第12章 轴对称期末复习卷(含答案)
- 格式:doc
- 大小:636.50 KB
- 文档页数:6
第12章轴对称单元综合测评一、选择题(每小题3分,共30分)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
1.下列图形中一定是轴对称图形的是()A.梯形B.直角三角形C.等腰三角形D.平行四边形2.已知△ABC在直角坐标系中的位置如图所示,如果△A'B'C'与△ABC关于y轴对称,那么点A的对应点A'的坐标为()A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)(第2题)(第3题)(第4题)3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD 的度数等于()A.40°B.50°C.60°D.70°4.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB 边上的C′处,并且C′D//BC,则C′D的长是()A.409B.509C.154D.2545.在平面直角坐标系中,已知A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.5个6.下列图形中对称轴条数最多的是()A.正方形B.长方形C.等腰三角形D.等边三角形7.下列图案中,是轴对称的是()A.(1)(2)B.(1)(3)(4) C.(1)(4)D.(2)(3)8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.5 C.8 D.109.如图,在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30°B.36°C.45°D.72°10.如图,在等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()A.44°B.68°C.46°D.22°二、填空题(每小题3分,共30分)11.正六边形的对称轴有_____________条.12.在△ABC中,AB =AC,AB的中垂线与AC所在直线相交所得的锐角是50°,则∠B 的度数为_____________.13.若等腰三角形的两边长分别为6和8,则该等腰三角形的周长为_____________.14.一条船5点从灯塔C南偏东42°的A处出发,以16海里/时的速度向正北航行,8点到达B处,此时灯塔C在船的北偏西84°方向,则船距离灯塔C_____________海里.(第14题)(第15题)15.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=500,则∠BDF=_____________.16.如图,在△ABC中,AB=AC,∠A=50︒,BD为∠ABC的平分线,则∠BDC的度数为_____________.17.如图,由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是_____________.18.一个顶角为40︒的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_____________度.19.如图,在△ABC中,AB=AC,∠BAD=20°,且AE=•AD,则∠CDE=_____________.20.如图,沿大正三角形的对称轴对折,则互相重合的两个小三角形内的单项式的乘积为_____________.三、解答题(每小题8分,共40分)21.图中的大正三角形是由9个相同的小正三角形拼成的,将其部分涂黑,如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下性质:①都是轴对称图形,②涂黑部分都是三个小正三角形.请你在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.22.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边长.23.如图,△ABC是等边三角形,BD是AC边上的高,延长BC到E使CE=CD.试判断DB与DE之间的大小关系,并说明理由.24.如图,△ABC中, D、E分别是AC、AB上的点, BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个..条件..可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形, 证明△ABC是等腰三角形.25.如图,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,请你替测量人员计算BC 的长.参考答案一、1.C 2.D 3.C 4.A 5.C 6.A 7.B 8.C 9.B 10.D二、11.6 12.40︒或20︒ 13.20或22 14.48 15.80︒ 16.825 17.30a 18.220 19.10︒ 20.a ,22a b ,32a b 三、21.图略. 22.7cm 或11cm .23.关系:DE =DB .∵CD =CE ,∴∠E =∠EDC ,又∵∠ACB =60°,∴∠E =30°, 又∵∠DBC =30°,∴∠E =∠DBC ,•∴DB =DE . 24.(1)情形一:①和③;情形二:②和③.(2)选择情形一.证明:∵∠EOB =∠COD ,∠EBO =∠DCO ,BE =CD .∴△BEO ≌△CDO .∴BO =CO .∴∠OBC =∠OCB . ∴∠EBO +∠OBC =∠DCO +∠OCB ,即∠ABC =∠ACB . ∴AB =AC .∴△ABC 是等腰三角形.25.∵ED 是AB 的垂直平分线,∴DA =DB.又∵△BDC 的周长为17m ,AB =AC =10m ,∴BD+DC+BC =17,∴DA+DC+BC =17,即AC+BC =17. ∴10+BC =17,∴BC =7m .可以编辑的试卷(可以删除)。
