矩阵的概念及几种特殊矩阵
- 格式:ppt
- 大小:489.00 KB
- 文档页数:13
各种矩阵的概念矩阵是现代数学的一个基本概念,广泛应用于线性代数、微积分、概率论、统计学等领域。
它是由若干行和列组成的一个矩形阵列。
在这篇文章中,我将介绍矩阵的基本概念和一些常见的矩阵类型。
一、基本概念1.1 元素:矩阵中每个所在行列交叉点上的数称为元素。
常用小写字母表示,如a_ij表示第i行第j列的元素。
1.2 阶数:矩阵的行数和列数称为矩阵的阶数。
如果一个矩阵有m行n列,记作m×n的矩阵,其中m和n分别表示矩阵的行数和列数。
1.3 主对角线:一个方阵从左上角到右下角的斜线称为主对角线。
1.4 零矩阵:所有元素都为零的矩阵称为零矩阵,用0表示。
二、特殊类矩阵2.1 方阵:行数和列数相同的矩阵称为方阵。
它可以表示线性变换、线性方程组等。
2.2 对称矩阵:主对角线两侧的元素相等的方阵称为对称矩阵。
如果一个矩阵A 满足A_ij=A_ji,其中A_ij表示第i行第j列的元素,A_ji表示第j行第i列的元素,则称矩阵A为对称矩阵。
2.3 反对称矩阵:主对角线上的元素为零,且A_ij=-A_ji的方阵称为反对称矩阵。
2.4 单位矩阵:主对角线上的元素为1,其余元素为零的方阵称为单位矩阵,用I表示。
例如,3×3的单位矩阵是[[1, 0, 0], [0, 1, 0], [0, 0, 1]]。
2.5 对角矩阵:主对角线以外的元素全部为零的方阵称为对角矩阵。
例如,一个对角矩阵可以表示特定向量的缩放因子。
2.6 上三角矩阵:主对角线以下的元素全部为零的方阵称为上三角矩阵。
例如,一个上三角矩阵的所有元素在主对角线和主对角线上方。
2.7 下三角矩阵:主对角线以上的元素全部为零的方阵称为下三角矩阵。
例如,一个下三角矩阵的所有元素在主对角线和主对角线下方。
三、矩阵运算3.1 矩阵的加法:相同阶数的两个矩阵相加,只需将对应位置上的元素相加。
3.2 矩阵的数乘:一个矩阵中的每个元素都乘以一个常数,结果仍然是一个矩阵。
矩阵的基本概念矩阵是线性代数中的重要概念,广泛应用于各个领域,如物理学、计算机科学、经济学等。
本文将介绍矩阵的基本概念,包括定义、表示、运算以及特殊类型的矩阵。
一、定义矩阵是一个二维数组,由m行n列的元素构成,示例如下: [a₁₁, a₁₂, ..., a₁ₙ][a₂₁, a₂₂, ..., a₂ₙ][ ... , ... , ..., ... ][aₙ₁, aₙ₂, ..., aₙₙ]其中aₙₙ表示矩阵中第k行第l列的元素。
二、表示矩阵可以用多种方式进行表示,常见的有行向量、列向量、分块矩阵和矩阵方程。
1. 行向量:将矩阵的一行元素写成一个行向量,示例如下:[a₁₁, a₁₂, ..., a₁ₙ]2. 列向量:将矩阵的一列元素写成一个列向量,示例如下:[a₁₁][a₂₁][ ... ][aₙ₁]3. 分块矩阵:将一个大矩阵划分为多个小矩阵组成的矩阵,示例如下:[A₁₁, A₁₂; A₂₁, A₂₂]4. 矩阵方程:将矩阵和向量之间的关系表示为矩阵方程,示例如下:AX = B三、运算矩阵有多种运算,包括加法、数乘、乘法和转置等。
1. 加法:两个矩阵的对应元素相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁ + B₁₁, A₁₂ + B₁₂][A₂₁, A₂₂] + [B₂₁, B₂₂] = [A₂₁ + B₂₁, A₂₂ + B₂₂]2. 数乘:将矩阵中的每个元素乘以一个常数,示例如下:c * [A₁₁, A₁₂] = [cA₁₁, cA₁₂][A₂₁, A₂₂] [cA₂₁, cA₂₂]3. 乘法:两个矩阵的对应元素相乘然后相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁B₁₁ + A₁₂B₂₁,A₁₁B₁₂ + A₁₂B₂₂][A₂₁, A₂₂] * [B₂₁, B₂₂] = [A₂₁B₁₁ + A₂₂B₂₁,A₂₁B₁₂ + A₂₂B₂₂]4. 转置:将矩阵的行和列互换得到新的矩阵,示例如下:[A₁₁, A₁₂, A₁₃] [A₁₁, A₂₁][A₂₁, A₂₂, A₂₃] -> [A₁₂, A₂₂][A₃₁, A₃₂, A₃₃] [A₁₃, A₂₃]四、特殊类型的矩阵矩阵还有一些特殊类型,包括零矩阵、单位矩阵、对角矩阵和方阵等。
关于矩阵的定义和概念教案教案:关于矩阵的定义和概念目标:1. 掌握矩阵的定义和基本概念。
2. 理解矩阵的运算法则和特殊类型的矩阵。
3. 能够应用矩阵进行问题求解和数学模型建立。
教学步骤:1. 引入矩阵的定义和概念(5分钟)- 提问:你们知道什么是矩阵吗?矩阵有什么特点?有哪些概念?- 解释:矩阵是由若干个数按照一定方式排列成的一个矩形数表。
矩阵由行和列组成,按照m行n列的格式表示为m×n矩阵,其中m和n分别表示矩阵的行数和列数。
2. 矩阵的基本概念(10分钟)- 行矩阵:只有一行的矩阵,例如[1, 2, 3]。
- 列矩阵:只有一列的矩阵,例如[1; 2; 3]。
- 零矩阵:所有元素都为0的矩阵,记作0。
- 方阵:行数和列数相等的矩阵。
