数学建模降落伞的选择问题
- 格式:doc
- 大小:137.50 KB
- 文档页数:7
降落伞优化选择的整数线性规划模型摘要本文讨论了降落伞合理选择使费用最低的问题。
通过对问题的分析,最大化载重量,最小化选购降落伞费用。
以牛顿定律建立微分模型,以空投物资重量2000千克,每种降落伞最大载重量为约束条件建立整数线性规划模型。
通过分步优化,最后以整数规划来解决这一问题。
首先,找出数据之间的关系,运用物理学和整数线性规划建立模型,并运用MATLABR软件描点作图进行数据拟合的方法,得出载重为300kg,半径为3米的降落伞从500米高空下降时的运动曲线,发现降落伞后期趋于做匀速直线运动.当降落伞作匀速直线运动时,求出空气阻力系数为2.959,落地速度为17.5794.在求出每种降落伞最大载重量,并通过隔离载重物体并进行受力分析,求出相应半径降落伞绳索长度,进而算出每种半径的降落伞的绳索费。
最后,根据每种降落伞的总成本关系把问题转化为整数线性规划问题,用LINGO解得到要购买半径为3m的降落伞数量为6把时总费用最少,总费用为4932元。
本文主要研究了降落伞优化选择问题。
主要优点是:本文通过建立优化选择的整数线性规划模型求解,思路清晰,并大量运用计算机运算使计算误差减少,最终使得降落伞的选择最优;另一方面,本文所建的模型简单合理,具有较强的推广意义。
主要缺点:在建立模型时,忽略了降落伞在实际应用中,会受到天气、风等一些自然因素的影响,使得模型与实际有些误差;本模型未考虑降落伞打开时间,将其假设成在下降时伞就已经打开;虽然大量运用计算机运算,但其中还是有不可避免的误差。
关键词: 数据拟合;单目标优化;微分方程;整数线性规划.一、问题的提出:为向灾区空投救灾物资共2000kg,需选购一些降落伞。
已知空投高度为500m,要求降落伞落地时的速度不能超过20m/s。
降落伞面为半径r的半球面,用每根长l共16根绳索连接着载重m,示意图如图1。
图1每个降落伞的价格由3部分组成。
伞面价格由半径r决定(见表1);绳索每米为4元,其他费用200元。
降落伞选择的数学模型
降落伞选择的数学模型是一个用于确定合适的降落伞尺寸的数学模型。
此模型基于物体的重量、体积、下降速度等因素来计算需要的降落伞尺寸。
数学模型公式
根据相关研究和实验数据,我们可以使用下面的公式来计算降落伞的尺寸:
降落伞尺寸= (0.5 * 物体重量* 下降速度) / (空气密度* 降落伞开伞面积)
公式中的各个参数含义如下:
•物体重量:降落伞需要支撑的物体总重量,单位为千克。
•下降速度:物体从空中下降的速度,单位为米/秒。
•空气密度:当前环境中的空气密度,单位为千克/立方米。
•降落伞开伞面积:降落伞完全展开后的表面积,单位为平方米。
实际应用
降落伞选择的数学模型在航空、运动、救援等领域具有重要应用价值。
通过合理选择降落伞尺寸,可以确保物体在下降过程中获得自由落体状态下的最小加速度,同时确保降落过程的稳定和安全。
数学建模报告——降落伞的选择指导老师:窦老师彭老师报告人:刘原20031090118朱业帅20031090122马占奎20031090123一、问题重述降落伞的选择为向灾区空投救灾物资共2000kg,需选购一些降落伞,已知空投高度为500米,要求降落伞落地时的速度不能超过20米/秒,降落伞面为半径r的半球面,用每根长1共16根绳索连接的载重m仅位于球心正下方球面处,如图:每个降落伞的价格由三部分组成,伞面费用c1由伞的半径r决定,见表1;绳索费用c2由绳索总长度及单价4元/米决定;固定费用c3为200元。
降落伞在降落过程中受到的空气阻力可以认为与降落速度和伞面积的乘积成正比。
为了确定阻力系数,用半径r=3m,载重m=300kg的降落伞以500m高度作试验,测得各时刻t的高度x,见表2。
试确定降落伞降落的选购方案,即共需多少个,每个伞的半径多大(在表 1 中选择)在满足空投的要求下,使总的费用最低。
二、模型的假设1、设每个降落伞的绳长、伞面积均相等;2、降落伞投放立即打开,承受能力符合要求;3、降落伞的降落排除质量等不利因素的影响;4、降落伞和降落合乎所需的要求,且落地的速度不超过20 m/s。
三、符号说明c1: 伞面费用;c2: 绳索费用;c3: 固定费用(200元);C : 总费用;t:时刻(用S表示);S: 伞面面积;r: 伞的半径;K: 阻力系数。