图130,请你求出其余两角30和120”;王华同学说:75和75”.还有一些同学也提出了不同的看法.)假如你也在课堂中,你的意见如何?为什么?75和75或30和120.30+α+α=180,75.75和75.++β=,3030180120.30和120.“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给.为顶点将平角五等份,并沿五等份的折线折叠,再等于().如图,一平面镜与水平面成45°角固定在水平桌面上,一小球以桌面向平面镜匀速滚去,则小球在平面镜里所成的像(的速度,做竖直向上运动 B. 以1m/s的速度,做竖直向下运动的速度,做竖直向上运动 D. 以2m/s的速度,做竖直向下运动如图,在Rt△ABC中,∠C=90°,直线BD交AC于上;然后再沿虚线上的半圆,再展开,则展开后二、填空题(每小题3分,共24分)1.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△的形状是___________.2. 如图6,DE是AB的垂直平分线,D是垂足,DE交BC于AC=18cm,则△AEC的周长为_______cm.3. 已知点A,B,C,D的坐标分别为A(-2,1),B(1,2),C(-2,-1),D(1,-2),则线段AB与CD关于______.4.在如图7的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠的顶点A,B,C,D按顺时针方向排列,若在平面直角坐标系内,、D两点对应的坐标,0),且A、C两点关于x中,∠B=∠C,FD⊥BC,________.__________.成轴对称且也以格点为顶点的三角A AB CC.3 D.4 6,则此等腰三角形的周长为()=90°,AB的垂直平分线交.的对称轴,如果AD∥BC(用直尺、圆规作图,保留作图痕迹,不写作法,不要求证明)2008年北京2004年雅典1988年汉城1980年莫斯科ABCD.如图1,在平面直角坐标系中,下列各中是点E关于x轴的对称点的是(加拿大澳大利亚瑞士乌拉圭A.加拿大、乌拉圭B.加拿大、瑞士、澳大利亚,请你找出格纸中所有与。
课标人教版八年级(上)数学检测试卷轴对称 A 卷(考试时间为60分钟,满分100分)姓名:______________一、填空题(每小题3分,共30分) 1.长方形的对称轴有___________条. 2.等腰直角三角形的底角为_____________.3.等边三角形的边长为a ,则它的周长为_____________. 4.(-2,1)点关于x 轴对称的点坐标为__________.5.如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有_______个. 6.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.7.△ABC 中,AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB =_______度. 8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.9.在“线段,角,半圆,长方形,梯形,三角形,等边三角形”这七个图形中,是轴对称的图形有_______个.10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC ,有下列结论:①AB ∥CD ;②AB =CD ;③AB ⊥BC ;④AO =OC 其中正确的结论是_______________. (把你认为正确的结论的序号都填上)二、选择题(每小题3分,共30分)11.下列平面图形中,不是轴对称图形的是( )12.下列英文字母属于轴对称图形的是( )(A )(B )(C )(D )ABC D第5题第6题ABDCE第10题ABCDl O(A ) N (B ) S (C ) H (D ) K13.下列图形中对称轴最多的是( )(A )圆 (B )正方形 (C )等腰三角形 (D )线段14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )(A )∠B =∠C (B )AD ⊥BC (C )AD 平分∠BAC (D )AB =2BD15.△ABC 中,AB =AC .外角∠CAD =100°,则∠B 的度数( )(A )80° (B )50° (C )40° (D )30°16.等腰三角形的一个角是80°,则它的底角是( )(A )50° (B ) 80° (C ) 50°或80° (D ) 20°或80°17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =8m ,∠A =30°,则DE 等于( )(A )1m (B ) 2m (C )3m (D ) 4m19.以下叙述中不正确的是( )A 、等边三角形的每条高线都是角平分线和中线B 、有一内角为 60的等腰三角形是等边三角形C 、等腰三角形一定是锐角三角形D 、在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等。
