第十二章 轴对称复习
- 格式:ppt
- 大小:1.99 MB
- 文档页数:97
第十二章《轴对称》知识整理一、基本知识提炼整理(一)基本概念1•轴对称图形如果一个图形沿一条直线折叠,真线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2.线段的垂直平分线经过线段屮点并且垂直于这条线段的育线,叫做这条线段的垂肓平分线。
3.轴对称变换由一个平血图形得到它的轴对称图形叫做轴对称变换。
4.等腰三角形有两条边相等的三角形,叫做等脛三角形。
相等的两条边叫做腰,另一条边叫做底边, 两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
5.等边三角形三条边都相等的三角形叫做等边三角形。
(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂育平分线。
2.线段垂肓平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等。
3.(1)点P (x, y)关于x轴对称的点的坐标为P' (x, -y)o(2)点P (x,y)关于y轴对称的点的坐标为P" (-X, y)。
4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的屮线、底边上的高相互重合。
(3)等腰三角形是轴对称图形,底边上的屮线(顶角平分线、底边上的高)所在直线就是它的对称轴。
(4)等腰三角形两腰上的高、屮线分别相等,两底角的平分线也相等。
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边。
5.等边三角形的性质(1)等边三饬形的三个内角都相等,并且每一个角都等于60° o(2)等边三角形迅轴对称图形,共有三条对称轴。
(3)等边三角形每边上的屮线、高和该边所对内角的平分线互相重合。
(三)有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中[关于坐标轴对称]点P(x,y)关于x轴对称的点的坐标是(x,-y)【关于x轴对称的点横坐标相等,纵坐标互为相反数】点P(x,y)关于y轴对称的点的坐标是(-x,y)【关于y轴对称的点横坐标互为相反数,纵坐标相等】[关于原点对称]点P(x,y)关于原点对称的点的坐标是(-x,-y)【关于原点对称的点横坐标和纵坐标互为相反数】[关于坐标轴夹角平分线对称]点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)[关于平行于坐标轴的直线对称]点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等.。
(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。
连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。
5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
一、基础知识梳理:1.什么是轴对称图形?性质:如果两个图形关于某条直线对称,那么对称轴是____________.或者说轴对称图形的对称轴,是______________.2.线段的垂直平分线有几条对称轴,性质是什么?3.角的平分线有几条对称轴,性质是什么?4.等腰三角形:有两条边相等的三角形,叫做等腰三角形.等腰三角形具有哪些性质?怎样判断一个三角形是等边三角形?5.三角形的三条角平分线交于一点,这点到距离相等。
6.三角形三边的垂直平分线交于一点,这点到距离相等,这点叫心,它与三角形的位置关系怎样?。
7.成轴对称的图形具有哪些性质?8.尺规作图:已知线段的垂直平分线、已知角的角平分线、等腰三角形的做法。
二、典型例题:轴对称:1.判断下列命题的正误:( )1.能够完全重合的两图形必关于某一直线对称.( )2.关于某一条直线对称的两个图形叫轴对称图形.( )3.等腰三角形底边中线是等腰三角形的对称轴.( )4.若两个三角形三个顶点分别关于同一直线对称,则这两个三角形关于该直线成轴对称.( )5.轴对称图形的对称轴有且只有一条.( )6.正方形的对称轴有四条.2.给出下列说法正确的有():(1)角的两边关于角平分线对称;(2)两点关于它们连接成的线段的中垂线对称;(3)成轴对称的两个三角形的对应点或对应线段或对应角也分别成轴对称;(4)到直线m距离相等的点关于m对称。
A、1个B、2个C、3个D、4个3.两个图形关于某直线对称,对称点一定在()A.直线的两旁B.直线的同旁C.直线上D.直线的两旁或直线上4.如图所示,将一张矩形纸片ABCD的角C沿着GF折叠 (F在BC边上,不与B,C 重合)使得C点落在矩形ABCD内部的E处,FH平分∠BFE,则∠GFH的度数α满足()A、90°<α<180° B、α=90°C、0°<α<90°D、α随着折痕位置的变化而变化镜面对称:1.2.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为垂直平分线与角平分线:1.当△ABC为锐角三角形时,点P在△ABC的__________;当△ABC为直角三角形时,点P在△ABC的__________;当△ABC为钝角三角形时,点P在△ABC的__________;2.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A、1处B、2处C、3处D、4处3.三角形内到三顶点的距离相等的点是()A、三角形的三条角平分线的交点B、三角形的三条高的交点C、三角形的三条中线的交点D、三角形的三边的垂直平分线的交点三线合一:1.如图,AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE等于_________.第6题图.2.如图,已知△ABC中,∠1=∠2,AB=AC=BC,ED=EB,(1)试说明:CE=CD.(2)小红认为:将“∠1=∠2”的条件改改,也可以的带同样的结论。
年级初二学科数学版本人教新课标版课程标题第十二章轴对称综合复习编稿老师陈孟伟一校李秀卿二校林卉审核王百玲一、学习目标:1. 总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2. 培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3. 归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力。
二、重点难点:重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用。
难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力。
