常量 -20.207 4.652 18.866
1 .000
.000
a. 在步骤 1 中输入的变量: 性别, 年龄, 学历, 体重指数, 家族史, 吸烟, 血压, 总胆 固醇, 甘油三脂, 高密度脂蛋白, 低密度脂蛋白.
七、变量筛选
从所用的方法看,有强迫法、前进法、后退 法和逐步法。在这些方法中,筛选变量的过 程与线性回归过程的完全一样。但其中所用 的统计量不再是线性回归分析中的F统计量, 而是以上介绍的参数检验方法中的三种统计 量之一。
八、logistic 回归模型拟合优度检验和预 测准确度检验
(一)拟合优度检验:
Logistic回归模型的拟合优度检验是通过比较模型 预测的与实际观测的事件发生与不发生的频数有无差 别来进行检验。如果预测的值与实际观测的值越接近, 说明模型的拟合效果越好。
·模型的拟合优度检验方法有偏差检验(Deviance)、 皮尔逊(pearson)检验、统计量(Homser-Lemeshow), 分别计算统计量X2D、X2 P、X2HL值。统计量值越小, 对应的概率越大。无效假设H0:模型的拟合效果好。
第九章 Logistic回归
(非条件Logistic回归)
第一节 Logistic回归概述
一、Logistic回归目的: Logistic回归通常以离散 型的分类变量(疾病的死亡、痊愈等)发生结果的 概率为因变量,以影响疾病发生和预后的因素为自 变量建立模型。研究分类变量(因变量)与影响因 素(自变量)之间关系的研究方法。属于概率型非 线性回归方法。
本例模型的似然比检验结果:
X2=-2(ln Lp-ln Lk)=95.497
模 型 系数 的 综 合检 验
步骤 1
步骤 块 模型