2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个2.下列选项中,计算正确的是()A. B. C. D.3.点P在第三象限内,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A. B. C. D.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,下列表述错误的是()A.平均数是80B.极差是15C.中位数是80D.标准差是255.在平面直角坐标系中,点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.若直线:与直线:的交点在第二象限,则k的取值范围是()A. B. C. D.7.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.C.4或D.2或8.已知是二元一次方程组的解,则的平方根为()A. B.2 C. D.9.如图所示,在长方形ABCD中,,,若将长方形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A. B. C. D.1010.已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.在平面直角坐标系中,点关于原点对称的点的坐标是_________.12.若的值是8,则的值是______.13.函数中,自变量x的取值范围是______.14.若的小数部分为a,的小数部分为b,则的值为______.15.的三边a、b、c满足试判断的形状是______.16.如图,直线,点坐标为,过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点;再过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点,…,按照此做法进行下去,点的坐标为______.三、解答题:本题共8小题,共72分。
八年级数学期末复习专题轴对称与等腰三角形姓名:_______________班级:_______________得分:_______________一选择题:1.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:013.平面内点A(-1,2)和点B(-1,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=-14.如图,△ABC与△关于直线MN对称,P为MN上任一点,下列结论中错误的是( )(A)△是等腰三角形. (B)MN垂直平分.(C)△ABC与△面积相等.(D)直线AB、的交点不一定在MN上.5.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().6.若等腰三角形一个外角等于100,则与它不相邻的两个内角的度数分别为…()A.40,40B.80°,20C.50°,50°D.80°,20°或 50°,50°7.如图是轴对称图形,它的对称轴有()A.2条 B.3条 C.4条 D.5条8.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A.24B.30C.32D.349.如图,把一长方形纸片ABCD沿EG折叠后,点A、B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()A.40°B.50°C.65°D.80°10.如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种11.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC长为( )A.2 B.3 C.4 D.以上都不对12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处13.∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B. 40°C.50°D. 60°14.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm15.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )A.30° B.35° C.40° D.50°16.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A.2个 B.3个 C.4个 D.5个17.平面上有A、B两点,以线段AB为一边作等腰直角三角形,能作()A.3个B.4个C.6个 D.无数个18.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定19.如图,已知∠AOB=60º,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM的长为()A.3B.4C.5D. 620.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.)n﹣1•65°C.()n﹣1•75°D.()n•85°二填空题:21.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.22.已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是cm.23.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.24.课间,顽皮的小刚拿着老师的等腰直角三角板放在黑板上画好了的平面直角坐标系内(如图),已知直角顶点H的坐标为(0,1),另一个顶点G的坐标为(4,4),则点K的坐标为25.如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为.26.