用一个平面截正方体
- 格式:pdf
- 大小:2.74 MB
- 文档页数:29
2021年七上数学期中复习-图形的性质_图形认识初步_截一个几何体-单选题专训及答案截一个几何体单选题-专训1、(2021峡江.七上期末) 用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A . ①②B . ①④C . ①②④D . ①②③④2、(2017红山.七上期末) 一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A . 球体B . 圆柱C . 圆锥D . 球体或圆锥3、(2020达州.七上期中) 如图,是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A .B .C .D .4、(2016连城.七上期末) 指出图中几何体截面的形状()A .B .C .D .5、(2016深圳.七上期末) 下列说法正确的是()A . 经过一点可以作两条直线B . 棱柱侧面的形状可能是一个三角形C . 长方体的截面形状一定是长方形D . 棱柱的每条棱长都相等6、(2016深圳.七上期末) 用一个平面去截一个正方体,截面的形状不可能是()A . 梯形B . 五边形C . 六边形D . 七边形7、(2019贵阳.七上期末) 用一个平面去截一个几何体,如果截面的形状是圆,则原来的几何体可能是()A . 正方体B . 三棱柱C . 四棱锥D . 球8、(2020银川.七上期末) 下列说法错误的是()A . 单项式-ab2c3的系数为-1B . 多项式ab2+b5的次数为5C . 过七边形一个顶点与其他顶点连线可以分成5个三角形D . 用平面截一个正方体,截面的形状不可能是六边形9、(2019北京.七上期中) 如图,用水平的平面截几何体,所得几何体的截面图形标号是()A .B .C .D .10、(2021酒泉.七上期中) 用平面截一个正方体,可能截出的边数最多的多边形是()A . 七边形B . 六边形C . 五边形D . 四边形11、(2021.七上期中) 用一个平面去截正方体,截面不可能是()A . 长方形B . 五边形C . 六边形D . 七边形12、(2018丹东.七上期中) 用一个平面去截一个几何体,如果截面是三角形,那么这个几何体不可能是( )A . 圆锥B . 长方体C . 圆柱D . 三棱柱13、(2018北票.七上期中) 用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆A . ①②③④B . ①②③C . ②③⑤D . ③④14、(2018宿州.七上期中) 下面几何体截面一定是圆的是()A . 圆柱B . 圆锥C . 球D . 圆台15、(2020宁德.七上期中) 用一个平面去截一个正方体,则截面不可能是()A .B .C .D .16、(2018和平.七上期中) 下面几何体的截面图可能是圆的是()A . 圆锥B . 正方体C . 长方体D . 棱柱17、(2019深圳.七上期中) 如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A .B .C .D .18、(2019深圳.七上期中) (2018七上·深圳期末) 用一个平面截下列几何体,截面可能是三角形的是()①正方体②球体③圆柱④圆锥A . ①B . ①②C . ①④D . ①③④19、(2021济南.七上期中) 用一个平面去截下列几何体,截得的平面图形不可能是三角形的是()A .B .C .D .20、(2020兰州.七上期末) 正方体的截面中,边数最多的多边形是()A . 四边形B . 五边形C . 六边形D . 七边形21、(2017张掖.七上期中) 用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A . 圆锥B . 圆柱C . 球体D . 以上都有可能22、(2020丹东.七上期末) 下列叙述:①最小的正整数是;②若是一个负数,则一定是负数;③用一个平面去截正方体,截面不可能是六边形;④三角形是多边形;⑤绝对值等于本身的数是正整数.其中正确的个数有()A .B .C .D .23、(2020青羊.七上期中) 用一个平面去截一个正方体,截面不可能是()A . 梯形B . 五边形C . 六边形D . 七边形24、(2020吉州.七上期末) 用一个平面去截圆柱体,则截面形状不可能是()A . 正方形B . 三角形C . 长方形D . 圆25、(2021丹东.七上期中) 用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A . 正方体B . 棱柱体C . 圆柱D . 圆锥26、(2021渠.七上期中) 有下列说法:①两个有理数比较大小,绝对值大的反而小:②用一个平面去截正方体,面的形状可能是五边形;③数轴上表示两个有理数的点,较大的数表示的点离原点较远;④若a是3的相反数,则a的倒数是;⑤一个数的绝对值等于它的相反数,这个数一定是负数.其中正确的说法有()A . 5个B . 4个C . 3个D . 2个27、(2021沈阳.七上月试) 用一个平面去截正方体,截面的形状不可能是()A . 四边形B . 五边形C . 六边形D . 七边形28、(2021青白江.七上期中) 下面几何体的截面图不可能是圆的是()A . 圆柱B . 圆锥C . 球D . 棱柱29、(2020大田.七上期末) 圆锥的截面不可能是()A . 三角形B . 圆C . 长方形D . 椭圆30、(2020吉安.七上期末) 用平面去截下列几何体,能截得长方形、三角形、等腰梯形三种形状的截面,这个几何体是( )A .B .C .D .截一个几何体单选题-答案1.答案:B2.答案:C3.答案:C4.答案:B5.答案:B6.答案:D7.答案:D8.答案:D9.答案:A10.答案:B11.答案:D12.答案:C13.答案:A14.答案:C15.答案:D16.答案:A17.答案:B18.答案:C19.答案:C20.答案:C21.答案:B22.答案:B23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
正方体截面问题
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.下面让我们来探索用平面截正方体所得截面的形状.
