第六节-定积分的应用PPT课件
- 格式:ppt
- 大小:901.00 KB
- 文档页数:15
06第六节定积分的几何应用第六节定积分的几何应用分布图示★面积表为定积分的步骤★定积分的微元法★直角坐标情形★例1★例2★例3★例4★参数方程情形★例5★极坐标情形★例6★例7★例8★圆锥★圆柱★旋转体★旋转体的体积★例9★例 10★例 11 ★例 12★例 13★平行截面面积为已知的立体的体积★例 14 ★例 15★内容小结★课堂练习★习题5-6内容要点:一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量«Skip Record If...»(总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元根据具体问题,选取一个积分变量,例如«Skip Record If...»为积分变量,并确定它的变化区间«Skip Record If...»,任取«Skip Record If...»的一个区间微元«Skip Record If...»,求出相应于这个区间微元上部分量«Skip Record If...»的近似值,即求出所求总量«Skip Record If...»的微元«Skip Record If...»;(2) 由微元写出积分根据«Skip Record If...»写出表示总量«Skip Record If...»的定积分«Skip Record If...»微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量«Skip Record If...»关于区间«Skip Record If...»应具有可加性,即如果把区间«Skip Record If...»分成许多部分区间, 则«Skip Record If...»相应地分成许多部分量, 而«Skip Record If...»等于所有部分量«Skip Record If...»之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量«Skip Record If...»的近似表达式«Skip Record If...»,即使得«Skip Record If...». 在通常情况下,要检验«Skip Record If...»是否为«Skip Record If...»的高阶无穷小并非易事,因此,在实际应用要注意«Skip Record If...»的合理性.二、平面图形的面积(1)直角坐标系下平面图形的面积(2)极坐标系下平面图形的面积曲边扇形的面积微元 «Skip Record If...»所求曲边扇形的面积 «Skip Record If...»三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 «Skip Record If...»所求旋转体的体积 «Skip Record If...»四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 «Skip Record If...»所求立体的体积 «Skip Record If...»例题选讲:直角坐标系下平面图形的面积例1(E01)求由«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元: «Skip Record If...»所求面积: «Skip Record If...»«Skip Record If...»«Skip Record If...»例2(E02)求由抛物线«Skip Record If...»与直线«Skip Record If...»所围成的面积.解如图,并由方程组«Skip Record If...»解得它们的交点为«Skip Record If...»选«Skip Record If...»为积分变量, 则«Skip Record If...»的变化范围是«Skip Record If...»任取其上的一个区间微元«Skip Record If...»则可得到相应面积微元«Skip Record If...»从而所求面积«Skip Record If...»例3(E03)求由«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元:«Skip Record If...»所求面积: «Skip Record If...»«Skip Record If...»«Skip Record If...»例4计算由曲线«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元:(1) «Skip Record If...»«Skip Record If...»(2) «Skip Record If...»«Skip Record If...»所求面积:«Skip Record If...»«Skip Record If...»«Skip Record If...»例5求椭圆«Skip Record If...»所围成的面积.解椭圆面积: «Skip Record If...»面积微元: «Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»例6(E04)求双纽线«Skip Record If...»所围平面图形的面积.解面积微元:«Skip Record If...»所求面积:«Skip Record If...»例7(E05)求心形线«Skip Record If...»所围平面图形的面积«Skip Record If...»解面积微元:«Skip Record If...»所求面积:«Skip Record If...»例8求出«Skip Record If...»和«Skip Record If...»的图形的公共部分的面积(其中«Skip Record If...»).解如图(见系统演示),由对称性可知,所求面积为阴影部分面积的8倍,且线段«Skip Record If...»在直线«Skip Record If...»上. 令«Skip Record If...»代入方程«Skip Record If...»得其极坐标方程为«Skip Record If...»于是所求面积可表示为«Skip Record If...»«Skip Record If...»例9(E06)连接坐标原点«Skip Record If...»及点«Skip Record If...»的直线、直线«Skip Record If...»及«Skip Record If...»轴围成一个直角三角形. 将它绕«Skip Record If...»轴旋转构成一个底半径为«Skip Record If...»高为«Skip Record If...»的圆锥体, 计算圆锥体的体积.解体积微元:«Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»«Skip Record If...»例10(E07)计算由椭圆«Skip Record If...»围成的平面图形绕«Skip Record If...»轴旋转而成的旋转椭球体的体积.解如图所示,该旋转体可视为由上半椭圆«Skip Record If...»及«Skip Record If...»轴所围成的图形绕«Skip Record If...»轴旋转而成的立体 .取«Skip Record If...»为自变量,其变化区间为«Skip Record If...»任取其上一区间微元«Skip Record If...»相应于该区间微元的小薄片的体积,近似等于底半径为«Skip Record If...»高为«Skip Record If...»的扁圆柱体的体积,即体积微元«Skip Record If...»故所求旋转椭球体的体积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«SkipRecord If...»特别地,当«Skip Record If...»时,可得半径为«Skip Record If...»的球体的体积«Skip Record If...»例11求星行线«Skip Record If...»绕«Skip Record If...»轴旋构成旋转体的体积.解体积微元 :«Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»例12计算由连续曲线«Skip Record If...»、直线«Skip Record If...»、«Skip Record If...»及«Skip Record If...»轴所围成的曲边梯形绕«Skip Record If...»轴旋转一周而成的立体的体积.解体积微元:«Skip Record If...»所求体积:«Skip Record If...»例13(E08)求由曲线«Skip Record If...» «Skip Record If...»所围成的图形分别绕x轴和y轴旋转而成的旋转体的体积.解画出草图,并由方程组«Skip Record If...»解得交点为«Skip Record If...»及«Skip Record If...»于是,所求绕«Skip Record If...»轴旋转而成的旋转体的体积«Skip Record If...»所求绕«Skip Record If...»轴旋转而成的旋转体的体积«Skip Record If...»例14(E09)一平面经过半径为R的圆柱体的底圆中心,并与底面交成角«Skip Record If...»(图5-6-18),计算这平面截圆柱体所得立体的体积.解截面面积:«Skip Record If...»体积微元: «Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»例15求以半径为«Skip Record If...»的圆为底、平行且等于的圆直径的线段为顶、高为«Skip Record If...»的正劈锥体的体积.解取底圆所在的平面为«Skip Record If...»平面,圆心«Skip Record If...»为原点,并使«Skip Record If...»轴与正劈锥的顶平行.底圆的方程为 «Skip Record If...»过«Skip Record If...»轴上的点«Skip Record If...»作垂直于«Skip Record If...»轴的平面,截正劈锥体得等腰三角形.这截面的面积为«Skip Record If...»于是所求正劈锥体的体积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»即正劈锥体的体积等于同底同高的圆柱体体积的一半.课堂练习1.求正弦曲线«Skip Record If...»和直线«Skip Record If...»及x轴所围成的平面图形的面积.2.求由曲线«Skip Record If...»及直线«Skip Record If...»所围成的平面图形的面积.3.求由抛物线«Skip Record If...»与直线«Skip Record If...»围成的图形,绕«Skip Record If...»轴旋转而成的旋转体的体积.。