紫外分光光度法测定蛋白质含量
- 格式:pdf
- 大小:126.31 KB
- 文档页数:2
紫外分光光度法测定蛋白质含量化学2班李永亮41007061【实验目的】(1)学习紫外分光光度法测定蛋白质含量的原理;(2)掌握紫外分光光度法测定蛋白质含量的实验技术;(3)掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。
【实验原理】本实验采用紫外分光光度法测定蛋白质含量。
蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280 nm附近(不同的蛋白质吸收波长略有差别)。
在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。
该测定法具有简单、灵敏、快速高、选择性,且稳定性好,干扰易消除,不消耗样品,低浓度的盐类不干扰测定等优点。
利用紫外吸收法测定蛋白质含量准确度较差,其主要原因有两个:其一对于测定那些与标准蛋白质中赖氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;其二若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。
【实验仪器与试剂】仪器:TU-1901紫外-可见分光光度计,比色管,吸量管,胶头滴管试剂:标准蛋白质溶液(3.00mg/mL),0.9% NaCl溶液,待测蛋白质溶液【实验步骤】一、准备工作1、启动计算机,打开主机电源开关,启动工作站并初始化仪器。
2、在工作界面上选择测量项目(光谱扫描,光度测量),本实验选择光度测量,设置测量条件(测量波长等)。
3、将空白放入测量池中,点击开始扫描空白,点击基线校零。
4、标准曲线的绘制二、测量工作1、吸收曲线的绘制用吸量管吸取2mL3.00mg/mL 标准蛋白质溶液于10mL 比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。
用1cm 石英比色皿,以0.9% NaCl 溶液为参比,在190 nm ~400nm 区间,每隔2nm 测量一次吸光度,记录数据。
2、标准曲线的制作用吸量管分别吸取1.0、1.5、2.0、2.5、3.0 mL 3.00 mg/mL 标准蛋白质溶液于5只10 mL 比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。
6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)2nh3+h2so4——(nh4)2so4 (2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
实验三 紫外分光光度法测定蛋白质一、原理由于蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,吸收高峰在280nm 。
在此波长范围内,蛋白质溶液的光吸收值与其含量呈正比关系,可用作定量测定。
利用紫外吸收法测定蛋白质含量准确度较差,这是由于:(1)对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定的误差。
故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质。
(2)若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。
核酸强烈吸收波长为280nm 的紫外光,它对260nm 紫外光的吸收更强。
但是蛋白质恰恰相反,在280nm 的紫外吸收值大于260nm 的紫外吸收值。
利用这些性质,通过计算可以适当校正核酸对于测定蛋白质含量的干扰作用。
但是,因为不同的蛋白质和核酸的紫外吸收是不同的,虽然经过校正,测定结果还存在着一定的误差。
在测定工作中,可利用在280nm 及260nm 下的吸收差求出蛋白质的浓度。
蛋白质浓度(mg/ml)=1.45A280nm —0.74A260nm ,式中:A280nm 是蛋白质溶液在280nm 下测得的光吸收值;A260nm 是蛋白质溶液在260nm 下测得的光吸收值。
Warburg 和Christian 用结晶的酵母烯醇化酶和纯的酵母核酸作为标准,对有核酸存在时所造成的误差作了评价,并作出了一个校正表(如下)。
紫外吸收法测定蛋白质含量的校正因子F0.6565.500.8461.1160.001.750.6320.6070.5850.5650.5450.5080.4780.4220.3770.3220.2786.006.507.007.508.009.0010.0012.0014.0017.0020.000.8220.8040.7840.7670.7530.7300.7050.6710.6440.6150.5951.0811.0541.0230.9940.9700.9440.8990.8520.8140.7760.7430.6820.250.500.781.001.251.502.002.503.003.504.005.001.631.521.401.361.301.251.161.091.030.9790.9390.874校正因子核酸%A 280nm /A 260nm校正因子核酸%A 280nm /A 260nm注:一般纯蛋白质的A280nm/A260nm 值为约1.8,而纯核酸的A280nm/A260nm 值为约0.5。
教材1 紫外分光光度法测定蛋白质含量一、实验目的学习紫外分光光度法测定蛋白质含量的原理;掌握紫外分光光度法测定蛋白质含量的实验技术;掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。
二、实验原理紫外-可见吸收光谱法又称紫外-可见分光光度法, 它是研究分子吸收190nm ~750nm 波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。
紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。
进行定性:利用紫外-可见吸收光谱法进行定性分析一般采用光谱比较法。
即将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知纯化合物的吸收光谱进行比较。
定量分析: 紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律:A=lgI0/I=εbc ,当入射光波长λ及光程b 一定时,在一定浓度范围内,有色物质的吸光度A 与该物质的浓度c 成正比,即物质在一定波长处的吸光度与它的浓度成线形关系。
因此,通过测定溶液对一定波长入射光的吸光度,就可求出溶液中物质浓度和含量。
由于最大吸收波长λmax 处的摩尔吸收系数最大,通常都是测量λmax 的吸光度,以获得最大灵敏度。
光度分析时,分别将空白溶液和待测溶液装入厚度为b 的两个吸收池中,让一束一定波长的平行单色光非别照射空白和待测溶液,以通过空白溶液的透光强度为I 0,通过待测溶液的透光强度为I ,根据上式,由仪器直接给出I 0与I 之比的对数值即吸光度。
紫外-可见分光光度计:紫外-可见吸收光谱法所采用的仪器称为分光光度计,它的主要部件有五个部分组成,即由光源发出的复合光经过单色器分光后即可获得任一所需波长的平行单色光, 该单色光通过样品池静样品溶液吸收后,通过光照到光电管或光电倍增管等检测器上产生光电流,产生的光电流由信号显示器直接读出吸光度A 。
可见光区采用钨灯光源、玻璃吸收池; 紫外光区采用氘灯光源、石英吸收池。
紫外分光光度法测定蛋白质含量一、实验目的1.学习紫外光度法测定蛋白质含量的原理;2.掌握紫外分光光度法测蛋白质含量的实验技术。
二、实验原理1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。
本实验采用紫外分光光度法。
2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。
在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。
利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。
三、仪器与试剂TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。
10mL比色管、1cm石英比色皿、吸量管。
四、实验步骤1.绘制吸收曲线用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。
用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。
2.绘制标准曲线用吸量管分别吸取1.0、1.5、2.0、2.5、,用0.9%NaCl溶液稀释至刻度,摇匀。
用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。
3.样品测定取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。
在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析图1吸收曲线在上图吸收曲线中可以看到有两处吸收峰,且在波长225nm处的吸收峰远大于280nm处,这是由于在波长250nm以下时,溶剂吸收较为严重,干扰较大,所以,蛋白的最大吸收波长应为280nm。
蛋白质类药物含量测定的方法
蛋白质类药物含量测定有多种方法,以下是其中几种常用的方法:
1. 紫外分光光度法:蛋白质分子中含有酪氨酸和色氨酸,它们在紫外光
280nm处有最大吸收峰。
在一定浓度范围内,蛋白质溶液的吸光度值与其
浓度成正比,可以用于定量测定。
此方法操作简单、快捷,且样品可回收。
然而,此方法不适用于酪氨酸和色氨酸含量差异大的蛋白质,且易受其他在280nm有吸收的物质(如核酸)干扰。
2. Bradford法:该法基于染料与蛋白质结合后改变最大吸收光,从465nm 变为595nm。
蛋白质-染料复合物具有高消光系数,提高了蛋白质测定的灵敏度(最低检出量为1μg)。
染料与蛋白质结合迅速,颜色在1小时内稳定。
一些阳离子、(NH4)2SO4、乙醇等物质不干扰测定,但大量去污剂如TritonX-100、SDS等会严重干扰测定。
3. 双缩脲法:具有两个或两个以上肽键的化合物都有双缩脲反应,蛋白质在碱性溶液中能与Cu2+络合呈紫红色,颜色深浅与蛋白质浓度成正比,故可用比色法进行测定,根据标准曲线进行计算可以确定蛋白质浓度。
除上述方法外,还有酚试剂法、考马斯亮蓝法、免疫分析法等测定蛋白质含量的方法。
在实际操作中,应根据具体药物选择合适的测定方法。
紫外分光光度法测定蛋白质含量实验目的1、学习紫外光度法测定蛋白质含量的原理。
2、掌握紫外分光光度法测定蛋白质含量的实验技术。
实验原理本实验采用紫外分光光度法测定蛋白质含量。
蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm 附近(不同蛋白质的吸收波长略有差别)。
在最大吸收波长处,吸光度与蛋白质溶液浓度的关系服从朗伯—比尔定律。
利用紫外吸收法测定蛋白质含量准确度较差,其主要原因有两个:其一,测定的蛋白质与标准蛋白质中色氨酸、酪氨酸的含量不同,会造成一定的误差,故该法适用于测定与标准蛋白质氨基酸组成相近的蛋白质;其二,若样品中含有嘌呤、嘧啶(核酸)等吸收紫外光的物质,会产生较大的干扰。
核酸强烈吸收波长为280nm的紫外光,对260nm 波长的紫外光吸收更强,其与蛋白质不同,蛋白质在280nm处的吸收大于260nm 的吸收,故可利用这一性质,通过计算适当校正核酸对于测定蛋白质含量的干扰作用。
由于不同的蛋白质与核酸的紫外吸收不同,故测定的结果还是会产生一定的误差。
在测定工作中,可利用在280nm及260nm下的吸收差求出蛋白质的浓度。
