明 在三棱台ABC -DEF 中,AC ∥DF ,AC 平面ACE ,DF 平面ACE ,∴DF ∥平面ACE .又∵DF平面DEF ,平面ACE ∩平面DEF =a ,∴DF ∥a .(2)解 线段BE 上存在点G ,且BG =13BE ,使得平面DFG ⊥平面CDE .证明如下:取CE 的中点O ,连接FO 并延长交BE 于点G , 连接GD ,GF ,∵CF =EF , ∴GF ⊥CE .在三棱台ABC -DEF 中,AB ⊥BC ⇒DE ⊥EF . 由CF ⊥平面DEF ⇒CF ⊥DE .又CF ∩EF =F ,∴DE ⊥平面CBEF ,∴DE ⊥GF .⎭⎪⎬⎪⎫GF ⊥CEGF ⊥DE CE ∩DE =E ⇒GF ⊥平面CDE .又GF平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,延长CB ,FG 交于点H , ∵O 为CE 的中点,EF =CF =2BC , 由平面几何知识易证△HOC ≌△FOE , ∴HB =BC =12EF .由△HGB ∽△FGE 可知BG GE =12,即BG =13BE .思维升华 同“平行关系中的探索性问题”的规律方法一样,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.(2016·北京东城区模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,M 为棱AC 的中点.AB =BC ,AC =2,AA 1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.(1)证明连接AB1与A1B,两线交于点O,连接OM,在△B1AC中,∵M,O分别为AC,AB1中点,∴OM∥B1C,又∵OM平面A1BM,B1C平面A1BM,∴B1C∥平面A1BM.(2)证明∵侧棱AA1⊥底面ABC,BM平面ABC,∴AA1⊥BM,又∵M为棱AC中点,AB=BC,∴BM⊥AC.∵AA1∩AC=A,∴BM⊥平面ACC1A1,∴BM⊥AC1.∵AC=2,∴AM=1.又∵AA1=2,∴在Rt△ACC1和Rt△A1AM中,tan∠AC1C=tan∠A1MA= 2.∴∠AC1C=∠A1MA,即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°,∴A1M⊥AC1.∵BM∩A1M=M,∴AC1⊥平面A1BM.(3)解 当点N 为BB 1中点,即BN BB 1=12时, 平面AC 1N ⊥平面AA 1C 1C . 证明如下:设AC 1中点为D ,连接DM ,DN .∵D ,M 分别为AC 1,AC 中点, ∴DM ∥CC 1,且DM =12CC 1.又∵N 为BB 1中点,∴DM ∥BN ,且DM =BN , ∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM ⊥平面ACC 1A 1,∴DN ⊥平面ACC 1A 1. 又∵DN 平面AC 1N ,∴平面AC 1N ⊥平面AA 1C 1C .17.立体几何证明问题中的转化思想典例 (12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN ∥平面A 1MK ; (2)平面A 1B 1C ⊥平面A 1MK .思想方法指导 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1)如图所示,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]∵A1K平面A1MK,AN平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC 1平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.[10分]∴MK⊥B1C.∵A1B1平面A1B1C,B1C平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.若平面α⊥平面β,平面α∩平面β=直线l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直答案 D解析对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误;易知D正确.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A.若α⊥β,mα,nβ,则m⊥nB.若α∥β,mα,nβ,,则m∥nC.若m⊥n,mα,nβ,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,mα,nβ,故C错误;故选D.3.(2016·包头模拟)如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1是异面直线,且AE⊥B1C1D.A1C1∥平面AB1E答案 C解析A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.4.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是( )A.①②④ B.①②③C.②③④ D.①③④答案 B解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.故选B.5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M 为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③C.① D.②③答案 B解析 对于①,∵PA ⊥平面ABC ,∴PA ⊥BC , ∵AB 为⊙O 的直径,∴BC ⊥AC ,∴BC ⊥平面PAC , 又PC平面PAC ,∴BC ⊥PC ;对于②,∵点M 为线段PB 的中点,∴OM ∥PA , ∵PA平面PAC ,OM平面PAC ,∴OM ∥平面PAC ;对于③,由①知BC ⊥平面PAC ,∴线段BC 的长即是点B 到平面PAC 的距离, 故①②③都正确.6.