电动机点动运行控制
- 格式:pptx
- 大小:135.06 MB
- 文档页数:30
精选全文完整版实验一三相异步电动机点动与连续运行控制一、实验目的1、熟悉常用低压电器元件(接触器、热继电器和按钮等)的功能及使用方法。
2、掌握自锁作用。
3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。
4、培养学生分析实际问题和解决实际问题的能力。
二、实验仪器设备三相异步电动机、接触器、热继电器、一组按钮。
电源、导线若干、万用表等。
三、实验内容三相异步电动机点动与连续运行控制四、实验步骤1、点动控制图1 点动控制主电路和控制电路(1)按图1连接点动控制的主电路和控制电路。
先连接主电路,然后连接控制电路。
(2)运行、调试:合上电源开关QS;起动:按下按钮SB →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行;停车:松开按钮SB →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;停止使用时:断开电源开关QS 。
2 、连续运行控制线路图2 连续运行主电路和控制电路(1)按图2连接连续运行控制电路的主电路和控制电路。
先连接主电路,然后连接控制电路。
(2)运行、调试:合上电源开关QS;起动:按下按钮SB2 →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行,接触器KM 的辅助常开触头闭合-自锁,使接触器KM线圈保持得电→电动机M 连续运行;停车:按下按钮SB1 →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;保护环节:短路保护、过载保护、失压和欠压保护当电气控制系统中出现短路、过载或失压和欠压等故障现象,保护环节的电器动作,电动机M 停转。
停止使用时:断开电源开关QS 。
五、实验分析1.分析点动控制、连续运行控制电路的特点,比较二者区别。
2.分析电路中常见的故障现象,采取哪些保护措施?3.在实验过程中出现的异常现象,及解决措施。
实验二 三相异步电动机正反转控制一、实验目的1、熟悉常用低压电器元件(按钮、接触器及热继电器)的功能及使用方法。
2、掌握自锁、互锁的作用。
5、安装与调试三相电动机的点动和连续运行的控制线路一、工作任务子任务5 安装与调试三相电动机的点动和连续运行的控制线路二、任务描述在此项典型工作任务中主要使学生掌握安装接点动和连续运行的控制线路,实现机电需要在不同时段点动或连续正转控制功能。
根据控制要求设计安装电路,当按下SB1时,电动机M为连续正转控制;当按下停止按钮SB3时,电动机M失电停转;当按下SB2,电动机M为点动控制;掌握电气元件的安装布置要点,合理布置和安装电气元件,根据电气原理图进行布线,安装检测完成后通电调试,根据调试结果,分析控制线路的工作过程。
学生接到本任务后,应根据任务要求,准备工具和仪器仪表,做好工作现场准备,严格遵守作业规范进行施工,线路安装完毕后进行调试,填写相关表格并交检测指导教师验收。
按照现场管理规范清理场地、归置物品。
三、任务要求1、掌握点动与连续控制的概念,完成点动与连续混合控制线路的安装接线;2、能根据控制要求设计电路原理图、电器元件布置图和电气接线图;3、掌握电气元件的布置和布线方法;4、能根据控制要求完成点动与连续混合控制线路的安装接线并进行通电调试;5、认真填写学材上的相关资讯问答题。
四、能力目标1、学会正确识别、选用、安装、使用按钮开关,熟悉它们的功能、基本结构、工作原理及型号意义,熟记它们的图形符号和文字符号;2、学会电路检修及故障排除的方法,巩固绘制、识读电气控制线路的电路原理图、电气接线图和电器元件布置图;3、熟悉电动机控制线路的一般安装步骤,学会安装点动与连续混合控制线路;4、各小组发挥团队合作精神,学会点动与连续混合控制线路的安装的步骤、实施和成果评估。