我们知道正方体有六个面,用一个平面去解正方体至少要经过三个面,最多经过六个面.所以出现的截面只可能是三角形、四边形、五边形和六边形.
一、截面是三角形
用一平面截正方体,当平面经过正方体的三个面时,所得的截面的形状为三角形.所得的三角形可能是锐角三角形(如图1);等腰三角形(如图2);等边三角形(如图3).其中等边三角形三个顶点是正方形的顶点.
图1 图2 图3
二、截面是四边形
用一个平面截正方体,当平面经过正方体的四个面时,所得截面可能是正方形、长方形、梯形.
①用平行于底面的一个平面去截正方体时,按图4方式得到的截面是正方形.
图4
②按图5或图6或图7的方式切截,得到的截面是长方形
图5 图6 图7
③按图8的方式所得截面为梯形.
图8
三、截面是五边形
用平面截正方体,当平面经过正方体的五个面时,所得截面是五边形.如图9.
图9
四、截面是六边形
用平面截正方体,当平面经过正方体的六个面时,所得截面是六
边形,如图10.
图10
总结:用一个平面截正方体,截面可以是三角形,四边形,五边形,六边形。
但是由于正方体共有六个面,所以截面不可能是七边形.。
初中-数学-打印版 1.3截一个几何体基础经典全析题型1截正方体问题【题型典例1】如图1-3-9,用一个平面去截一个正方体,截面相同的是( )A.①与②B.③与④C.①与③④D.①与②,③与④思路导引:据图形可知①②都是截面与正方体的面平行,而③④的截面都是长为正方体的一个面的对角线的长,宽为正方体的棱长的长方形.答案:由图形可知截面相同的是①与②,③与④.故选D .方法:正方体截面的形状与截面的角度和方向有关,要认真观察和思考,这里最好是动手切截.题型2截圆柱问题【题型典例2】如图1-3-10,圆柱体被一个平面所截,其截面的形状不可能的是( )思路导引:根据从不同角度截得几何体的形状判断出正确选项.答案:当截面与轴截面平行时,得到的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面形状是圆;所以截面的形状不可能是A .故选A .方法:可从截面与轴截面的不同位置关系得到截面的不同形状.题型3截圆锥问题【题型典例3】如图1-3-11,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )A BD C 图1-3-10 图1-3-9 ① ②③ ④ A B C D图1-3-11初中-数学-打印版思路导引:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线,由图可知经过圆锥顶点的平面截圆锥所得的截面应该是个等腰三角形.答案:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线,由图可知经过圆锥顶点的平面截圆锥所得的截面应该是个等腰三角形,故选B .方法:判断几何体的截面,关键要理解面与面相交得到线.题型4由截面判断几何体的形状【题型典例4】用一个平面截一个几何体,所截出的面出现了如图1-3-12所示的四种形式,试猜想,该几何体可能是 .思路导引:根据当截面的角度和方向不同时,截面不相同可判断几何体的形状.答案:圆柱.平面倾斜竖截圆柱侧面和底面截圆柱截得到图①;平面倾斜圆柱底面截圆柱截得到椭圆;平面竖截圆柱得到长方形;平面平行圆柱底面截圆柱可以得到一个圆.故该几何体可能是圆柱.方法:由截面①②④可以推断几何体不是多面体,可能是圆柱、圆锥或圆台,由截面③可以推断该几何体可能是圆柱.综合创新探究题型5判断截后剩余图形的顶点数、棱数、面数【题型典例5】如图1-3-13,一正方体截去一角后,剩下的几何体有____个面,____条棱( )A .6,14 B.7,14 C.7,15 D.6,15思路导引:由图可知:截取一角后,剩下的几何体多了一个面,多了3条棱,即可求得.答案:截取一角后,剩下的几何体多了一个面,多了3条棱,即剩下的几何体由7个面,15条棱,故选C .方法:本题结合截面来判断多面体的顶点数、棱数、面数,这里一般可利用欧拉公式.题型6复杂的正方体的切截问题【题型典例6】如图1-3-14,是正方体被分割后的一部分,它的另一部分是( )① ② ③④ 图1-3-12 图1-3-13图1-3-14 A B DC初中-数学-打印版思路导引:解答此类问题要从正方体分割后的一部分入手来观察分析,我们会发现截口呈“F”形,因此只要在四个选项中寻找相应的“F”即可.