可测函数的定义及简单性质1
- 格式:docx
- 大小:129.03 KB
- 文档页数:8
1.5 可测集与可测函数1.5.1 可测集与可测函数定义1.5.1 设X 是基本空间,R 是X 上的σ-代数,且E X E ∈=R, 则称(,)X R 是可测空间(measurable space),R 中的元素E 是(,)X R 上的可测集(measurable set)。
特别地,当1X =R ,=R L 时,称1(,)R L 是Lebsgue 可测空间;Lebsgue 可测空间上的可测集称为Lebsgue 可测集;当1X =R ,()==0R S R B 时,称1(,)R B 是Borel 可测空间;Borel 可测空间上的可测集(即:Borel 集)称为Borel 可测集.注 定义可测空间、可测集时,严格地说,并不要求在σ-代数R 上已经具有某个测度,即把可测空间、可测集的概念本质上当作集合论范畴的概念,这已是通行的看法。
定义1.5.2 设(,)X R 是可测空间,E X ⊂,f 是定义在E 上的有限实函数。
若对一切实数c ,集(){(),}E c f x c f x x E ≤=≤∈都是(,)X R 上的可测集(即:()E c f ≤∈R ),则称f 是E 上关于R 的可测的函数,简称E 上的可测函数(measurable function)。
特别地,当1(,)(,)X =R R L 时,称f 是E 上关于L 的Lebsgue 可测函数; 当1(,)(,)X =R R B 时,称f 是E 上关于B 的Borel 可测函数。
定理1.5.1 设(,)X R 是可测空间,f 是定义在E X ⊂上的有限实函数。
则f 是E 上的可测函数的充分必要条件是:对任意实数,c d ,集()E c f d ≤<是可测集。
证 设f 是可测函数,由于()()()E c f d E c f E d f ≤<=≤-≤,而()E c f ≤和()E d f ≤都是可测集,所以()E c f d ≤<是可测集。
borel 可测函数引言在数学中,可测函数是一个重要的概念。
而在可测函数的理论中,Borel 可测函数则是一个特殊的概念,起到了重要的作用。
本文将对 Borel 可测函数进行全面、详细、完整且深入地探讨。
一、可测函数的定义可测函数最早起源于测度论的研究。
假设给定一个测度空间(X, Σ, μ),其中X 是一个非空集合,Σ 是 X 的一个σ-代数,μ 是定义在Σ 上的一个测度。
那么一个函数f : X → ℝ(或者是f : X → ℂ)被称为可测函数,如果对于任意的实数 a,有集合{x ∈ X : f(x) > a} 在σ-代数Σ 中。
换句话说,可测函数是一个这样的函数,其反像集在给定的σ-代数中。
二、Borel 可测函数的概念Borel 可测函数是可测函数的一种特殊情况,其定义如下:如果一个函数 f : X → ℝ(或者是 f : X → ℂ)的每一个实数 a 的反像集{x ∈ X : f(x) > a} 都属于所给测度空间的Borel σ-代数,那么这个函数被称为 Borel 可测函数。
三、Borel 可测函数的性质Borel 可测函数有许多重要的性质,下面将介绍其中的一些性质。
1. Borel 可测函数的基本性质Borel 可测函数的一个重要性质是:任意两个 Borel 可测函数的和、差、积、商(当分母不为零时)仍然是 Borel 可测函数。
这个性质可以从 Borel 可测函数的定义中直接推导出来,并且在实际应用中非常有用。
2. 可测函数的逼近性质对于一个 Borel 可测函数,可以用简单函数逼近它。
简单函数是指一个形式为有限个指示函数之和的函数形式。
具体而言,对于一个 Borel 可测函数 f : X → ℝ,可以找到一个递增的简单函数序列{φ_n},使得它们逐点收敛到 f。
3. Borel 可测函数的连续性性质Borel 可测函数在某些情况下具有连续性。
例如,如果 f 是一个定义在闭区间 [a, b] 上的 Borel 可测函数,且对于该区间上的任意一个点 x,存在一个开邻域 U_x,使得 f 在 U_x 上连续,那么 f 在区间 [a, b] 上是连续的。
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE ix E x x E E χ∈⎧=⎨∈-⎩ 注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。
第三章 可测函数为了引进新的积分,我们还需要引进一类重要的函数即可测集上的可测函数,这类函数一方面与数学分析中的连续函数有着密切的联系,另一方面比连续函数更为广泛、应用价值更大.这里我们需要强调,今后所提到的函数都是指定义在n R 中某点集上的单值实函数,且允许它的值可以取±∞(±∞也称为非正常实数,通常的实数称为有限实数或实数).另外,我们规定:(+∞)+(+∞)=+∞,(-∞)+(-∞)=-∞,对于任意实数a ,总有a +(+∞)=(+∞)+a =+∞,a +(-∞)=-∞,对于b >0,c <0,b ·(±∞)=±∞,c ·(±∞)= ∞,(±∞)·(±∞)=+∞, (+∞)·(-∞)=(-∞)·(+∞)=-∞,0·(±∞)=(±∞)·0=0, 对∞≠b ,o b =∞,对o c ≠,∞=oc, 但(+∞)-(+∞),(±∞)+( ∞),(-∞)-(-∞)均无意义.§1 可测函数的定义及简单性质可测函数的定义方法很多,本节,我们将采用从简单到复杂的方法定义可测函数,即先给出简单的可测函数,然后分析这些函数的测度特性从而归纳出一般可测函数的定义.一、可测函数的定义及等价定义1.简单函数定义1 设E n R ⊂为一个可测集,)(x f 为定义在E 上的实函数,如果 (1)E = mi i E 1=,其中i E 为两两不交的可测集,(2)在每个i E 上)(x f =i c ,即)(x f = ⎩⎨⎧1C C m1E x E x m ∈∈ ,亦即∑==m i E i x c x f i 1)()(χ,其中)(x i E χ表示i E 的特征函数,则称)(x f 为E 上的简单函数.显然)(x D =⎩⎨⎧01 上的无理点为上的有理点为]1,0[]1,0[x x 及 )sgn(x =⎪⎩⎪⎨⎧-10100<=>x x x 均为其定义域上的简单函数.注 只有当可测集E 的分解为有限不交可测分解,且在每个小可测集上)(x f 的取值为常数时,)(x f 才是E 上的简单函数.可以证明,可测集E 上的两个简单函数)(),(x g x f 的和、差及乘积仍为E 上的简单函数,且当0)(≠x g 时,)()(x g x f 也是E 上的简单函数。
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE i x E x x E E χ∈⎧=⎨∈-⎩注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有 00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。