数值分析第五版第5章学习资料
- 格式:ppt
- 大小:2.64 MB
- 文档页数:161
数值分析第五章答案【篇一:数值分析第五版计算实习题】第二章2-1程序:clear;clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38];n=length(y1);c=y1(:);or j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i)*df(i);enddisp(4次牛顿插值多项式);p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs;disp(三次样条函数);for i=1:4s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1];s=vpa(collect(s),5)endx2=0.2:0.08:1.08;dot=[1 2 11 12];figureezplot(p4,[0.2,1.08]);hold ony2=fnval(pp,x2);x=x2(dot);y3=eval(p4);y4=fnval(pp,x2(dot));plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co);title(4次牛顿插值及三次样条);结果如下:4次牛顿插值多项式p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x +0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下2-3(1)程序:clear;clc;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];%插值点n=length(y1);a=ones(n,2);a(:,2)=-x1;c=1;for i=1:nc=conv(c,a(i,:));endq=zeros(n,n);r=zeros(n,n+1);for i=1:n[q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk)enddw=zeros(1,n);for i=1:ndw(i)=y1(i)/polyval(q(i,:),x1(i));%系数endp=dw*q;syms x l8;for i=1:nl8(i)=p(n-i+1)*x^(i-1);enddisp(8次拉格朗日插值);l8=vpa(collect((sum(l8))),5)xi=0:64;yi=polyval(p,xi);figureplot(xi,yi,x1,y1,r*);hold ontitle(8次拉格朗日插值);结果如下:8次拉格朗日插值l8 =- 3.2806e-10*x^8 + 6.7127e-8*x^7 - 5.4292e-6*x^6 +0.00022297*x^5 - 0.0049807*x^4 + 0.060429*x^3 - 0.38141*x^2 +1.3257*x输出图如下:第五章4-1(3)程序:clc;clear;y= @(x) sqrt(x).*log(x);a=0;b=1;tol=1e-4;p=quad(y,a,b,tol);fprintf(采用自适应辛普森积分结果为: %d \n, p);结果如下:采用自适应辛普森积分结果为: -4.439756e-01第九章9-1(a)程序:clc;clear;a=1;b=2;%定义域h=0.05;%步长n=(b-a)/h;y0=1;%初值f= @(x,y) 1/x^2-y/x;%微分函数xn=linspace(a,b,n+1);%将定义域分为n等份 yn=zeros(1,n);%结果矩阵yn(1)=y0;%赋初值%以下根据改进欧拉公式求解for i=1:nxn=xn(i);xnn=xn(i+1);yn=yn(i);yp=yn+h*f(xn,yn);yc=yn+h*f(xnn,yp);yn=(yp+yc)/2;yn(i+1)=yn;endxn=yn;%以下根据经典四阶r-k法公式求解for i=1:nxn=xn(i);yn=yn(i);k1=f(xn,yn);k2=f(xn+h/2,yn+h/2*k1);k3=f(xn+h/2,yn+h/2*k2);k4=f(xn+h,yn+h*k3);yn=yn+h/6*(k1+2*k2+2*k3+k4);yn(i+1)=yn;enddisp(改进欧拉法四阶经典r-k法); disp([xn yn])结果如下:改进欧拉法四阶经典r-k法 110.998870.998850.99577 0.99780.991140.996940.985320.996340.978570.996030.971110.996060.963110.996450.95470.997230.945980.998410.9370510.92798 1.0020.91883 1.00440.90964 1.00730.90045 1.01060.89129 1.01430.88218 1.01840.87315 1.02290.86421 1.02780.85538 1.03310.84665 1.0388(b)程序:clc;clear;a=0;b=1;%定义域h=[0.1 0.025 0.01];%步长y0=1/3;%初值f= @(x,y) -50*y+50*x^2+2*x;%微分函数 xi=linspace(a,b,11);y=1/3*exp(-50*xi)+xi.