- 对角矩阵:非对角元素都为0的方阵。
- 单位矩阵:对角元素都为1,其余元素都为0的方阵,记作I。
3. 矩阵的运算法则(15分钟)- 矩阵的加法:两个矩阵对应元素相加,结果为一个新的矩阵。
- 矩阵的减法:两个矩阵对应元素相减,结果为一个新的矩阵。
- 矩阵的数乘:用一个数乘以矩阵的每一个元素,结果为一个新的矩阵。
- 矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A与B可以相乘得到一个新的矩阵C,C的行数等于A的行数,列数等于B的列数。
4. 特殊类型的矩阵(10分钟)- 转置矩阵:将矩阵的行和列互换得到的新矩阵。
- 逆矩阵:满足A乘以它的逆矩阵等于单位矩阵的方阵A的逆矩阵。
- 行列式:方阵A的行列式用det(A)表示,用于求解方程组和计算矩阵的逆矩阵。
5. 应用矩阵进行问题求解和数学模型建立(20分钟)- 实际问题:用矩阵表示线性方程组,利用矩阵的运算法则求解方程组的解。
- 数学模型:利用矩阵表示线性变换,通过矩阵的乘法和逆矩阵求解线性变换的特征和性质。
6. 小结与练习(10分钟)- 小结:总结矩阵的定义和基本概念,矩阵的运算法则和特殊类型的矩阵。
- 练习:通过练习题加强对矩阵的理解和应用能力。
第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵(一)矩阵及相关概念1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n n n ≠≠=得不到由,.............. (2122221)11211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵,记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵 、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵 1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nn n n n n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算1.矩阵的加法CB A B A b a cC n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设 ,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A k kA 111))(3(---=AB AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律 A A T T =))(1( T T kA kA =))(2( T T T A B AB =))(3(T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n A A n )2())(3(2≥=-**n A A A n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T T T T T D BC AD C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O BC O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A EBA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵(一)矩阵的初等变换及相关概念1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换(1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去(4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换)(5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位鞠振宁经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P )()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E k E k E E E ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A E A B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~r E PAQ Q n P m n m A BPAQ Q P B A B A六、常考题型及其解题方法与技巧题型一、有关矩阵的概念及运算题型二、求方阵的幂n A数学归纳法思路,可用相似对角化来求个线性无关的特征向量有,当思路可用二项式定理展开则且,能分解成两个矩阵的和,若思路律就可很方便地求出个矩阵的乘积,用结合能分解为一列与一行两则,若思路,43)(,2,1)(1nn