四、问题和分析问题要求使总费用C最小,由于受c1、c2 、c3的影响,c3固定,c2,c1均受伞的半径r的影响,同时降落伞要受下降阻力的影响,我们考虑以下3个问题:(一)确定c1、c2 [通过数据拟合确定c1](二)确定阻力系数K[通过t及h ,运用数据拟合确定K](三)确定n 和总费用C[运用动能守恒定律、建立非线性规划方程]解决此3个问题即解决了此题目。
五、模型的建立与求解我们在考虑(一)问题时,只要通过图表一的数据来拟合c1 的方程:c1=4.3055r^3.9776;c2 的方程:c2=4*16*2^0.5*r;对于(二)确定一组关于速度和加速度的数据进行求解k值。
降落伞的选择模型:M:为所载物体的重量;g 为重力常数a为下降的加速度r为球面的半径l为绳长(单位为米)C为总费用C1为伞面所需费用(单个伞)C21绳索的单价(每米)C2为绳索所需费用(单个伞)C3固定所需费用(单个伞)k阻力系数v为下降的速度s为伞下降的位移x伞离地面的距离y为用伞量不考虑伞水平的位移,不考虑伞和物体刚从飞机上放下速度,忽略伞本身的质量;模型建立与求解:由题意知:总费用C由三个部分组成:第一部分是伞面费用C1第二部分是绳索费用C2第三部分是固定费用C3所以总费用C=(C1+C2+C3)*y;其中固定费用C3题中已经给出:C3=200元;绳索的费用C2=l*C22;C2题中已经给出:C22=4元/米;则2C=又由题设说:物体位于球心正下方的球面上如图:可知:222l r r=+l→=C2,C3已经确定,现在只需确定C1的值即可由题意知:C1的确定与球面的半径r有关,由表1用matlab:r=2:0.5:4c1=[65 170 350 660 1000]plot(r,c1)由图可以看出C1与r 的关系是指数模型: 则可设:C1=r ab11ln 1ln ln C a r b c a br⇒=+⇒=+ 其中11ln 1,ln ,ln ;c C a a b b ===用matlab 拟合:r=2:0.5:4;c1=[65 170 350 660 1000];x=log(c1);C=polyfit(r,x,1);a1=C(1);b1=C(2);a=exp(a1)b=exp(b1)得出:1 3.9143*5.0517r C =由以上可得:(3.9143*5.0517200)*rC y =++ 有由题意得: 22()100022000**yr g u t mg r uv ma m v c e e y dv a dt ππ-⎧⎪-=⎪⎪=⇒=⎨⎪⎪=⎪⎩当t=0时,v=0;所以22()21000221500500***2200012yr g u t mg r uv ma dv a dt x sx gt t c e e m ys vt gt ππ-⎧⎪-=⎪⎪=⎪⎪=-⇒=+-⎨⎪⎪=⎪⎪⎪=-⎩。
降落伞优化选择整数规划模型一、摘要本文讨论并最终确定了降落伞的最佳选购方案,使费用最低。
通过对问题的分析,以牛顿第二定律建立微分方程模型,通过以救灾物资2000kg,5种不同半径的降落伞的最大载重量为限制条件,建立优化模型。
通过优化模型最终解出最佳方案,以及最小费用。
首先,我们要确定阻力系数。
通过对表二的数据分析,以牛顿第二定律建立微分方程模型,运用matlab插点作图进行数据拟合,得到半径为3m,载重为500kg 的降落伞从500m高度下落的运动曲线,发现物体在运动后期做了直线运动,通过对图形的分析得出了阻力系数2.959,.落地速度为17.5794m/s.其次,我们要确定不同半径的降落伞的最大载重。
通过对表一的数据分析,以牛顿第二定律建立微分方程模型,通过以空投高度为500m,以降落伞落地的速度不能超过20m/s为约束条件,代入阻力系数及相关数据求的每种半径下的降落伞最大载重。
最后,我们运用优化模型的解题方法,以总物资为2000kg为约束条件。
运用matlab进行线性规划处理,得出最低费用为4932元,降落伞的最佳选购方案为半径为3m的降落伞数量为6个,其他半径的降落伞不予选购。
关键字:线性优化、数据拟合、微分方程、matlab二、问题的分析这个优化问题的目标是确定降落伞的选购方案,在满足空投要求的条件下,使选购费用最低。
由题意可知,每隔三的价格有三部分组成:伞面费用C1、绳索费用C2和固定费用C3,其中伞面费用与绳索费用与伞的半径有关。
为了使总费用最少,我们需要确定每种伞的最大承重量,然后进行线性规划,确定费用最少和每种伞的个数。
然而伞的最大承重量与空气的阻力有关,因此需要首先确定空气阻力系数,我们可以根据牛顿第二定律列出一个关于空气阻力系数的微分方程,然后根据表二中提供的数据求出空气阻力系数。
