非线性光学概述
- 格式:ppt
- 大小:287.50 KB
- 文档页数:20
什么是非线性光学分类:教育/科学 >> 科学技术解析:非线性光学nonlinear optics现代光学的一个分支,研究介质在强相干光作用下产生的非线性现象及其应用。
激光问世之前,基本上是研究弱光束在介质中的传播,确定介质光学性质的折射率或极化率是与光强无关的常量,介质的极化强度与光波的电场强度成正比,光波叠加时遵守线性叠加原理(见光的独立传播原理)。
在上述条件下研究光学问题称为线性光学。
对很强的激光,例如当光波的电场强度可与原子内部的库仑场相比拟时,光与介质的相互作用将产生非线性效应,反映介质性质的物理量(如极化强度等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致线性光学中不明显的许多新现象。
介质极化率P与场强的关系可写成P=α1E+α2E2+α3E3+…非线性效应是E项及更高幂次项起作用的结果。
常见非线性光学现象有:①光学整流。
E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。
②产生高次谐波。
弱光进入介质后频率保持不变。
强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。
1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。
他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。
若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。
非线性介质的这种倍频效应在激光技术中有重要应用。
③光学混频。
当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。
利用光学混频效应可 ... 光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。
第六章非线性光学§6-1 引言按照光的电磁波理论,光波是具有电场和磁场的一种电磁波,电场和磁场的时空变化规律由麦克斯韦方程组描述。
电场和磁场通过相互感应形成在真空中传播的电磁波,其传播速度为c=光进入介质后,光波中的电场和磁场将引起介质的极化和磁化,发生光与介质的相互作用,如果将介质看作是电偶极子的集合,那么在光波电场的作用下,电偶极子将以光频振荡,并辐射出次波。
合成的次波形成介质中的光波,其速度.依赖于介质的折射率n。
在激光问世之前,光学介质被认为是线性的.即:(1)波速v,折射率n 及吸收系数与光频和传播方向有关,而与光强无关;(2)光波的叠加原理成立。
波的叠加原理指出,当介质中同时存在两个以上的光扰动时、各个光扰动的作用是独立的;(3)光通过线性光学介质后,光的频率不发生变化,改变的仅仅是光的波长。
自1960年激光问世以来,出现了高光强、高单色性的相干光。
激光在介质中传播时,将引起显著的非线性光学效应。
1961年,用694.3nm的激光聚焦在石英晶片上,使输出光中出现347.15nm的二倍频光.从此开创了非线性光学时代。
在所谓非线性光学介质中,介质的折射串n和吸收系数依赖于光强;波的叠加原理不再成立,光通过非线性介质后的频率可以发生变化;在非线性光学介质中,光波可以控制光,即某一光场可以与其它光场发生相互作用,也可以与自身发生作用。
为什么会发生这些非线性光学现象呢?按照介质的偶极子模型,如果引起极化的光场强度远小于原子的内电场强度,极化可看作是线性的,即成立。
然而当光场强度接近原子的内电场时,介质的极化强度应由光场的泰勒级数展开式表示,即对于各向同性介质,上式具有标量形式:上两式中的第一项是线性极化项,描述线性光学现象;其他项是非线性极化项,描述非线性光学现象。
它们是描述非线性光学介质的基本方程。
对介质方程的说明:(1)如果将极化强度P看作是介质对光场E的响应函数,那么以上两方程是描述介质对光场瞬态响应的关系式,即t时刻的光场E(t)引起t时刻的极化P(t)。
非线性光学论文非线性光学综述:现代光学的一个分支,研究介质在强相干光作用下产生的非线性现象及其应用。
激光问世之前,基本上是研究弱光束在介质中的传播,确定介质光学性质的折射率或极化率是与光强无关的常量,介质的极化强度正比于光波的电场强度E,光波叠加时遵守线性叠加原理(见光的独立传播原理)。