如图,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.27.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.28.如图所示,线段AB=8cm,射线AN⊥AB于点A,点C是射线上一动点,分别以AC、BC为直角边作等腰直角三角形,得△ACD与△BCE中,连接DE交射线AN于点M,则CM的长为.29.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,……均为等边三角形,若OA1=2,则△A5B5A6的边长为.30.如图,△ABC中,∠ACB=60°,△ABC′,△BCA′,△CAB′都是△ABC形外的等边三角形,点D在边AC 上,且DC=BC.连接DB,DB′,DC′.有下列结论:①CDB是等边三角形;②△C′BD≌△B′DC;③S△AC′D≠S△DB′A④S +S△ABC′=S△ACB′+S△A′BC其中,正确的结论有(请写序号,少选、错选均不得分)△ABC三作图题:31.作图题:(不写作法,但必须保留作图痕迹,如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
轴对称测试题及答案Revised on November 25, 2020DCBA新人教版八年级数学上册第十二章轴对称测试题及答案一、 选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B关于直线L 对称 3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( ) A.(-2,-1) B.(-2,1) C.(2,1) D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( ) A. 1 B. -1 C. 4 D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线. 7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( ) A.(4,1) B.(4,-1) C.(-4,1) D.(-4,-1) 8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与 点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )第14题°,65° °,80° °,65°或50°,80° °,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( ) A. 30° B. 150° C. 30°或150° °11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形 二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有 条对称轴. A 1B 1C 1与△ABC 关于y 轴对称,那么点A 的对应点A 1的是 .16.已知∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ = .17.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 .18.点P (1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 .19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 20.在△ABC 和△ADC 中,下列3个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题 :21题⑵BEDCBAPDCBAPE DCB A .三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴ 如图,已知线段AB 和直线L ,作出与线段AB 关于直线L 对称的图形.⑵ 已知∠AOB 和C 、D 两点,求作一点P ,使PC =PD ,且P 到∠AOB 两边的距离相等.22.(5B (-1,0),C (-4,3).⑴求出△ABC 的面积.⑵ 在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1. ⑶ 写出点A 1,B 1,C 1的坐标.23.(5分)如图所示,梯形ABCD 关y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0).⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE 并且相交于点P.求证:⑴CD =BE. ⑵∠BPC =120°NMF E CB AED CB A27.(6分)下面有三个结论:⑴等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵等腰三角形两腰上中线的交点到底边两端的距离相等.⑶等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC中,AB=AC,∠A=120°,BC=6,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.参考答案和提示:一、选择题:;;;;;;;;;;;;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。
初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。