五、任务准备(一)相关理论知识一)电动机控制线路故障检修步骤和方法由于电器设备不断地更新、不断换代特别是高科技产品其精度要求也越来越高。
相对来说,作为一名新时代的维修电工者要求也越高、具有重大的挑战性,难度也大大增加。
原有的技术已不能适应新时期要求,需通过一定业务培训,提高自己水平,不断摸索不断创新不断掌握新方法,及时总结。
电动机的点动及连续控制实验心得
点动及连续控制实验心得
随着近年来新能源发展的快速发展和投入应用,电动机的作用日趋重要,电动机在各项应用中表现出了非常重要的作用。
在本次实验中,我们对电动机的点动及连续控制作了深入的研究,并进行了实验,利用洛克电气公司的仪器,让实验取得了较好的效果。
首先,我们完成了关于电动机点动控制的实验,一般来说,点动控制是最常见的电动机控制方式,使用点动控制技术可以实现电动机的启动、停止及转速调节,从而满足电动机的运行要求。
其控制原理是通过对控制电路上的控制信号进行智能控制,实现对电动机的启动、调速和停止。
其次,我们进行了关于电动机连续控制的实验,连续控制是通过一个精细的调速驱动器来控制电动机的一种方式,可以使用精确的电路来控制电动机的启动、停止及转速调节,从而使电动机更加精确、可靠,更能满足特定的应用需求。
通过本次实验,我深刻地体会到电动机控制的先进性和复杂性,以及控制精度和可靠性的重要性。
本次实验不仅使我深入了解到电动机的控制技术,而且使我对以后使用电动机有了一定的认识,可以更准确、可靠地控制电动机。
《电动机点动控制电路》教学设计方案一、教学目标1.知识目标:了解电动机点动控制电路的原理和构造;掌握电动机点动控制电路的工作原理与步骤;了解电动机点动控制电路的应用领域。
2.能力目标:能够独立完成电动机点动控制电路的设计和搭建;能够进行电动机点动控制电路的调试和维护。
二、教学重点与难点1.教学重点:电动机点动控制电路的原理与构造;电动机的点动控制方法;电动机点动控制电路的应用。
2.教学难点:电动机点动控制电路的设计和调试方法;电动机点动控制电路的维护和故障排除。
三、教学内容与教学步骤1.教学内容(1)电动机点动控制电路的原理与构造:介绍电动机的点动控制原理,包括启动电路、运行电路和制动电路的构造与作用。
(2)电动机的点动控制方法:介绍按钮点动控制方法、继电器点动控制方法和程序控制点动控制方法。
(3)电动机点动控制电路的应用:介绍电动机点动控制电路在工业领域的应用,如制造业、矿山等行业。
2.教学步骤(1)引入课程:通过提问和引用实际案例,引发学生对电动机点动控制电路的兴趣,激发学习的动力。
(2)讲解电动机点动控制电路的原理与构造:通过课件和实际电路图,详细讲解电动机的点动控制原理和相关的电路构造。
(3)介绍电动机的点动控制方法:通过示意图和实际案例,介绍按钮点动控制方法、继电器点动控制方法和程序控制点动控制方法的优缺点和适用场景。
(4)演示电动机点动控制电路的应用:通过实际演示和观察,展示电动机点动控制电路在工业领域的应用场景,例如制造业中的机械自动化过程和工厂输送带的控制。
(5)讨论与练习:根据所学知识进行讨论和练习,让学生能够运用所学知识解决具体问题。
(6)总结与检查:进行知识总结和应用检查,确保学生对电动机点动控制电路的原理和应用有更深入的理解。
四、教学方法1.讲授法:通过讲解、演示和示意图等方式,将知识传授给学生。
2.实践操作法:通过实际操作电动机点动控制电路并进行调试,使学生更加深入地理解电动机点动控制电路的原理和应用。
电机点动控制与连续控制的实训报告作为机电一体化专业学生,我们在学习电机控制理论的同时,也需要通过实践来掌握实际操作技能。
电机点动控制和连续控制是电机控制中的两种基本方式,本文将结合实践经验,对这两种控制方式进行讲解和分析。
一、实验目的1.了解电机点动控制和连续控制的原理和方法。
3.分析不同控制方式的优缺点和应用范围。
二、实验设备和工具2.交流电机。
3.电阻箱。