在上述条件下研究光学问题称为线性光学。
对很强的激光,例如当光波的电场强度可与原子内部的库仑场相比拟时,光与介质的相互作用将产生非线性效应,反映介质性质的物理量(如极化强度等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致线性光学中不明显的许多新现象。
发展过程历史:非线性光学的早期工作可以追溯到1906年泡克耳斯效应的发现和1929年克尔效应的现像。
但是非线性光学发展成为今天这样一门重要学科,应该说是从激光出现后才开始的。
激光的出现为人们提供了强度高和相干性好的光束。
而这样的光束正是发现各种非线性光学效应所必需的(一般来说,功率密度要大于1010W/cm2(但对不同介质和不同效应有着巨大差异)。
1958年,Schawlow和Townes指出激光可以在红外和可见光频段实现在这篇文章发表之后,很多实验室立即开始竞争,去实现这一理想.1960年5月,Maiman首先发现了红宝石激光器激光的发明,引导出很多新的学科,对我们今天的科学技术以及日常生活都产生了重大影响.其中最重要的学科之一就是非线性光学,它对半个世纪以来科技的发展起了十分重要的作用.激光的光场或电场可以很强.早年,微波和射频方面的研究已经证明,当电场很大的时候,会产生非线性现象.这是因为电场与物质相互作用时,如果电场很小,表达式中的非线性项可以忽略,产生的偶极子实际上与电场成正比(即线性效应),而当电场很大时,非线性项不能再被忽略,因而可以产生二次倍频、混频等现象,这在微波和射频的实验中得到证实.我们可以预测,当光电场达到近1kV/cm时,在光波波段也会产生类似的非线性现象。
物理学中的非线性光学和光纤光学光学是物理学的一个重要分支,研究光的各种现象和性质,其中非线性光学和光纤光学是光学中的两个重要研究领域。
一、非线性光学非线性光学是研究光在介质中传播时,受到非线性效应影响而发生的物理现象。
在传统的线性光学中,光的传播受到介质的折射率的影响,而非线性光学中,光的传播还受到介质中的非线性响应的影响。
非线性响应是介质对于强度较高的电磁波的响应,强度较低的光束对于介质的响应可以被视为线性响应,而强度较高的光束则会引起非线性响应。
非线性响应可以分为电离、折射率、吸收、色散等方面的非线性效应。
非线性光学的研究内容包括非线性介质、非线性相位、非线性波浪等方面。
其中最常见的非线性效应是Kerr非线性效应,它是由于介质的折射率随着光强度的变化而变化引起的。
此外,还有双折射非线性效应、非线性吸收效应等。
非线性光学对于工程应用有着广泛的应用,特别是在激光器技术、光通信技术等方面,非线性光学发挥着不可替代的作用。
二、光纤光学光纤光学是研究光在光纤中的传输和控制的一个重要分支,许多现代通信技术中都涉及到了光纤光学的研究。
光纤是一种以玻璃或者高分子材料为主要材料的、具有高折射率的材料。
光可以通过光纤中的气-固界面发生全反射,在光纤中进行传输。
光纤光学研究的重点主要包括光纤传输、光波导、分布式反馈激光器等方面。
其中,分布式反馈激光器是光纤光学中的重要技术之一。
分布式反馈激光器是一种基于光纤光学原理制造的光源,具有高功率、窄带宽、单模输出等优点。
它广泛应用于光通信领域、精密测量、光谱学、制造业等领域。
总的来说,非线性光学和光纤光学都是光学中非常重要的研究领域。
伴随着科技的不断进步和发展,非线性光学和光纤光学将会有着更广泛的应用和更加深入的研究。
光学中的非线性光学在镜头中,我们常常听到非线性光学这个术语。
它是光学领域中的一个重要分支,涉及到光与物质相互作用时产生的非线性效应。
本文将详细介绍光学中的非线性光学,并讨论其在科学研究和技术应用中的重要性。
一、非线性光学的基本概念非线性光学是指在光与物质相互作用时,光的电磁特性不在遵循线性超定理的现象。
通常情况下,光学中的光与介质的相互作用是线性的,即光的传播方式符合麦克斯韦方程组所描述的线性传播规律。
然而,当光的强度足够强时,光与介质的相互作用就会变得非线性,这时光的传播不再符合线性传播关系。
二、非线性光学效应非线性光学效应主要包括自聚焦效应、自相位调制效应、和非线性吸收效应三个方面。
自聚焦效应是指在介质中,光强足够高时将会自聚焦且形成孤子束,这一现象在激光技术和光通信系统中极为重要。
自相位调制效应是指光束在传播过程中,其相位会随着强度的变化而发生改变,造成光脉冲的相位调制,这个效应在光学通信中有重要的应用价值。