^2;%准确解 ym=zeros(1,11);for j=1:3【篇二:数值分析(第五版)计算实习题第五章作业】题:lu分解法:建立m文件function h1=zhijielu(a,b)%h1各阶主子式的行列式值[n n]=size(a);ra=rank(a);if ra~=ndisp(请注意:因为a的n阶行列式h1等于零,所以a不能进行lu 分解。
第5章
)矩阵行列式的值很小。
)矩阵的范数小。
)矩阵的范数大。
(7)奇异矩阵的范数一定是零。
答:错误,
∞
•可以不为0。
(8)如果矩阵对称,则|| A||1 = || A||∞。
答:根据范数的定义,正确。
(9)如果线性方程组是良态的,则高斯消去法可以不选主元。
答:错误,不选主元时,可能除数为0。
(10)在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。
答:错误。
对于病态方程组,选主元对误差的降低没有影响。
(11)|| A ||1 = || A T||∞。
答:根据范数的定义,正确。
(12)若A是n n的非奇异矩阵,则
)
(
cond
)
(
cond1-
=A
A。
答:正确。
A是n n的非奇异矩阵,则A存在逆矩阵。
根据条件数的定义有:
1
111111 cond()
cond()()
A A A
A A A A A A A
-
------
=•
=•=•=•
习题
如有侵权请联系告知删除,感谢你们的配合!。
WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
第5章
)矩阵行列式的值很小。
)矩阵的范数小。
)矩阵的范数大。
(7)奇异矩阵的范数一定是零。
答:错误,
∞
•可以不为0。
(8)如果矩阵对称,则|| A||1 = || A||∞。
答:根据范数的定义,正确。
(9)如果线性方程组是良态的,则高斯消去法可以不选主元。
答:错误,不选主元时,可能除数为0。
(10)在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。
答:错误。
对于病态方程组,选主元对误差的降低没有影响。
(11)|| A ||1 = || A T||∞。
答:根据范数的定义,正确。
(12)若A是n n的非奇异矩阵,则
)
(
cond
)
(
cond1-
=A
A。
答:正确。
A是n n的非奇异矩阵,则A存在逆矩阵。
根据条件数的定义有:
1
111111 cond()
cond()()
A A A
A A A A A A A
-
------
=•
=•=•=•
习题
如有侵权请联系告知删除,感谢你们的配合!。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
第五章 插值与逼近--------学习小节一. 本章学习体会本章学习了插值与逼近,经过本章的学习我对插值法有了进一步的认识。
插值与逼近就是寻找一个简单的函数来代替表达式复杂甚至无法写出表达式的函数。
可以说我们现在学习推导出来的方法公式等都是前人的辛苦钻研的结果,本章除了学到了许多的插值与逼近方法,更重要的是了解了许多科学前辈的故事以及他们许多做研究的态度与方法。
我感觉了解一下数学家的人生故事对我们学习数值分析或别的数学知识有很大的帮助。
上课时王老师给我们讲了数学奇才Hermite 的传奇故事,一个不会考试,基本上每次考数学都不及格的‘笨学生’,后来成为了伟大的数学家。
不是每个数学家都特别聪明,他们所具有的是作为一名科学家的品质,想别人没有想过的问题,在研究中创新,我们应该学习他们那种做研究的态度与精神。
学习这章时有一个小小的困惑,在曲线拟合的求法时,求多元函数的极小值*2200[()()]min [()()]im nm njj i i j j i i c i j i j cx f x c x f x φφ====-=-∑∑∑∑2010(,,,)[()()]mnn j j i i i j F c c c c x f x φ===-∑∑ 老师讲时说用0kFc ∂=∂求得,那万一求出的是极大值呢? 二.本章知识梳理数值分析中的插值是一种有力的工具,它最终得出的曲线图像都是过节点的,我们的目的使用它得出的图像来近似估计插值点的函数值。
我们首先学了代数插值中的一元函数插值,一元函数插值中学了拉格朗日插值但其插值公式没有延续性,后来学了牛顿插值,其优点是插值公式具有延续性,但前两者都有缺点,就是插值节点一般不超过三个,否则会有很大误差。
但实际工程中我们会测的许多的数据,也就有许多的节点,这样前两种差值方法就不能用了,后来我们又引进了分段线性插值,就是将这许多的节点进行分段,在每段中应用拉格朗日插值或牛顿差值。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。