多元Logistic回归分析
- 格式:pptx
- 大小:306.62 KB
- 文档页数:67
二元logistic回归分析1.理论Logistic回归模型:设因变量为Y,自变量为x1,x2,...,xn。
事件发生与不发生的概率比Pi /(1-pi)被称为事件发生比。
后对事件发生比做对数变换,能得到logistic回归的线性模式:ln(pi /(1-pi))=β+β1x1+...βnxn采用最大似然比法或者迭代法对参数的估计,参数通过似然比检验和Wold 检验。
二元logistic回归是指因变量为二分类变量时的回归分析。
在建立回归模型时,目标的取值范围在0-1之间。
常因变量为二分类数据自变量可以是连续型随机变量和分类数据图1数据类型2.重新编码操作步骤首先将数据导入spss中,数据情况如下图所示,首先先对变量进行重新编码处理。
图2数据情况第一步、点击转换、重新编码为相同的变量。
图3数据编码第一步第二步:进入图中变量框后,将需要处理的变量放入变量放入框中,后点击旧值和新值,在旧值中输入原有值,后在新值中输入新值,点击添加、继续。
图4数据编码第二步3.二元logistic回归分析操作步骤第一步:点击分析、回归、二元logistic。
图5二元logistic回归分析第一步第二步:进入图中对话框后将因变量、自变量放入对应变量框中,点击分类、进入定义分类变量框后。
将协变量框中的分类变量放入分类协变量框中(一般情况除二分类或有序分类数据不需哑变量设置),并进行哑变量的设置,点击继续。
图6第二步第三步:点击选项,勾选霍斯默-莱梅肖拟合优度、Exp(B)的置信区间、迭代历史记录。
点击继续、确定。
图7选项勾选4.二元logistic回归分析结果二元logistic回归分析的个案摘要、因变量编码、分类变量编码结果。
图8分类变量编码迭代历史记录、分类表、方程中的变量、未包括在方程中的变量结果。
图9块0:起始块迭代历史记录、模型中的Omnibus检验、模型摘要、霍斯默-莱梅肖检验。
图10块1:方法=输入分类表、方差中的变量结果。
多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。
SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。
例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。
试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。
并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。
还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
多元logistic回归是一种用于研究多个自变量对因变量影响的统计方法。
通过多元logistic回归分析,我们可以了解自变量对因变量的贡献程度,并确定哪些自变量对因变量有显著影响。
在解读多元logistic回归结果时,需要注意以下几点:
系数解读:在多元logistic回归模型中,每个自变量的系数表示该变量对因变量的贡献程度。
系数的符号表示了影响的方向,正号表示正相关,负号表示负相关。
系数的绝对值表示影响的大小,绝对值越大,影响越大。
OR值解读:在多元logistic回归模型中,每个自变量的OR值表示该变量对因变量发生概率的影响程度。
OR值的范围在0到无穷大之间,值越大表示该自变量对因变量的影响越大。
显著性检验:在多元logistic回归模型中,每个自变量都需要进行显著性检验。
如果某个自变量的p值小于预设的显著性水平(如0.05),则认为该自变量对因变量有显著影响。
模型评估:在多元logistic回归分析结束后,需要对模型进行评估。
常用的评价指标包括模型的拟合优度、预测准确率等。
如果模型的评估结果良好,则认为模型可用于预测或解释实际问题。
总之,多元logistic回归结果解读需要综合考虑系数的符号、绝对值、OR值、显著性检验和模型评估等多个方面。
通过深入了解自变量对因变量的贡献程度和影响方式,可以帮助我们更好地理解数据,并进行科学决策。
Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
stata多元logistic回归结果解读【实用版】目录一、多元 logistic 回归的概念与原理二、多元 logistic 回归模型的建立三、多元 logistic 回归结果的解读四、实际案例应用与分析五、总结正文一、多元 logistic 回归的概念与原理多元 logistic 回归是一种用于分析多分类变量与二元变量之间关系的统计分析方法。
它可以对多个自变量与因变量之间的关系进行同时分析,适用于研究多个因素对某一现象的影响。
logistic 回归是一种分类回归方法,它将二元变量(如成功/失败、是/否等)与多个自变量之间的关系建模为逻辑斯蒂函数,从而预测因变量的概率。
二、多元 logistic 回归模型的建立在建立多元 logistic 回归模型时,首先需要将数据整理成合适的格式。
模型中,因变量为二元变量(通常用 0 和 1 表示),自变量为多元变量(可以是分类变量或连续变量)。
然后,通过添加截距项,构建多元logistic 回归模型。
在 Stata 软件中,可以使用命令“logit”来实现多元 logistic 回归分析。
三、多元 logistic 回归结果的解读多元 logistic 回归的结果主要包括系数、标准误、z 值、p 值、OR 值等。
其中,系数表示自变量对因变量的影响程度,正系数表示正相关,负系数表示负相关;标准误表示系数的估计误差;z 值表示系数除以标准误的值,用于检验系数的显著性;p 值表示假设检验的结果,一般小于0.05 认为显著;OR 值表示风险比,表示一个自变量对因变量的影响程度。
四、实际案例应用与分析假设我们研究一个城市居民的出行选择行为,希望了解影响居民选择不同交通方式的因素。
我们可以建立一个多元 logistic 回归模型,将居民的出行方式作为因变量(二元变量),交通方式的类型、出行距离、出行时间等因素作为自变量。
通过分析模型结果,我们可以得到各个因素对居民出行选择行为的影响程度,从而制定更有针对性的交通政策。