答案:B方法:解决正方体的切截问题,应利用认知的角度来感知三维世界的“空间”,最好是动手制作切截模型来验证.题型7截面知识在生产、生活中的应用【题型典例7】某车间要切割一些外形是长方体的物体,但该种物体的内部构造不详.于是工人师傅决定用一组水平的平面切截这个物体,得到了一组(自下而上)的截面,截面形状如图所示1-3-15,这个长方体的内部构造可能是什么?思路导引:通过观察可以发现:在正方体内部的圆自下而上由大圆逐渐变成小圆和点.答案:这个长方体的内部构造为:长方体中间有一圆锥状空洞.方法:由截面形状去想象几何体与给一个几何体想象它的截面是一个互逆的思维过程,要根据所给截面形状仔细分析,展开想象.备战中考用一个平面去截一个几何体后判断截面的形状是本节的考点,但中考中考查的量不大,主要目的是考查同学们的空间想象能力,题型一般以填空题、选择题为主,分值为3~6分,难度较小.考法1几何体的切截问题中考典例1用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱B.圆锥C.三棱柱D.正方形思路导引:看所给选项的截面能否得到三角形即可.答案:A 选项中圆柱的截面可能是圆,长方形,符合题意;B 选项中圆锥的截面可能是圆,三角形,不符合题意;C 选项中三棱柱的截面可能是三角形,长方形,不符合题意;D 选项中正方体的截面可能是三角形,或四边形,或五边形,或六边形,不符合题意.故选A .点拨:本题考查常见几何体的截面的形状,注意正方体的截面经过几个面就可得到几边形.变式练习1用平面去截下列几何体,截面的形状不可能是圆的几何体是( )①② 图1-3-15A.球 B.圆锥 C.圆柱 D.正方体思路导引:根据圆锥、圆柱、球、正方体的形状特点判断即可.答案:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.故选D.初中-数学-打印版。
【教学主题】正方体截面的形状【教材分析】本节内容是高中数学必修2中的一个探究性课题,安排学习完本章内容之后讲授,通过对几何体的切截活动,交流等过程,提升学生的空间观念,积累数学知识.【学生分析】从认知特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到的充分的展示和表现,因此,在学习充分发挥学生在教学中的主体作用,采取让学生自已观察、大胆动手操作、进行小组间的讨论和交流、利用课件自主探索等方式,让学生主动地学习.【教学目标】知识与技能目标:经历切截正方体的活动过程,探索发现正方体的截面形状,体会几何体在切截过程中面与体的变化.过程与方法目标:通过对几何的切截活动,经历、观察、操作、想像、交流等过程,发展学生的空间观念,积累数学活动经验.情感与态度目标:通过学生自主探索与合作交流,培养学生与人合作,与人交流的良好品质,激发学生对知识需求的欲望和探索创新的精神,培养用数学的意识,激发学生对数学的热爱.【教学重点】探索截面形状的过程【教学难点】从切截活动中发现对同一几何体不同角度切截所得截面的不同形状的想象与如何截.【教学准备】在正式上课前一周给学生安排布置任务.根据课本必修2课题学习内容:用一个平面去截正方体,截面的形状是什么样的?要求学生通过自己具体实验操作,如可以利用切土豆或其他物体,也可以找一个正方体的封闭塑料桶灌上带有颜色的水等,组内讨论探究等形式,逐一解决课本上提出的问题,最后形成结论,完成课题学习报告.首先由课代表将全班学生分成6组,指定组长,提出课下讨论、研究的要求和建议.发给各小组课题学习报告表格.让学生课后进行实验和研究,最后形成小组的研究成果的报告.老师在这个阶段要不断的通过课代表了解各组实验及研究进程,及时予以指导.对一些错误的做法要及时给予纠正.【教学过程】一.新课导入1.立体几何中的三个公理分别是什么?2.面和面的位置关系有几种?3.面面平行的性质定理是什么?4.截面的定义用一个平面去截几何体,就得到一个平面图形,这个平面图形叫做截面.二.问题探究1.用一个平面截一个正方体,截面分别是什么形状?2.观察截正方体所得截面,问题探究截面可能是七边形吗?三.问题小结1.几何体的截面由平面与几何体各表面交线构成;一般的截面和几何体的几个面相交就能得到几条交线,截面就是几边形.2.正方体的截面可以是三角形、四边形、五边形、六边形.四.例题讲解例 1.证明正方体的截面是锐角三角形.