2024-2025学年八年级数学上学期期中模拟卷(海南卷)(考试时间:100分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形+全等三角形+轴对称)。
5.难度系数:0.65。
一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的几何原理是( )A .两点之间线段最短B .垂线段最短C .两点确定一条直线D .三角形具有稳定性【答案】D 【解析】由题意,所用的几何原理是三角形具有稳定性;故选D .2.如图,AB AC =,B C Ð=Ð,则ABE ACF V V ≌的判定依据为( )A .ASAB .AASC .SASD .SSS【答案】A 【解析】∵在ABE V 与ACF △中,A A AB AC B C Ð=Ðìï=íïÐ=Ðî,∴()ASA ABE ACF ≌△△.故选:A .3.点()5,2A -关于y 轴对称的点坐标是( )A .()5,2--B .()5,2C .()5,2-D .()2,5-【答案】A【解析】点()5,2A -关于y 轴对称的点坐标是()5,2--,故选:A .4.为方便劳动技术小组实践教学,需用篱笆围一块三角形空地,现已连接好三段篱笆AB BC ,,CD ,这三段篱笆的长度如图所示,其中篱笆AB CD ,可分别绕轴BE 和CF 转动.若要围成一个三角形的空地,则在篱笆AB 上接上新的篱笆的长度可以为( )A .1mB .2mC .3mD .4m【答案】D 【解析】设在篱笆AB 上接上新的篱笆长度为x ,根据题意得:2m,8m,3m AB BC CD ===,Q BC CD AB x BC CD -<+<+,即5m 13m AB x <+<,\3m 11mx <<\在篱笆AB 上接上新的篱笆的长度可以为4m ,故选:D .5.已知图中的两个三角形全等,则a Ð 等于( )A .72°B .60°C .58°D .50°【答案】D【解析】∵ABC DEF ≌△△,∴50A a Ð=Ð=°,故选:D .6.如图,AB CD ∥,点E 在BC CD CE =,若34ABC Ð=°,则BED Ð的度数是()A .104°B .107°C .116°D .124°【答案】B【解析】AB CD Q P ,34C ABC \Ð=Ð=°,又CD CE =Q ,D CED \Ð=Ð,180C D CED Ð+Ð+Ð=°Q ,即342180CED °+Ð=°,73CED \Ð=°,18073107BED \Ð=°-°=°,故选:B .7.如图,在ABC V 中,72B Ð=°,36C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为( )A .40°B .38°C .36°D .32°【答案】C 【解析】72B Ð=°Q ,36C Ð=°,18072BAC B C \Ð=°-Ð-Ð=°,由作图可知MN 垂直平分线段AC ,DA DC \=,36\Ð=Ð=°DAC C ,723636BAD BAC DAC \Ð=Ð-Ð=°-°=°,故选:C8.已知两个等腰三角形可按如图所示方式拼接在一起,则边AC 的长可能为( )A .2B .3C .4D .5【答案】B 【解析】Q ABC V 为等腰三角形,\AC 为3或4,Q 224AC AD CD <+=+=,\3AC =,故选:B .9.如图,在ABC V 中,5AC =,7AB =,AD 平分BAC Ð,DE AC ^,2DE =,则ABD △的面积为( )A .14B .12C .10D .7【答案】D 【解析】过D 点作DF AB ^于F ,如图,AD Q 平分BAC Ð,DE AC ^,DF AB ^,2DF DE \==,1172722ABD S AB DF \==´´=V g .故选:D10.如图,在ABC V 与AEF △中,A C E 、、三点在一条直线上,180AEF BAF °Ð+Ð=,BCE BAF Ð=Ð,AB AF =,若24BC =,14EF =,则AC CE AE-的值为( )A .16B .27C .15D .310【答案】A【解析】解: ∵BCE BAF Ð=Ð,BCE B BAE Ð=Ð+Ð,BAF BAE FAE Ð=Ð+Ð,∴B FAE Ð=Ð,∵180AEF BAF Ð+Ð=°,180BCE BCA Ð+Ð=°,BCE BAFÐ=Ð∴BCA AEF Ð=Ð,在ABC V 和FAE V 中,BCA AEF B FAE AB AF Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC FAE V V ≌,∴24BC AE ==,14CA EF ==,∴10CE AE CA =-=,∴14101246AC CE AE --==,故选:A .11.如图,AD 是ABC V 的角平分线,DE AB ^于点E ,7ABC S =△,24DE AB ==,,则AC 长是( )A .3B .4C .6D .5【答案】A 【解析】如图所示,过点D 作DF AC ^于F ,∵AD 是ABC V 的角平分线,DE AB ^,DF AC ^,∴2DF DE ==,∵7ABC ABD ACD S S S =+=△△△,∴11722AB DE AC DF ×+×=,∴11422722AC ´´+´=,∴3AC =,故选:A .12.如图,AB AD =,140BAD Ð=°,AB CB ^于点B ,AD CD ^于点D ,E 、F 分别是CB 、CD 上的点,且70EAF Ð=°,下列结论中①DF BE =, ②ADF ABE △≌△, ③FA 平分DFE Ð,④EF平分AEC Ð,⑤BE DF EF +=.其中正确的结论是( )A .④⑤B .①②C .③⑤D .