蛋白质浓度(mg·mL-1)=1.45A280—0.74A260其中A280、A260分别为蛋白质溶液在280nm与260nm 处测得的吸光度值。
Warburg 和 Chirstian 用结晶的酵母烯醇化酶和纯的酵母核酸作为标准,对于有核算存在时所造成误差做出了评价,并作出校正表。
A280与A260的比值为校正因子F,可从校正表中查出,同时可查出该样品溶液中混杂核酸的百分含量,将F值代入,再由经验公式直接计算该溶液的蛋白质浓度。
蛋白质浓度(mg·mL-1)=F * 1/d * A280* D其中d为石英比色池的厚度;D为溶液的稀释倍数。
紫外吸收法在蛋白质含量为20~100μg·mL-1范围内服从比尔定律,氯化钠、硫酸铵以及0.1mol·L-1磷酸、硼酸和Tris 等缓冲溶液都无显著干扰,但是,0.1mol·L-1乙酸、琥珀酸、邻苯二甲酸以及巴比妥等缓冲溶液在215nm 下的吸收较大不能应用,必须降至0.005mol·L-1才无显著影响。
紫外分光光度法测蛋白质的含量一、实验目的1、学习紫外分光光度法测定蛋白质含量的原理。
2、掌握紫外分光光度法测定蛋白质含量的实验技术。
3、掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。
二、实验原理本实验采用紫外分光光度法测定蛋白质含量。
蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280 nm附近(不同的蛋白质吸收波长略有差别)。
在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。
该测定方法简单、灵敏、快速,不消耗样品,低浓度的盐类不干扰测定。
1.紫外-可见分光光度法,是以溶液中物质的分子或离子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析方法。
紫外光:10-400 nm可见光:400-780 nm特点:带光谱、分子光谱应用:定性分析-最大吸收波长;定量分析-朗伯-比尔定律(标准曲线法和标准加入法)a.定性分析原理:吸收曲线:吸收峰的数目、位置、相对强度以及吸收峰的形状.b.定量分析原理:根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。
定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。
c.仪器组成部件:各种类型的紫外-可见分光光度计,如下图所示,从总体上来说是由五个部分组成,即光源、单色器、吸收池、检测器和信号显示记录装置。
2.本实验采用紫外分光光度法测定蛋白质含量的实验原理:(1)蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,所以蛋白质溶液在275--280nm具有一个吸收紫外吸收高峰。
在一定浓度范围内,蛋白质溶液在最大吸收波长处的吸光度与其浓度成正比,服从朗伯-比耳定律,因此可作定量分析。
该法测定蛋白质的浓度范围为0.1—1.0mg/mL。
上海百贺仪器科技有限公司提供www.southhk.cn
紫外分光光度法测定蛋白质含量
摘要:
考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm
处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。
考马斯亮兰G250
与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白
质定量测定方法。
1.实验部分
1.1仪器与试剂:
Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250;
牛血清蛋白;超纯水。
1.2试液的制备:
牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml
容量瓶中,加入超纯水溶解并定容。
考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙
醇后,加入120ml85%的磷酸,用水稀释至1升。
2.结果与讨论
2.1校正曲线的绘制
准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml
分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml
考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。
以浓度
为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为
A=0.613556C+0.001008,R=0.9994。
上海百贺仪器科技有限公司www.southhk.cn
2.2精密度
配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的
相对标准偏差。
表1精密度测定结果
次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13
2.3稳定性
取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化
如下表2。
表2稳定度测定结果
时间(min)A1A2A3A平均
00.55110.55230.55160.5517
100.52040.51840.51680.5185
200.49100.49010.49030.4905
300.47650.47160.47210.4734
400.45240.44750.44400.4480
500.39820.39350.40310.3983
3.结论
该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定
的紫外分光光度法。