如图,∠BAC =90°,PC ⊥平面ABC ,则在△ABC 和△PAC 的边所在的直线中,与PC 垂直的直线有________;与AP 垂直的直线有________.答案 AB 、BC 、AC AB解析 ∵PC ⊥平面ABC ,∴PC 垂直于直线AB ,BC ,AC ;∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C , ∴AB ⊥平面PAC ,∴与AP 垂直的直线是AB .7.如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x , 因为AB 1⊥平面C 1DF ,DF 平面C 1DF ,所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h ,则DE =12h .又2×2=h 22+22,所以h =233,DE =33.在Rt△DB 1E 中,B 1E =222-332=66. 由面积相等得66× x 2+222=22x , 得x =12.8.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ; ④AE ⊥平面PBC .其中正确结论的序号是________. 答案 ①②③解析 由题意知PA ⊥平面ABC ,∴PA ⊥BC . 又AC ⊥BC ,且PA ∩AC =A , ∴BC ⊥平面PAC ,∴BC ⊥AF . ∵AF ⊥PC ,且BC ∩PC =C , ∴AF ⊥平面PBC ,∴AF ⊥PB ,又AE ⊥PB ,AE ∩AF =A , ∴PB ⊥平面AEF ,∴PB ⊥EF . 故①②③正确.9.(2016·保定模拟)如图,在直二面角α-MN -β中,等腰直角三角形ABC 的斜边BCα,一直角边ACβ,BC与β所成角的正弦值为64,则AB与β所成的角是________.答案π3解析如图所示,作BH⊥MN于点H,连接AH,则BH⊥β,∠BCH为BC与β所成的角.∵sin∠BCH=64=BHBC,设BC=1,则BH=64.∵△ABC为等腰直角三角形,∴AC=AB=22,∴AB与β所成的角为∠BAH.∴sin∠BAH=BHAB=6422=32,∴∠BAH=π3.10.(2016·全国乙卷)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥EFDC;(2)求二面角E-BC-A的余弦值.(1)证明由已知可得AF⊥DF,AF⊥FE,DF∩FE=F,所以AF⊥平面EFDC,又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系.由(1)知∠DFE 为二面角DAFE 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,AB 平面EFDC ,EF平面EFDC ,所以AB ∥平面EFDC , 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC , 所以∠CEF 为二面角C-BE-F 的平面角, ∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E-BC-A 的余弦值为-21919. 11.如图所示,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC =EF=1,AE =6,DE =3,∠BAD =60°,G 为BC 的中点.(1)求证:FG ∥平面BED ;(2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.(1)证明 如图,取BD 的中点O ,连接OE ,OG .在△BCD 中,因为G 是BC 的中点,所以OG ∥DC 且OG =12DC =1.又因为EF ∥AB ,AB ∥DC ,所以EF ∥OG 且EF =OG ,所以四边形OGFE 是平行四边形,所以FG ∥OE .又FG 平面BED ,OE 平面BED ,所以FG ∥平面BED .(2)证明 在△ABD 中,AD =1,AB =2,∠BAD =60°,由余弦定理可得BD =3,进而∠ADB =90°,即BD ⊥AD .又因为平面AED ⊥平面ABCD ,BD 平面ABCD ,平面AED ∩平面ABCD =AD ,所以BD ⊥平面AED .又因为BD 平面BED ,所以平面BED ⊥平面AED .(3)解 因为EF ∥AB ,所以直线EF 与平面BED 所成的角即为直线AB 与平面BED 所成的角. 过点A 作AH ⊥DE 于点H ,连接BH .又平面BED ∩平面AED=ED ,由(2)知AH ⊥平面BED ,所以直线AB 与平面BED 所成的角即为∠ABH .在△ADE 中,AD =1,DE =3,AE =6,由余弦定理得cos∠ADE =23,所以sin∠ADE =53, 因此,AH =AD ·sin∠ADE =53. 在Rt△AHB 中,sin∠ABH =AH AB =56. 所以直线EF 与平面BED 所成角的正弦值为56. 12.在直角梯形SBCD 中,∠D =∠C =π2,BC =CD =2,SD =4,A 为SD 的中点,如图(1)所示,将△SAB 沿AB 折起,使SA ⊥AD ,点E 在SD 上,且SE =13SD ,如图(2)所示.(1)求证:SA ⊥平面ABCD ;(2)求二面角E -AC -D 的正切值.(1)证明 由题意,知SA ⊥AB ,又SA ⊥AD ,AB ∩AD =A ,所以SA ⊥平面ABCD .(2)解 在AD 上取一点O ,使AO =13AD ,连接EO ,如图所示.又SE =13SD ,所以EO ∥SA .所以EO ⊥平面ABCD .过O 作OH ⊥AC 交AC 于H ,连接EH , 则AC ⊥平面EOH ,所以AC ⊥EH ,所以∠EHO 为二面角E -AC -D 的平面角. 已知EO =23SA =43.在Rt△AHO 中,∠HAO =45°, OH =AO ·sin 45°=23×22=23.tan∠EHO =EOOH =22,即二面角E -AC -D 的正切值为2 2.。