1
1
x4
dx
x2(1
x
2
dx )
1 x4
dx
[
1 x2
1
1 x2
]dx
1 x3 x1 arctan x C 3
例7.
2
3x
3x
5
2
x
dx;
解:
2
3x
3x
5
2
x
dx
2
dx
5
(
2 ) x dx 3
2x 5 (2 / 3)x C ln(2 / 3)
例8. 设函数 f ( x) 定义于 (0, ) 上,并且满足
积分号
原函数存在定理: 如果函数 f ( x) 在区间 I 内连续, 那么在区间 I 内存在可导函数 F ( x),使 x I ,都有 F ( x) f ( x).
连续函数一定有原函数.
例1 求 x5dx.
解
x6 x5 , x5dx x6 C .
6
6
例2
求
1
1 x
2
dx.
解
arctan
F ( x),使得: F ( x) f ( x),x X 或 dF ( x) f ( x)dx 则称 F ( x) 是 f ( x) 的一个原函数,f ( x)的全部原函 数称为 f ( x) 的不定积分(indefinite integral),记作: f ( x)dx 若 f ( x) 存在原函数,也称 f ( x) 可积。
分
表
(3)
dx x
ln
|
x
|
C;
阐明: x 0,
dx ln x C,
x
x 0, [ln( x)] 1 ( x) 1 ,