若正方体的棱长是1,则截面是三角形时,面积最大是多少?例2.如图正方体的棱长是a,C,D分别是两条棱的中点.(1)证明四边形ABCD(图中阴影部分)是一个梯形;(2)求四边形ABCD的面积.例3、已知正方体A1B1C1D1—ABCD,E、F、H分别是A1B1、B1C1、AD的中点,过三点E、F、H作该正方体的截面.五.课堂练习1. 如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台解:因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选D.本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力.2.如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z (x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关解:从图中可以分析出,△EFQ的面积永远不变,为面A1B1CD面积的14而当P点变化时,它到面A1B1CD的距离是变化的,因此会导致四面体体积的变化.故选D.六.数学文化资料医学CT影像技术. CT是一种医学影像诊断技术,它就是类似于今天所要学习的“截一个几何体”的方法,只不过这里的“截”并不是真正的截,这里的“几何体”是病人某个患病器官,“刀”是射线,它的原理是用射线透射人体,然后用检测器测定透射后的放射量,通过计算机进行处理,重建人体断层图象并作出诊断,这是数学的“图象重建原理”在医学上的成功应用.CT的发明具有划时代的意义,获得了诺贝尔奖.七.课堂小结1、正方体截面可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、正方体截面不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形八.课外思考正四面体的截面的形状有哪些?九.信息技术应用思路本节讲授的是正方体的截面形状,如何让学生对截面有一个直观地认识,因此在讲解截面为三角形、四边形、五边形、六边形时运用PPT中的动画技术,给学生一个直观的呈现,让学生直观地感受到了信息技术的魅力,也为课堂增加了丰富的画面,为学生对本节知识点的掌握奠定了良好的基础。
截一个几何体
知识点一:截面,用一个平面去截几何体,截出的面叫做截面,截面形状通常为三角形、正方形、长方形、梯形、圆、椭圆等,截面的形状既与被截的几何体有关,还与截面的角度和方向有关。
知识点二:截一个几何体所得截面的形状
1、用平面去截正方体:用一个平面截正方体,
截面的形状可能是三角形、正方形、长方形、梯形、五
边形、六边形等。
2、用平面去截圆柱:常见的截面有长方形、圆、
椭圆、类似于梯形、类似于拱形。
3、用平面去截圆锥:截面的形状可能是三角形、圆、椭圆、类似于拱形。
4、用平面去截球:截面的形状都是圆。
1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.( )2.用一个平面去截一个圆柱,截出的面一定是圆. ( )3.用一个平面去截圆锥,截出的面一定是三角形. ( )4.用一个平面去截一个球,无论如何截,截面都是一个圆.( )二、选择题1.用一个平面去截圆锥,得到的平面不可能是( )2.用一个平面去截一个圆柱,得到的图形不可能是( ) 三、用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想. 四、指出下列几何体的截面形状. ___________ ___________ 北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.1B.12C.13D.142. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23 B.12C.13D.498.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为A.8B.6013 C.12013D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1) 15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。