4.多用表。
5.电源。
6.电缆等。
三、实验原理1.电机点动控制电机点动控制是一种简单的控制方式,通过点动按钮分别控制电机的启动、停止、正转或反转。
电机点动控制适用于对电机进行频繁的启停或正反转变换的应用场合,比如新设备的调试或部分设备的单一操作。
它的原理是控制电路通过电压和电阻的配合,通过控制电机正、反转和启停的间歇间歇性控制信号输出到电磁继电器,使其通过触点控制电机的启停和正反转。
2.连续控制连续控制是一种连续调节电机转速的方式。
常用的是PID控制,其原理是根据控制器读取的被控对象(电机)的实际转速与设定值之间的误差,输出不同的控制信号控制电机转速。
连续控制适用于需要对物体进行精确控制的场合。
例如电子工业中的温度、湿度、速度、压力等参数控制。
四、实验步骤(1)搭建电路将电机与电源通过电缆连接起来,使用电气直板和电气开关来搭建点动控制电路。
(2)点动控制通过控制开始、停止、正转和反转按钮来控制电机的方向和速度。
(3)记录数据记录每个按钮操作时电机的转速和运行时间。
连接控制器和电源,将电机连接到控制器的输出端口。
(2)控制器参数设定通过控制器调节参数,如设置目标速度值和间隔时间等。
记录控制器输出的每一步输入电压电流信息和对应的电机转速。
五、实验结果及分析通过实验测量,点动控制方式在启动、停止时的响应速度较快,但是在不同的启动和停止过程中,电机的转速波动较大,不够稳定。
这种控制方式适合对周期性运行的设备进行调试和维护。
通过实验测量,连续控制方式在控制电机转速时,响应速度较慢,但是可以通过控制器不断输出调节信号,使电机的运行更加稳定,可靠性更高,适合于对精度要求较高的工业生产。
点动正转控制电路的工作原理
点动正转控制电路是一种常见的电气控制电路,用于控制电动
机或其他设备的正转运行。
它的工作原理可以从多个角度来解释。
首先,从电路的角度来看,点动正转控制电路通常由一个或多
个按钮、继电器和电动机组成。
按钮用于触发电路,继电器则起到
控制电流流向的作用,而电动机则是被控制的设备。
当按下点动正转按钮时,电流从电源进入电路。
通过继电器的
控制,电流被导通到电动机的正极,同时电动机的负极与电源的负
极相连。
这样,电流形成一个闭合回路,使电动机开始运转。
松开
按钮后,电路断开,电动机停止运转。
其次,从控制信号的角度来看,点动正转控制电路利用按钮作
为触发信号。
当按下按钮时,按钮会发送一个信号,该信号被电路
接收并触发继电器动作。
继电器的动作使得电流流向电动机的正极,从而使电动机开始正转运行。
当按钮松开时,触发信号停止,继电
器恢复原状,电流被切断,电动机停止运转。
此外,从安全保护的角度来看,点动正转控制电路还可以设置
一些保护装置,如过载保护和短路保护。
这些保护装置能够监测电动机的工作状态,一旦出现过载或短路情况,会自动切断电路,以保护电动机和电路的安全。
综上所述,点动正转控制电路通过按钮触发信号,继电器控制电流流向,实现电动机正转运行。
它的工作原理基于电路的闭合与断开,以及控制信号的传递与动作。
同时,该电路还可以配备安全保护装置,以确保电动机和电路的安全运行。
通过变频器操作面板控制电动机的启动、正反转、点动、调速一、利用变频器的操作面板和相关参数设置,即可实现对变频器的某些基本操作如正反转、点动等运行。
变频器面板的介绍及按键功能说明、具体参数号和相应功能参照系统手册。
MM440在缺省设置时,用BOP控制电动机的功能是被禁止的。
如果要用BOP 进行控制,参数P0700应设置为1,参数P1000 也应设置为1。
用基本操作面板(BOP)可以修改任何一个参数。
修改参数的数值时,BOP有时会显示”busy”,表明变频器正忙于处理优先级更高的任务。
下面就以设置P1000=1的过程为例,来介绍通过基本操作面板(BOP)修改设置参数的流程。