①②③【答案】C 【解析】∵E 、F 分别是CB CD 、上的任意点,∴DF 与BE 不一定相等,故①错误;∵AB CB ^于点B AD CD ^,于点D ,∴90D ABE Ð=Ð=°,∵AB AD =,∴ADF ABE V V ≌的另一个条件是DF BE =,∵DF 与BE 不一定相等,∴ADF △与ABE V 不一定全等,故②错误;延长CB 到点G ,使BG DF =,连接AG ,则18090ABG ABE Ð=°-Ð=°,∴ABG D Ð=Ð,在ABG V 和ADF △中,AB AD ABG D BG DF =ìïÐ=Ðíï=î,∴()SAS ABG ADF V V ≌,∴AG AF BAG DAF G AFD =Ð=ÐÐ=Ð,,,∵14070BAD EAF Ð=°Ð=°,,∴70EAG BAE BAG BAE DAF BAD EAF Ð=Ð+Ð=Ð+Ð=Ð-Ð=°,∴Ð=ÐEAG EAF ,在EAG △和EAF △中,AG AF EAG EAF AE AE =ìïÐ=Ðíï=î,∴()SAS EAG EAF V V ≌,∴G AFE AEB AEF EG EFÐ=ÐÐ=Ð=,,∴AFD AFE BE DF BE BG EG EF Ð=Ð+=+==,,∴FA 平分DFE Ð,故③⑤正确;若EF 平分AEC Ð,而AEF AEG Ð=Ð,∴60CEF AEF AEG Ð=Ð=Ð=°,与题干信息矛盾,故④错误;故选C.二、填空题(本大题共4小题,每小题3分,满分12分)13.如果一个多边形的每个内角都是144°,那么这个多边形的边数是 .【答案】10【解析】Q 一个多边形的每个内角都是144°,\这个多边形的每个外角都是18014436°-°=°,\这个多边形的边数为:3603610¸°=.故答案为:10.14.如图,ABC V 中,CD 为AB 边上的中线,点E 是CD 的中点,连接BE ,若ABC V 的面积为10,则BECV 的面积是 . 【答案】52【解析】∵CD 为AB 边上的中线,ABC V 的面积为10,∴152BCD ABC S S ==△△.∵点E 是CD的中点,∴1522BEC BCD S S ==V V ,故答案为:52.15.如图,已知在ABC V ,BD 、CD 分别平分EBA Ð、ECA Ð,BD 交AC 于F ,连接AD ,且20BDC Ð=°,则CAD Ð的度数为 °.【答案】70【解析】过点D 分别作DH BE ^交BE 于点H ,DM BG ^交BG 于点M ,DN AC ^交AC 于点N ,如图所示:因为BD 、CD 分别平分EBA Ð、ECA Ð,则DH DM =,DH DN=则DM DN =,因为DM BG ^,DN AC ^,所以AD 是GAC Ð的角平分线,因为BD 、CD 分别平分EBA Ð、ECA Ð,所以2ABC CBD Ð=Ð,2ACE DCE Ð=Ð,因为20BDC Ð=°,所以20DCE CBD Ð=Ð+°,则22220DCE CBD Ð=Ð+´°,即40ACE ABC Ð=Ð+°,所以40BAC а=因为180MAC BAC Ð+Ð=°,且AD 是GAC Ð的角平分线所以18040702CAD GAD °-°Ð=Ð==°.故答案为:70.16.如图,CN 平分ABC V 的外角ACM Ð,过点A 作CN 的垂线,垂足为点D ,B BAD Ð=Ð.若9AC =,6BC =,则AD 的长为 .【答案】152【解析】如图,AD 的延长线交BM 于点E ,B BAD Ð=ÐQ ,AE BE \=,CN Q 平分ACM Ð,ACN ECN \Ð=Ð,AD CN ^Q ,90ADC EDC \Ð=Ð=°,在ACD V 和ECD V 中,ACN ECN CD CD ADC EDC Ð=Ðìï=íïÐ=Ðî,(ASA)ACD ECD \V V ≌,AC EC \=,AD ED =,9=Q AC ,9EC \=,6BC =Q ,15BE BC EC \=+=,15AE \=,152AD \=,故答案为:152.三、解答题(本大题共6小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知AB 、CD 是两条公路,E 、F 是两个村庄,通讯公司要在两公路之间建一座信号基站,要求到两条公路距离相等,并且到两村庄距离之和最小,请你用尺规作图帮通讯公司确定符合要求的位置点P (保留作图痕迹,不写做法)【解析】如图所示,则点P 即为所求:.18.(12分)正多边形的每个内角比它相邻的外角的3倍还多36°,求这个多边形的对角线是多少条?【解析】设这个多边形的每个外角为x °,则180336x x -=+,·····(3分)解得36x =·····(6分)∴这个多边形的边数是3601036°=°·····(9分)∴这个多边形的对角线是()10103352´-=(条).·····(12分)19.(12分)如图,A ,E ,B ,D 在同一直线上,FE AD ^,CB AD ^,AE DB =,AC DF =,若30D Ð=°,求C Ð的度数.【解析】∵FE AD ^,CB AD ^,∴90FED CBA Ð=Ð=°,·····(2分)∵AE DB =,∴AE EB EB BD +=+,·····(4分)即AB DE =,·····(5分)在Rt ABC △与Rt DEF △中AB DE AC DF =ìí=î,∴()Rt Rt HL ABC DEF ≌△△,·····(8分)∴30D A Ð=Ð=°,·····(11分)∴9060C A Ð=°-Ð=°.·····(12分)20.(12分)如图,ABC V 的高AD 与高BE 交于点F ,过点F 作FG BC P ,交直线AB 于点G ,45ABC Ð=°.求证:(1)BDF ADC V V ≌;(2)FG DC AD +=.