非线性吸收效应是指介质与光的相互作用会导致光的吸收增加,这一效应在传感器和激光材料的应用中有重要的作用。
三、非线性光学的应用非线性光学在科学研究和技术应用中有着广泛的应用。
首先,在光学通信领域,非线性光学效应使得光纤通信能够实现高速、大容量的数据传输,提高了现代通信的速度和质量。
其次,在激光技术方面,非线性光学可以用来实现超快激光脉冲产生,提高激光器的输出效率和功率。
此外,在光传感器的设计中,非线性光学效应也可以用来提高传感器的灵敏度和响应速度。
四、非线性光学的研究进展随着科学技术的发展,对于非线性光学的研究也在不断深入。
新材料的发现和设计使得我们能够更好地利用非线性光学效应,如铌酸锂晶体、有机聚合物和纳米材料等。
同时,新的非线性光学技术也在不断涌现,如超快光学技术、光学相位共轭技术等。
这些进展为非线性光学的应用提供了更广阔的发展空间。
五、结语非线性光学作为光学领域的重要分支,在科学研究和技术应用中发挥着重要的作用。
非线性光学非线性光学是现代光学的重要分支,研究强相干光与物质相互作用时出现的各种新现象的产生机制、过程规律及应用途径. 非线性光学的起源可以追溯到1906年的泡克尔斯效应和1929年克尔效应的发现,但是非线性光学成为今天这样一门重要科学,应该说是从激光发现以后才开始的.非线性光学的发展大体可划分为三个阶段:20世纪60年代初为第一阶段,这一阶段大量非线性光学效应被发现,如光学谐波、光学和频与差频、光学参量振荡与放大、多光子吸收、光学自聚焦以及受激光散射等都是这个时期发现的;第二阶段为60年代后期,这一阶段一方面还在继续发现一些新的非线性光学效应,另一方面则主要致力于对已发现的效应进行更深入的了解,以及发展非线性光学器件;第三阶段是70年代至今,这一阶段非线性光学日趋成熟,已有的研究成果被应用到各个技术领域和渗透到其他有关学科(如凝聚态物理、无线电物理、声学、有机化学和生物物理学)的研究中.非线性光学的研究在激光技术、光纤通信、信息和图像的处理与存储、光计算等方面有着重要的应用,具有重大的应用价值和深远的科学意义.一、 光场与介质相互作用的基本理论1.介质的非线性电极化理论很多典型的光学效应均可采用介质在光场作用下的电极化理论来解释.在入射光场作用下,组成介质的原子、分子或离子的运动状态和电荷分布都要发生一定形式的变化,形成电偶极子,从而引起光场感应的电偶极矩,进而辐射出新的光波.在此过程中,介质的电极化强度矢量P 是一个重要的物理量,它被定义为介质单位体积内感应电偶极矩的矢量和:V p P ii V ∆=∑→∆ lim 0 (1)式中i P是第i 个原子或分子的电偶极矩. 在弱光场的作用下电极化强度P 与入射光矢量E 成简单的线性关系,满足E P 10χε= (2)式中0ε称为真空介电常数,1χ是介质的线性电极化率. 根据这一假设,可以解释介质对入射光波的反射、折射、散射及色散等现象,并可得到单一频率的光入射到不同介质中,其频率不发生变化以及光的独立传播原理等为普通光学实验所证实的结论.然而在激光出现后不到一年时间(1961年),弗兰肯(P.A.Franken )等人利用红宝石激光器输出694.3nm 的强激光束聚焦到石英晶片(也可用染料盒代替)上,在石英的输出光束中发现了另一束波长为347.2nm 的倍频光,这一现象是普通光学中的线性关系所不能解释的.为此,必须假设介质的电极化强度P 与入射光矢量E 成更一般的非线性关系,即)(3210 +++=E E E E E E P χχχε (3)式中1χ、2χ、3χ分别称为介质的一阶(线性)、二阶、三阶(非线性)极化率. 研究表明1χ、2χ、3χ…依次减弱,相邻电极化率的数量级之比近似为11E n n ≈-χχ (4) 其中0E 为原子内的平均电场强度的大小(其数量级约为1011V/m 左右). 可见,在普通弱光入射情况下,0E E <<,二阶以上的电极化强度均可忽略,介质只表现出线性光学性质. 而用单色强激光入射,光场强度E 的数量级可与0E 相比或者接近,因此二阶或三阶电极化强度的贡献不可忽略,这就是许多非线性光学现象的物理根源.2.光与介质非线性作用的波动方程光与介质相互作用的问题在经典理论中可以通过麦克斯韦方程组推导出波动方程求解.