操作步骤BOP显示结果1按键,访问参数2按键,直到显示P10003按键,直到显示in000,即P1000的第0组值4按键,显示当前值25按键,达到所要求的值16按键,存储当前设置7按键,显示r00008按键,显示频率二、按系统要求如图所示接线,检查电路正确无误后,合上主电源开关QS。
三、参数设置(1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。
(2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。
电动机参数设置见表。
电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。
参数号出厂值设置值说明P000311设定用户访问级为标准级P001001快速调试P010000功率以KW表示,频率为50HzP0304230380电动机额定电压(V)P0305电动机额定电流(A)P0307电动机额定功率(KW)P0*******电动机额定频率(Hz)P031101400电动机额定转速(r/min)(3)设置面板操作控制参数,见下表。
参数号出厂值设置值说明P000311设用户访问级为标准级P001000正确地进行运行命令的初始化P000407命令和数字I/OP070021由键盘输入设定值(选择命令源)P000311设用户访问级为标准级P0004010设定值通道和斜坡函数发生器P100021由键盘(电动电位计)输入设定值P108000电动机运行的最低频率(Hz)P1*******电动机运行的最高频率(Hz)P000312设用户访问级为扩展级P0004010设定值通道和斜坡函数发生器P1040520设定键盘控制的频率值(Hz)P1058510正向点动频率(Hz)P1059510反向点动频率(Hz)P1060105点动斜坡上升时间(s)P1061105点动斜坡下降时间(s)四、变频器运行操作(1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。
电机点动与连续运转的控制教案教学过程环节内容和过程教学设计复习旧识引入新课新课内容1.断路器QF低压断路器又叫自动空气开关,既有手动开关作用,又能自动进行失压、欠压过载和短路保护的电器。
2.交流接触器KM主触头用于通断主电路,辅助触头用于控制电路中。
3.热继电器FR热继电器是利用电流通过元件所产生的热效应原理而反时限动作的继电器。
4.按钮SB按钮颜色要求:①“停止”和“急停”按钮必须是红色。
当按下红色按钮时,必须使设备停止工作或断电。
②“起动”按钮的颜色是绿色。
5.熔断器FU发生短路或严重过载时,能迅速自动熔断而切断电路的保护电器在实际生产生活中,电机安装地点与电机操作地点常常不在一处,更多的时候我们将启动和停止按钮单独安装在操作柜上。
为了更加安全可靠的实现对电机的控制,我们可以利用前面所学到的电气控制元件设计不同功能的电机控制电路,来电机的不同功能。
请大家思考,如果要实现电动机的起动与停止,需要用到哪些元件?如何连接接线?一、点动正转控制电路图1 电动机点动与连续运转控制电路(a)基本点动控制电路(b)开关选择运行状态的电路(c)两个按钮控制的电路生产机械的运转状态有连续运转与短时间3分钟利用雨课堂发布复习题。
学生回答ppt中各元器件的名称和作用,并画出各元器件常用的符号。
2分钟引入主题提出问题,通过问题引导学生思考解决问题的办法,为后续实现三相异步电动机的点动控制与连续控制做铺垫8分钟对照电路图认识电路图中使用的元件。
分组讨论分析电路的工作原理及作用。
三相异步电动机是工业中常用的电动机之一,其具有结构简单,维护成本低,运行可靠等特点。
在实际工业生产中,对于三相异步电动机的精细控制是非常重要的,点动连续控制是其中的一种重要控制方式。
本文将从三相异步电动机的基本原理、点动连续控制的概念、应用场景和控制方法等方面进行详细介绍。
1. 三相异步电动机的基本原理三相异步电动机是利用交流电的三相电流产生旋转磁场,从而驱动电机转动。