三、考点分析:中考对本章的要求是通过具体实例识别轴对称、轴对称图形;理解轴对称图形和利用轴对称进行图案设计,探索图形之间的变换关系;掌握等腰三角形的性质和等腰三角形、等边三角形的识别,并能运用其性质解答实际问题。
从中考试题来看,本章知识以基础题为主,题型多以填空题、选择题的形式出现,也有简单的作图题和解答题。
等腰三角形图形的折叠与拼图和轴对称性质的应用是中考的热点题型。
知识点一:轴对称的应用例1. 已知AOB α∠=,P 是AOB ∠内一点,分别作点P 关于,OA OB 的对称点',''P P 。
(1)求证:'''2P OP α∠=;(2)若P 点在AOB ∠外,其他条件不变,那么(1)中的结论还成立吗?若成立请证明,若不成立请说明理由。
思路分析:本题考查的是轴对称的性质。
成轴对称的两个图形、或者轴对称图形在对称轴两侧的部分是“一模一样”的,严谨地说就是对应线段相等、对应角度相等、对应面积相等、对应点的连线被对称轴垂直平分等等。
解答过程:(1)如图(1)所示,当点P 在∠AOB 内部时,连接OP ',P P 关于OA 对称,则OA 垂直平分'P P∴'OP OP =,OA 平分'P OP ∠∴'2P OP AOP ∠=∠,同理可证''2POP BOP ∠=∠∴''''''2()22P OP P OP POP AOP BOP AOB α∠=∠+∠=∠+∠=∠=(2)如图(2)所示,当点P 在AOB ∠外部时,结论还成立。
初三数学第十二章轴对称(复习)一、【知识整理】(一)基本概念1.【轴对称图形】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.【线段的垂直平分线】经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.【轴对称变换】由一个平面图形得到它的轴对称图形叫做轴对称变换.4.【等腰三角形】有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.【等边三角形】三条边都相等的三角形叫做等边三角形.(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.对称点的坐标规律(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(简称“三线合一“)(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. (4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合。
(4)直角三角形中,30°所对的直角边等于斜边的一半。
m CA B P 图3图2mC A B第十二章 轴对称知识点总结 我保证认真独立地完成今天的作业!签名:____________一、知识梳理1、轴对称图形____________________ ____________________________ 这条直线叫做________________。
互相重合的点叫做________________。
轴对称_______________________________________________ _ 这条直线叫做________________。
互相重合的点叫做________________。
2、轴对称图形与轴对称的区别与联系:区别________________________________________________。
联系________________________________________________。
3、轴对称的性质:_______________________________________________。
_______________________________________________。
4、线段的垂直平分线定义:________________________________________________如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
5、线段的垂直平分线性质:_______________________________________________。
如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
6、等腰三角形定义:___________________________________________:7、等腰三角形性质:___________________________________________:___________________________________________:8、等腰三角形判定。
人教版 第12章 轴对称考点一:关于“轴对称图形”与“轴对称”的认识 【知识要点】轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。
两个图形中的对应点叫做__________ 【例题解析】1、在26个大写英文字母中,是轴对称图形的有 。
2、在三角形、等腰三角形、梯形、直角梯形、等腰梯形、平行四边形中,是轴对称图形的有 。
其中的对称轴最多,有条 。
3、下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有( )A .1个B .2个C .3个D .4个 4、.图9-19中,轴对称图形的个数是( )A .4个B .3个C .2个D .1个5、正三角形有 条对称轴,正四边形有 条对称轴,正n 边形有___条对称轴。
考点二:垂直平分线的性质定理及判定定理 【知识要点】(一)性质定理:线段的垂直平分线上的点到线段两端点的距离相等。
几何语言:。
ABOPPB PAABPOABO=∴⊥的中点,且为线段点【例题分析】1.(2012•黄冈)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC 于点E,垂足为点D,连接BE,则∠EBC的度数为_________ .2.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.求∠PAQ的度数.3.(2012•常州)如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.4.(2010•娄底)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.(二) 判定定理: 【知识要点】到线段两端点距离相等的点在这条线段的垂直平分线上 几何语言:的垂直平分线上在线段点AB P PBPA ∴=引申——垂直平分线的判定要满足的条件: 1、直线过线段的中点 2、直线垂直于已知线段 【例题分析】1. 如图,△ABC 中,AB=AC ,PB=PC ,连AP 并延长交BC 于D ,求证:AD 垂直平分BC2.如图,AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,求证:AD 垂直平分EF .。