对于非磁性绝缘透明光学介质而言,麦克斯韦方程组为tD H ∂∂=⨯∇ (5) tH E ∂∂-=⨯∇ 0μ (6) 0=∙∇B(7) 0=∙∇D (8)式(5)和(8)中的电位移矢量D 为P E D+=0ε,代入式(5)有 tP t E H ∂∂+∂∂=⨯∇ 0ε 两端对时间求导,有 22220tP t E t H ∂∂+∂∂=∂∂⨯∇ ε (9) 对式(6)两端求旋度,有 tH E ∂∂⨯∇-=⨯∇⨯∇ 0)(μ 将矢量公式E E E E 2)()()(-∇=∇∙∇-∙∇∇=⨯∇⨯∇ 代入式(9)有22022002tP t E E ∂∂+∂∂=∇ μεμ (10) 上式表明:当介质的电极化强度P 随时间变化且022≠∂∂tP 时,介质就像一个辐射源,向外辐射新的光波,新光波的光矢量E由方程(10)决定. 3.非线性光学的量子理论解释采用量子力学的基本概念去解释各种非线性光学现象,既能充分反映强激光场的相干波动特性,同时又能反映光场具有能量、动量作用的粒子特点,从而可对许多非线性光学效应的物理实质给出简明的图像描述.该理论将作用光场与组成介质的粒子(原子、分子)看成一个统一的量子力学体系而加以量子化描述,认为粒子体系在其不同本征能级间跃变的同时,必然伴随着作用光场光子在不同量子状态分布的变化,这些变化除了光子的吸收或发射,更多的涉及到两个或两个以上光子状态的改变(如多光子吸收与发射、光散射等),此时对整个物理过程的描述必须引入所谓中间状态....的概念. 在这种中间状态内,光场的光子数目发生了变化,粒子离开原来所处的本征能级而进入激发状态;但此时粒子并不是确定地处于某一个本征能级上,而是以一定的几率分别处于它所可能的其他能级之上(初始能级除外). 为了直观地表示这一状态,人们又引入了虚能级...的图解表示方法. 在用虚能级表示的这种中间状态中,由于介质粒子的能级去向完全不确定,则按照著名的不确定关系原理,粒子在中间状态(虚能级)上停留的时间将趋于无穷短.利用中间状态的概念和虚能级的表示方法,可以给出大部分有关非线性光学效应的物理图像.二、 非线性光学效应1.光学变频效应光学变频效应包括由介质的二阶非线性电极化所引起的光学倍频、光学和频与差频效应以及光学参量放大与振荡效应,还包括由介质的三阶非线性电极化所引起的四波混频效应.需要注意的是,二阶非线性效应只能发生于不具有对称中心的各向异性的介质,而三阶非线性效应则没有该限制.这是因为对于具有对称中心结构的介质,当入射光场E 相对于对称中心反向时,介质的电极化强度P 也应相应地反向,这时两者之间只可能成奇函数关系,即)(553310 +++=E E E P χχχε,二阶非线性项不存在.1.1 光学倍频效应光的倍频效应又称二次谐波,是指由于光与非线性介质(一般是晶体)相互作用,使频率为ω的基频光转变为ω2的倍频光的现象。
非线性光学非线性光学是现代光学的另一个重要分支,它是研究强光的光学规律的一门学科,与新材料、新技术有密切的联系。
强光下的极化大家知道,电场能引起电介质的极化,极化后的电介质分子都具有一定的电偶极矩P i ,它们沿电场E 有倾向性的排列,介质中单位体积的总分子电矩不为零。
定义P P Vv i =→∑lim∆∆0称P 为极化强度。
实验表明,在弱场情况下P xE =ε0 (4.1) 在强场情况下,P 不仅与E 的1次项有关,而且与E 的2次,3次…等高次项有关。
一般地++''+=E E E x E E x E x P )3()2()1((4.2)或者写成分量形式 ∑∑∑+++=jkj lk j l k j ijkl k j ijk j ijki E E E x E E x E xP ,,, (4.3)(4.3)式在特殊情况下有较简单的形式 +++=3)3(2)2()1(E x E x E x P(4.4)设E E t =0sin ω,代入(4.4)式,则有P x E t x E t x E t x E t x E t x E t t x E x E x E t x E t x E t =+++=+-+-+=++--+()()()()()()()()()()()sin sin sin sin (cos )(sin sin )()sin cos sin 10202230331020230320210303202303121214331234122143ωωωωωωωωωω =++++P P P P 0123 (4.5)其中 P x E 020212=() 称为直流项;P x E x E t 11030334=+⎛⎝ ⎫⎭⎪()()sin ω 称为基波项;P x E t 2202122=-()cos ω 称为二次谐波项;P x E t 3303143=-()sin ω 称为三次谐波项;…(4.5)式中,除P 1中的x E t ()sin 10ω外,其余都是由P 与E 的非线性关系引起的非线性项。