其基本原理可以简述为:当三相电源施加到电动机的定子绕组上时,由于三相电流的相位差,产生一个旋转的磁场。
这个旋转的磁场会感应出转子导体中感应电动势,从而在转子中产生电流,根据洛伦兹力的作用,电机开始转动。
三相异步电动机具有结构简单、使用可靠、成本低等优点,因此在工业生产中得到广泛应用。
2. 点动连续控制的概念点动连续控制是对三相异步电动机进行精细控制的一种方式,它主要应用于需要电机进行间歇性工作的场合。
点动控制是指通过控制电机的启动、停止和正反转等动作,实现对电机的简单控制。
而连续控制则是指在点动控制的基础上,通过对电机的转速、转矩等参数进行精细调节,实现对电机动作的连续稳定控制。
点动连续控制不仅可以提高电机的工作效率,还可以延长电机的使用寿命,因此在实际工业应用中得到广泛运用。
3. 点动连续控制的应用场景点动连续控制主要应用于需要电机进行间歇性工作的场合,例如:起重设备、输送带、挖掘机、冲床等。
在这些设备中,电机需要根据工艺要求进行启停、正反转以及精细的转速和转矩控制。
通过点动连续控制,可以实现这些设备的灵活操作,提高生产效率,减少能耗,降低设备损耗,从而达到节能减排的目的。
点动连续控制在现代工业生产中具有重要意义。
4. 点动连续控制的方法点动连续控制的方法主要包括硬件控制和软件控制两种。
硬件控制是指通过对电机的电气结构进行改造,增加启动、停止、正反转等控制装置,同时配合传感器和执行器,实现对电机的精细控制。
软件控制则是指通过对电机控制系统的软件进行优化和调整,利用现代控制理论和方法,对电机进行精准的控制。
k21电动机单向连续运转(带点动控制)实训课表【最新版】目录1.K21 电动机单向连续运转 (带点动控制) 实训课表的介绍2.K21 电动机单向连续运转 (带点动控制) 的接线方法3.K21 电动机单向连续运转 (带点动控制) 的安全操作流程4.K21 电动机单向连续运转 (带点动控制) 的注意事项5.K21 电动机单向连续运转 (带点动控制) 的实训教学效果正文一、K21 电动机单向连续运转 (带点动控制) 实训课表的介绍K21 电动机单向连续运转 (带点动控制) 实训课表是一门针对电动机控制技术的实训课程,旨在帮助学生掌握电动机单向连续运转 (带点动控制) 的接线方法、安全操作流程和注意事项等内容,提高学生在实际工作中运用电动机控制技术的能力。
二、K21 电动机单向连续运转 (带点动控制) 的接线方法1.首先,需要了解电动机的正反转原理和点动控制的原理。
2.根据电路图,将电源、电动机、按钮、接触器等元件连接在一起。
3.接线时,需要注意电动机的正负极、按钮的正负极和接触器的接线顺序。
4.接线完成后,进行电路检查,确保接线正确无误。
三、K21 电动机单向连续运转 (带点动控制) 的安全操作流程1.在启动电动机前,需要检查电源、电动机、按钮、接触器等元件是否连接牢固。
2.启动电动机时,先按下点动按钮,使电动机转动;再按下连续运转按钮,使电动机单向连续运转。
3.在电动机运行过程中,需要注意观察电动机的运行状态,如有异常现象,应立即停机检查。
4.停止电动机时,先按下停止按钮,再断开电源。
四、K21 电动机单向连续运转 (带点动控制) 的注意事项1.在接线和操作过程中,需要注意安全,避免触电事故。
2.接线完成后,需要进行电路检查,确保接线正确无误。
3.在电动机运行过程中,需要注意观察电动机的运行状态,如有异常现象,应立即停机检查。
4.停止电动机时,先按下停止按钮,再断开电源。
五、K21 电动机单向连续运转 (带点动控制) 的实训教学效果通过 K21 电动机单向连续运转 (带点动控制) 实训课表的学习,学生可以掌握电动机单向连续运转 (带点动控制) 的接线方法、安全操作流程和注意事项等内容,提高学生在实际工作中运用电动机控制技术的能力。
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告一、实验目的1.熟悉三相异步电动机的点动控制原理和实现方法;2.掌握三相异步电动机的自锁控制方法;3.理解三相异步电动机的联锁正反转控制的原理和实现方法。
