数值分析答案.pdf
- 格式:pdf
- 大小:1.47 MB
- 文档页数:96
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求nx 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯ 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字;*57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****2442*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =-9897Y Y =……10Y Y =-依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
习题11. 以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数。
(1)*1x =451.023, 1x =451.01; (2)*2x =-0.045 113, 2x =-0.045 18; (3)*3x =23.421 3, 3x =23.460 4;(4)*4x =31,4x =0.333 3;(5)*5x =23.496, 5x =23.494; (6)*6x =96×510, 6x =96.1×510; (7)*7x =0.000 96, 7x =0.96×310-; (8)*8x =-8 700, 8x =-8 700.3。
解:(1) =*1x 451.023 =1x 451.01=-1*1x x 0.01311021-⨯≤,1x 具有4位有效数字。
→1x 451.0(2) -=*2x 0.045 113 -=2x 0.045 18=-<⨯-2*241021x x 0.045 18045113.0-=0.000 06731021-⨯<2x 具有2位有效数字,045.02-→x(3)=*3x 23.4213 =3x 23.4604=-3*3x x =-4604.234213.23=-4213.234604.23110210391.0-⨯≤3x 具有3位有效数字,4.233→x (不能写为23.5)(4) =*4x 31,=4x 0.3333=-4*4x x 41021000033.0-⨯< ,4x 具有4位有效数字,=4x 0.3333 (5) =*5x 23.496,=5x 23.494=-5*5x x =-494.23496.2321021002.0-⨯<5x 具有4位有效数字, →5x 23.50 (不能写为23.49)(6) =*6x 51096⨯71096.0⨯= =6x 5101.96⨯710961.0⨯==-6*6x x 710001.0-⨯72101021--⨯⨯≤6x 具有2位有效数字,57610961096.0⨯=⨯=x(7) =*7x 0.00096 371096.0-⨯=x 3*71096.0-⨯=x =-7*7x x 0 7x 精确 (8) 8700*8-=x 8x 3.8700-=8*8x x -010213.0⨯≤= 8x 具有4位有效数字,8x 8700-=精确 2.以下各数均为有效数字: (1) 0.1062 + 0.947; (3)2.747⨯6.83;(2)23.46―12.753; (4)1.473 / 0.064 。
第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。
(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。
《数值分析》第⼀章答案习题11.以下各表⽰的近似数,问具有⼏位有效数字?并将它舍⼊成有效数。
(1)*1x =451.023, 1x =451.01;(2)*2x =-0.045 113, 2x =-0.045 18;(3)*3x =23.421 3, 3x =23.460 4;(4)*4x =31, 4x =0.333 3;(5)*5x =23.496, 5x =23.494;(6)*6x =96×510, 6x =96.1×510;(7)*7x =0.000 96, 7x =0.96×310-;(8)*8x =-8 700, 8x =-8 700.3。
解:(1) =*1x 451.023 =1x 451.01=-1*1x x 0.01311021-?≤,1x 具有4位有效数字。
→1x 451.0(2) -=*2x 0.045 113 -=2x 0.045 18=-241021x x 0.045 18045113.0-=0.000 06731021-?<2x 具有2位有效数字,045.02-→x(3)=*3x x =-4604.234213.23=-4213.234604.231 10210391.0-?≤3x 具有3位有效数字,4.233→x (不能写为23.5) (4) =*4x 31 ,=4x 0.3333=-4*4x x 41021000033.0-?<,4x 具有4位有效数字,=4x 0.3333(5) =*5x 23.496,=5x 23.494=-5*5x x =-494.23496.2321021002.0-?<5x具有4位有效数字,→5x 23.50 (不能写为23.49)(6) =*6x 51096?710961.0?==-6*6x x 710001.0-?72101021--??≤6x 具有2位有效数字,57610961096.0?=?=x(7) =*7x 0.00096 371096.0-?=x3*71096.0-?=x =-7*7x x 0 7x 精确(8) 8700*8-=x 8x 3.8700-=8*8x x -010213.0?≤=8x 具有4位有效数字,8x 8700-=精确2.以下各数均为有效数字: (1) 0.1062 + 0.947; (3)2.747?6.83; (2)23.46―12.753; (4)1.473 / 0.064 。