【解析】(1)证明:∵AD 是BC 边上的高,45ABC Ð=°,∴90ADB ADC Ð=Ð=°,∴45DAB DBA Ð=Ð=°,∴BD AD =,·····(2分)在Rt BDF V 中,90DBF DFB Ð+Ð=°,∵BE 是AC 边上的高,∴90FEA FEC Ð=Ð=°,·····(4分)在Rt AEF V 中,90EAF EFA Ð+Ð=°,∵DFB EFA Ð=Ð,∴DBF EAF Ð=Ð,·····(6分)在Rt BDF V 和Rt ADC V 中,DBF DAC BD AD BDF ADC Ð=Ðìï=íïÐ=Ðî,∴()BDF ADC ASA V V ≌;·····(8分)(2)证明:∵FG BC P ,45ABC Ð=°,∴45AGF ABC Ð=Ð=°,由(1)可得,45DAB Ð=°,∴AGF GAF Ð=Ð,·····(10分)∴FG FA =,由(1)可得,BDF ADC V V ≌,∴DF DC =,·····(11分)∵AD AF DF =+,∴AD FG DC =+,即FG DC AD +=.·····(12分)21.(12分)如图,在平面直角坐标系中,ABC V 的三个顶点分别为A 、B 、C .(1)在图中作出ABC V 关于y 轴的对称图形111A B C △.(2)求ABC V 的面积.(3)在x 轴上画出点P ,使PA PC +最小.【解析】(1)解:∵ABC V 的三个顶点的坐标分别为()3,4A -,()4,1B -,()1,2C -,∴它们关于y 轴的对称点111,,A B C 的坐标为:()13,4A ,()14,1B ,()11,2C ,·····(3分)∴111A B C △的图形如下图所示,·····(6分)(2)解:111331313224222ABC S =´-´´-´´-´´=△;·····(9分)(3)解:如下图所示,作点C 关于x 轴的对称点2C ,连接2AC 交x 轴于点P ,即为所求作的点.·····(12分)22.(14分)如图,等边ABC V 中,CD AB ∥,P 为边BC 上一点,Q 为直线CD 上一点,连接AP PQ 、,使得APQ BAC Ð=Ð.(1)①如图1,探索PAC Ð与PQC Ð的数量关系并证明;②如图1,求证:AP PQ =.(2)如图2,若将“等边ABC V ”改为“等腰直角ABC AB AC =V ()”,其他条件不变,求证:AP PQ =.(3)如图3,若继续将“等腰直角ABC V ”改为“等腰ABC AB AC =V ()”,其他条件不变,(2)中的结论是否正确?若正确,请你给出证明;若不正确,请你说明理由.【解析】(1)证明:PAC PQC Ð=Ð,过程如下:·····(1分)①如图1所示,过P 点作PF AB ∥,·····(2分)则PQC FPQ Ð=Ð,CD AB Q ∥,FPA BAP \Ð=Ð,又APQ BAC Ð=ÐQ ,APQ FPA BAC BAP \Ð-Ð=Ð-Ð,即FPQ PAC PQC Ð=Ð=з····(3分)②如图1所示,过P 点作PE AC ∥,·····(4分)则BE BP =,AE PC =,APE PAC PQC Ð=Ð=Ð,180120AEP BEP Ð=°-Ð=°Q ,180120PCQ B Ð=°-Ð=°,AEP PCQ \Ð=Ð,·····(5分)在AEP △和PCQ △中,APE PQC AE PC AEP PCQ Ð=Ðìï=íïÐ=Ðî,()ASA AEP PCQ \V V ≌,·····(6分)AP PQ \=.·····(7分)(2)解:延长CA 至F 点使PF PC =,·····(8分)45PFC PCF \Ð=Ð=°,180454590FPC \Ð=°-°-°=°,CD AB Q ∥,AC AB ^,AC CD \^,90ACQ \Ð=°,904545PCQ ACQ ACP \Ð=Ð-Ð=°-°=°,PCQ PFA \Ð=Ð,90APQ BAC Ð=Ð=°Q ,90FPC Ð=°,APF APC QPC APC \Ð+Ð=Ð+Ð,APF QPC \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PCPCQ PFA Ð=Ðìï=íïÐ=Ðî∴()ASA APF QPC V V ≌AP PQ \=.·····(9分)(3)解:正确,过程如下:·····(10分)在AC 上取一点F 使PF PC =,·····(11分)ABC \V 和PFC △均为等腰三角形,ACB PCF Ð=ÐQ ,FPC BAC \Ð=Ð,·····(12分)又APQ BAC Ð=ÐQ ,APQ FPC \Ð=Ð,APF QPC \Ð=Ð,CD AB \∥,ACQ BAC APQ FPC \Ð=Ð=Ð=,FPC FCP ACQ FCP \Ð+Ð=Ð+Ð,PFA PCQ \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PC PCQ PFA Ð=Ðìï=íïÐ=Ðî,∴()ASA APF QPC V V ≌,·····(13分)AP PQ \=.·····(14分)。
第2题 第4题 第5题 第9题 第十二章 轴对称期末复习卷
班级 姓名 座号 成绩
题号 一1 二2 三3 四4 五5 六6 七7 八8 得分
的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每题5分,共25分)
1.如图是用纸折叠成的图案,其中是轴对称图形的有( )
2.如图是一个风筝的图案,它是轴对称图形,量得30B ∠=,则E ∠的大小为( )
3.等腰三角形中的一个角等于100,则另两个内角的度数分别为( )
4.如图所示,15A ∠=,AB BC CD DE EF ====,则DEF ∠等于( )
5.如图,l 是四边形ABCD 的对称轴,如果AD BC ∥,则有以下结论:①AB CD ∥,②AB BC =,③AB BC ⊥,④AO CO =.那么其中正确的结论序号是( )
二、填空题(每题5分,共25分)
6.已知直角三角形中30角所对的直角边为2cm ,则斜边的长为 .