二、实验器材1.三相异步电动机;2.开关、按钮、断路器等电气元件;3.电源和电动机控制板。
三、实验原理1.三相异步电动机的点动控制原理:2.三相异步电动机的自锁控制原理:3.三相异步电动机的联锁正反转控制原理:四、实验步骤1.点动控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)按下停止按钮,电动机停止;(4)按下反转按钮,电动机开始反转;(5)按下停止按钮,电动机停止。
2.自锁控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下启动按钮,电动机开始启动;(3)等待一段时间,热继电器加热后断开起动电路;(4)启动线圈断开后,接触器的锁闭线圈闭合,实现电动机的自锁控制。
3.联锁正反转控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)正转线圈闭合后,中间继电器锁闭,反转按钮无效;(4)按下停止按钮,电动机停止;(5)按下反转按钮,电动机开始反转;(6)反转线圈闭合后,中间继电器锁闭,正转按钮无效;(7)按下停止按钮,电动机停止。
五、实验结果与分析在实验中,我们成功实现了三相异步电动机的点动控制、自锁控制和联锁正反转控制。
点动控制通过控制电动机的启动电路,实现了电动机的正转、反转和停止操作。
自锁控制通过接触器和热继电器的控制,实现了电动机的自锁功能。
联锁正反转控制通过中间继电器的互斥关系,实现了正转和反转按钮的互斥控制。
六、实验总结本次实验通过对三相异步电动机的点动控制、自锁控制和联锁正反转控制进行了实验,加深了我们对三相异步电动机控制原理和方法的理解。
通过实验,我们掌握了电动机控制电路的接线方法和控制逻辑,提高了电动机控制的实践能力。
电动机点动和长动控制电路原理电动机点动和长动控制电路的原理,听起来好像很复杂,但其实道理就像做菜,掌握了基本的调料和火候,想怎么做就怎么做。
先说说电动机,大家都知道,电动机就像是我们生活中的小帮手,洗衣机、风扇、冰箱,处处都能见到它的身影。
它的工作原理简单来说就是电流通过电动机的绕组,产生磁场,从而推动转子转动。
嘿,这不就是一场电和磁的舞蹈嘛,真是妙不可言。
点动和长动又是什么呢?就像开车一样,点动就是轻轻一踩油门,车子怦怦地往前窜。
而长动呢,就是一踩到底,车子一路飞驰,风驰电掣。
不过,电动机的控制可不止这么简单。
点动控制,通常用于那些需要短时间启动的设备,比如电梯的开关、起重机等。
想象一下,你在电梯里,按了个按钮,电动机就乖乖地转起来,带你去想去的楼层,真是神奇。
而长动控制就更为复杂些,像是在开车的过程中需要一直保持速度,不然可就要出乱子了。
长动控制电路通常用于那些需要持续运行的设备,比如电风扇、空调等。
你想啊,空调要持续运行才能给你送来清凉,不能一会儿热一会儿冷,那可把人急死。
长动控制就是要让电动机一直保持在一个稳定的工作状态,不受外界干扰。
说到控制电路,这就像是电动机的“大脑”。
它根据输入的信号来控制电动机的转动,就好比你在开车时,脑子里不停计算着路线和速度。
点动控制电路一般是由按钮、继电器和电动机组成的。
按下按钮,电流流过继电器,电动机就开始转动。
松开按钮,电动机立马停下,简直就像是在玩开关,瞬间切换。
长动控制电路就相对复杂多了,除了按钮和继电器,可能还要加入时间继电器、限位开关等。
想象一下,电风扇不停地转,突然间,限位开关就像一个老司机一样,告诉电动机停下来。
这个过程就像是为电动机安排了一场精彩的演出,每个环节都得恰到好处,才能完美收官。
电动机的控制电路就像是家庭里的调味品,不同的组合能调出不同的味道。
点动控制就像是偶尔的咸鲜,而长动控制则是让你每天都能尝到的香甜。
控制电路的设计,既要考虑到实用性,也要考虑到安全性。