积 分 号
被 积 函 数
被 积 表 达
式
积 分 变 量
任 意 常 数
函数 f ( x)的原函数的图形称为 f ( x) 的积分曲线.
显然,求不定积分得到一积分曲线族.
由不定积分的定义,可知
d
dx
f ( x)dx
f ( x),
d[ f ( x)dx] f ( x)dx,
F ( x)dx F ( x) C, dF ( x) F ( x) C.
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x
)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
(4)
1
1 x
2
dx
arctan
x
C;
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
f [ ( x)]( x)dx F[( x)] C [ f (u)du]u ( x) 由此可得换元法定理
定理8.4(1)设 f (u)具有原函数,u ( x)可导,
则有换元公式
f [ ( x)] ( x)dx [ f (u)du]u ( x)
第一类换元公式(凑微分法) 说明 使用此公式的关键在于将
不定积分的概念: f ( x)dx F ( x) C
基本积分表(1) 求微分与求积分的互逆关系