n nA n A CB A CB BC C B A A A A A r +==+== 题型三、求与已知矩阵可交换的矩阵题型四、有关初等变换的问题题型五、关于伴随矩阵的命题题型六、矩阵可逆的计算与证明⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B A E E A A E E A A AA EBA E AB B 111-1-1-1-1114)()();()(3121,,分块矩阵法思路,初等变换法思路,伴随矩阵法思路或使,定义法,找出思路 题型七、求解矩阵方程为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A B A r A r A B B Ax 2,,1)()(.2.111--===。
矩阵知识点(总10页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--矩阵定义 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==排成的m 行n 列的数表111212122212n n m m mna a a a a a a a a 称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E ) 3.正交矩阵定义6:A 是一个n 阶实矩阵,若,则称为正交矩阵。
定理:设A 、B 都是n 阶正交矩阵,则(1)或(2)(3) 也是正交矩阵 (4)也是正交矩阵。
定理:n 阶实矩阵A 是正交矩阵A 的列(行)向量组为单位正交向量组。
注:n 个n 维向量,若长度为1,且两两正交,责备以它们为列(行) 向量构成的矩阵一定是正交矩阵。
注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
E A A T=A 1=A 1-=A TA A =-1)(1TA A 即-AB ⇔1、上述形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。
特殊矩阵知识点总结归纳一、特殊矩阵的定义在线性代数中,矩阵是一个非常重要的概念,它是一个按照矩形排列的数的集合。
特殊矩阵是指具有特殊性质的矩阵,这些特性可以是对角矩阵、上三角矩阵、下三角矩阵、对称矩阵、正交矩阵等。
1. 对角矩阵对角矩阵是一种形式特殊的矩阵,它的非对角元素都是零。
具体来说,一个n×n的矩阵A 是对角矩阵,当且仅当a_ij=0,i≠j。
对角矩阵的特点是计算简单,特殊类型的特殊矩阵可以大大简化计算过程。
2. 上三角矩阵和下三角矩阵上三角矩阵和下三角矩阵也是特殊矩阵的一种。
上三角矩阵是指所有主对角线以下的元素都为零的矩阵,而下三角矩阵是指所有主对角线以上的元素都为零的矩阵。
这两种矩阵的特点是对称性很强,可以简化矩阵的运算过程。
3. 对称矩阵对称矩阵是一种特殊的矩阵,它满足a_ij=a_ji。
也就是说,对称矩阵的元素关于主对角线对称。
对称矩阵具有许多特殊的性质,比如它的特征值都是实数,对应不同的特征值的特征向量是正交的等。
4. 正交矩阵正交矩阵是指满足Q^T·Q=I的方阵Q,其中Q^T表示Q的转置矩阵,I表示单位矩阵。
正交矩阵的特点是它的列向量是正交的,也就是说,Q^T·Q=I意味着Q的列向量正交。
正交矩阵在旋转、变换等领域有着广泛的应用。
二、特殊矩阵的性质特殊矩阵具有许多特殊的性质,这些性质使得它们在科学计算、工程学和物理学等领域中有着广泛的应用。
1. 对角矩阵的性质对角矩阵的特点是它的非对角元素都是零,这使得它的计算非常简单。
对角矩阵的特征值就是它的对角线上的元素,而特征向量就是标准基的元素。
此外,对角矩阵具有可逆性,只要对角线上的元素不全为零,对角矩阵就是可逆的。
2. 上三角矩阵和下三角矩阵的性质上三角矩阵和下三角矩阵都具有可逆性,只有主对角线上的元素不为零,它们就是可逆的。
此外,上三角矩阵和下三角矩阵的特征值就是它们的对角线上的元素,而特征向量就是标准基的元素。
第二章矩阵2.1矩阵的概念定义2.1.1由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的数表用大小括号表示称为一个m行n列矩阵。
矩阵的含义是:这m×n个数排成一个矩形阵列。
其中a ij称为矩阵的第i行第j列元素(i=1,2,…,m;j=1,2,…,n),而i称为行标,j称为列标。
第i行与第j列的变叉位置记为(i,j)。
通常用大写字母A,B,C等表示矩阵。
有时为了标明矩阵的行数m和列数n,也可记为A=(a ij)m×n或(a ij)m×n或A m×n当m=n时,称A=(a ij)n×n为n阶矩阵,或者称为n阶方阵。
n阶方阵是由n2个数排成一个正方形表,它不是一个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。
只有一阶方阵才是一个数。
一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。