7.已知点(,2)A a -和(3,)B b ,若A 和点B 关于y 轴对称,则ab = .
8.等边ABC ∆的两条角平分线BD 和CE 交于点I ,则BIC ∠等于 .
A.1个
B.2个
C.3个
D.4个
A.30
B.35
C.40
D.45 A.40,40 B.50,50 C.100,20 D.40,40或100,20
A.90
B.75
C.70
D.60
A.①③④
B.①②④
C.②③④
D.①②③
9.如图所示,有一块三角形田地10
==,作AB的垂直平分线ED交AC于D,交AB于
AB AC m
∆的周长为17m,则BC的长为 .
E,量得BDC
10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与
上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n次,可以得到
条折痕.
第一次对折第二次对折第三次对折
三、解答题(共50分)
11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ?
12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠.
13.(12分)在ABC ∆中,90C ∠=,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若
30CAE B ∠=∠+,求AEB ∠.
14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,
ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==.
第2题第4题第5题第9题
参考答案
一、选择题(每题5分,共25分)
1.如图是用纸折叠成的图案,其中是轴对称图形的有( C )
2.(07武汉)如图是一个风筝的图案,它是轴对称图形,量得30
B
∠=,则E
∠的大小为( A )
3.等腰三角形中的一个角等于100,则另两个内角的度数分别为( A )
4.如图所示,15
A
∠=,AB BC CD DE EF
====,则DEF
∠等于( D )
5.如图,l是四边形ABCD的对称轴,如果AD BC
∥,则有以下结论:①AB CD
∥,②AB BC
=,③AB BC
⊥,④AO CO
=.那么其中正确的结论序号是( B )
二、填空题(每题5分,共25分)
6.已知直角三角形中30角所对的直角边为2cm,则斜边的长为
4cm.
7.已知点(,2)
A a-和(3,)
B b,若A和点B关于y轴对称,则ab=6
.
8.等边ABC
∆的两条角平分线BD和CE交于点I,则BIC
∠等于120
.
9.如图所示,有一块三角形田地10
AB AC m
==,作AB的垂直平分线ED交AC于D,交AB于E,量得BDC
∆的周长为17m,则BC的长为7m
.
10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与
上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n次,可以得到21
n-
条折痕.
A.1个
B.2个
C.3个
D.4个
A.30
B.35
C.40
D.45
A.40,40
B.50,50
C.100,20
D.40,40或100,20
A.90
B.75
C.70
D.60
A.①③④
B.①②④
C.②③④
D.①②③
第一次对折第二次对折第三次对折
三、解答题(共50分)
11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ?
解:如图,作点A 关于EF 的对称点A ',连接AB ', 交EF 于点C ,将白球A 打到台边EF 的点C 处,反弹后能击中彩球B .
12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠. 证明:连接BD
∵AD AB =
∴ABD ADB ∠=∠ 又∵ADC ABC ∠=∠ ∴BDC DBC ∠=∠ ∴DC BC =
∴在ACD ∆与ACB ∆中 AD AB
DC BC AC AC
=⎧⎪=⎨=⎪⎩ ∴ACD ∆≌ACB ∆ ∴12∠=∠ 13.(12分)在ABC ∆中,90C ∠=,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若
30CAE B ∠=∠+,求AEB ∠. 解:∵DE 垂直平分AB ∴EA EB = ∴EAB B ∠=∠ ∵90C ∠=
∴90CAE EAB B ∠+∠+∠= ∴3090B B B ∠++∠+∠= ∴20B ∠=
∴1802140AEB B ∠=-∠=
14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,
ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==. 证明:∵ABC ∆是等边三角形 ∴60ABC ACB ∠=∠=
∵OM ∥AC ,ON ∥AB
∴60ONM ABC ∠=∠=
60OMN ACB ∠=∠=
∴60MON ∠=
∴OMN ∆是等边三角形
∴ON OM MN ==
又∵ON ∥AB
BO 平分ABC ∠ ∴23∠=∠,13∠=∠ ∴12∠=∠ ∴=ON BN 同理OM MC =
∴BN MN MC ==
可以编辑的试卷(可以删除)。