n阶方阵的主对角线上的元素a11,a22,…,a nn,称为此方阵的对角元。
在本课程中,对于不是方阵的矩阵,我们不定义对角元。
元素全为零的矩阵称为零矩阵。
用O m×n或者O(大写字)表示。
特别,当m=1时,称α=(a1,a2,…,a n)为n维行向量。
它是1×n矩阵。
当n=1时,称为m维列向量。
它是m×1矩阵。
向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。
例如,(a,b,c)是3维行向量,是3维列向量。
几种常用的特殊矩阵:1.n阶对角矩阵形如或简写为(那不是A,念“尖”)的矩阵,称为对角矩阵,例如,是一个三阶对角矩阵,也可简写为。
2.数量矩阵当对角矩阵的主对角线上的元n阶数量矩阵素都相同时,称它为数量矩阵。
有如下形式:或。
(标了角标的就是N阶矩阵,没标就不知是多少的)特别,当a=1时,称它为n阶单位矩阵。
n阶单位矩阵记为E n或I n,即或在不会引起混淆时,也可以用E或I表示单位矩阵。
第五章矩阵辞海:将mn个元素排成m行n列的矩形称为m行n列矩阵。
当m=n时称为n 阶方阵。
矩阵可按某些规则进行加法、乘法以及数与矩阵相乘等运算。
矩阵的概念最初是由解线性方程组产生。
我国古代用筹算法解线性方程组时就是用筹码排成矩阵来进行的。
矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。
百度“矩阵”,找到约约60,100,000条结果;Google“matrix”,找到约467,000,000 条结果.背景知识:矩阵的历史⏹矩阵的概念是在解线性方程组中产生的。
如我国《九章算术》(公元前1世纪)用筹算解线性方程组时,就是把算筹排列成矩阵形式来进行的。
⏹1850年由西尔维斯特(Sylvester)(英)首先提出矩阵的概念。
⏹1857年卡莱(A.Cayley)(英)建立了矩阵运算规则。
⏹矩阵由最初作为一种工具经过近两个世纪的发展,现在已成为独立的一门数学分支——矩阵论。
而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
⏹矩阵及其理论现已广泛地应用于自然科学、工程技术、社会科学等许多领域。
如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、图像处理等方面都有广泛应用。
5.0矩阵的概念一、教学内容1、矩阵的概念2、矩阵相等3、几种特殊矩阵二、教学目的了解矩阵的产生背景,掌握矩阵的概念,理解矩阵相等的涵义,认识几种特殊矩阵三、重点难点矩阵相等一、引例我们先看几个例子例1:设有线性方程组:⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x这个方程组未知量系数及常数项按方程组中的顺序组成一个4行5列的数表如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛------71317391118331211151 这个数表决定了给定方程组是否有解?以及如果有解,解是什么等问题,因此对这个数表的研究就很有必要。
矩阵知识点总结大纲一、矩阵的基本概念1.1 矩阵的定义1.2 矩阵的元素1.3 矩阵的维数1.4 矩阵的转置1.5 矩阵的特殊矩阵二、矩阵运算2.1 矩阵的加法2.2 矩阵的数乘2.3 矩阵的乘法2.4 矩阵的转置2.5 矩阵的幂2.6 矩阵的逆2.7 矩阵的行列式2.8 矩阵的秩三、线性方程组与矩阵3.1 矩阵的行简化阶梯形式3.2 矩阵的列简化阶梯形式3.3 矩阵的增广矩阵3.4 矩阵的系数矩阵3.5 矩阵的齐次线性方程组3.6 矩阵的非齐次线性方程组四、矩阵的应用4.1 线性代数4.2 计算机图形学4.3 信号处理4.4 优化问题4.5 统计学4.6 量子力学五、矩阵分析5.1 矩阵的迹5.2 矩阵的本征值与本征向量5.3 矩阵的相似矩阵5.4 矩阵的对角化5.5 矩阵的奇异值分解5.6 矩阵的正交矩阵六、矩阵的特征6.1 矩阵的周期性6.2 矩阵的稀疏性6.3 矩阵的对称性6.4 矩阵的正定性6.5 矩阵的随机性七、矩阵的发展历程7.1 矩阵的起源7.2 矩阵的发展7.3 矩阵的应用八、矩阵的未来发展8.1 矩阵的应用领域拓展8.2 矩阵的理论深化8.3 矩阵的计算方法改进九、矩阵的教学与研究9.1 矩阵的教学模式9.2 矩阵的教学资源9.3 矩阵的研究方向十、矩阵的未来前景10.1 矩阵的应用前景10.2 矩阵的教学前景10.3 矩阵的研究前景十一、矩阵的总结与展望11.1 矩阵的总结11.2 矩阵的展望结语矩阵知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是一个按照长方形排列的数表。
其中的元素可以是数字、符号或数学式。
矩阵是线性代数的基本概念,应用非常广泛,涉及几何学、概率论、微分方程以及物理学和工程学等各个学科。
1.2 矩阵的元素矩阵的元素是矩阵中的一个具体数值或符号。
1.3 矩阵的维数一个矩阵的维数是指矩阵的行数与列数。
如果一个矩阵有m行n列,则称其为m×n阶矩阵。