三、模型的假设1. 假设降落伞在空投时已经打开;2. 假设降落伞在空投时(即t=0),伞的垂直速度为0m/s;3.假设降落伞在下降过程中只受重力和空气阻力的影响; 4.假设风对降落伞的竖直下降过程没有影响; 5. 假设降落伞和绳索的质量都忽略不计; 6. 救灾物资2000kg 可以任意分配;7.假设重力加速度为9.8m/s.四、符号说明f空气阻力 m所投物的质量 h 物体在t 时刻的高度 k阻力系数 s 降落伞的面积 a 加速度 v物体下降速度 g重力加速度 t时间 H物体的位移 0c固定费用 p每米绳索的价格 q绳索的条数,1,2,3,4,5i n i =半径为i r 的伞所需的绳索总费用 ,1,2,3,4,5i r i =降落伞的半径,1,2,3,4,5i m i =半径为i r 的降落伞的最大承载量 ,1,2,3,4,5i w i =半径为i r 的降落伞的总造价 元五、模型的建立与求解5.1 阻力系数的确定由牛顿第二定律得: mg – f = m a其中面积f=kvs ,又由初速度为0可得:()⎪⎩⎪⎨⎧=-=00s v kv m g dt dvm 解此微分方程得:()()1ss s mtk ek mg k mg t v --=由物体下降高度H 和时间的二次微分等于加速度建立方程得:()()222/()/0000(0)0d H dt mg ksv m d H d H H =-===用MATLAB 解微分方程得:222222)(S k gm kS mgt eS k gm t H t mkS-+=-(2) 则:222222500)(Sk g m kS mgt eSk gm t h t mkS+--=- (3)题目已经给t-h 数据为:对给定的数据以)(t h 为拟合函数进行拟合,r=3m,m=300kg,g=9.8,22r S π=,得出 k=2.959 。
降落伞的选择论文精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】降落伞的选择摘要 本文针对降落伞的选购方案问题,建立两个模型,并给出了相关算法。
模型1:假设不考虑降落伞费用,通过对降落伞下降时运动规律的分析,利用牛顿第二定律列出微分方程,由题目中给定的m r 3=时所对应的下降高度,利用Matlab 进行拟合,进而求出空气阻力系数0035.3=k ,因为当伞落地时要求其速度不大于s m 20,所以把降落伞到达地面时的速度v 以及空气阻力系数k 代回伞面面积与载物质量的微分方程中,求得伞面面积v 与最大载物质量m 之间的关系为s 6.0071⨯=m ,由题目知降落伞的半径一定,故每个降落伞所能承受的最大载重量即可求出,据此kg 2000的物资如果要求用一种降落伞空投,则所需降落伞的数量即可求出。
模型2:在对降落伞费用考虑的情况下,因为伞的价格由伞面费用、绳索费用和固定费用三部分组成,据此求出每个降落伞的价格,再依据模型1中解得每个降落伞最大载重量,求出每个伞单位载重量的价格,在此建立只选一种降落伞费用最少的方案1,解得方案1为选用6个半径为m 3的降落伞。
其次考虑使用多种降落伞进行空投,由物资总重量和各降落伞所能承载的最大载重量之间的关系,以及各个降落伞所花费的费用等条件,建立线性方程组,利用Matlab 整数规划求解最优降落伞选用方案2,求解出方案2为选用6个半径为m 3的降落伞。
然后,将方案1所用费用与方案2所用费用相比较来选择花费费用最少的方案,但方案1与方案2所求降落伞选用结果相同,即只有一种方案。
最后,通过逆推,对模型进行了检验,进一步证明了模型的准确性和可行性,并对所建模型进行了评价与推广。
关键词拟合Matlab 最大载重量整数规划优化1问题重述为向灾区空投救灾物资,需购买一批降落伞。
在空投高度为500米,降落伞的半径类型及相关价格和空气阻力系数一定的情况下,要求降落伞到达地面时的速度不超过20/m s ,现要选择一种或几种类型降落伞来空投救灾物资,在满足要求的情况下需要解决以下两个问题:1需要多少降落伞?2所选降落伞的半径多大时,使得总费用最低?2模型假设与符号说明模型假设1投物当天天气晴朗,且无风。
降落伞的选购摘要针对降落伞的最优选购问题,通过建立线性规划模型求得在将2000kg 的物资运往目的地的前提条件下所选不同规格降落伞的个数,从而使其总费用最低。
通过对问题分析,此线性规划模型建立的目标函数是:总费用=伞面费+绳索费+固定使用费,模型的约束条件为所选降落伞的最大承载量之和大于等于投送物资的总重量G 。
首先求解阻力系数,然后确定5种不同半径的降落伞的最大载重。
以牛顿第二定律建立微分方程模型,推导出降落伞的下落高度与时间之间的关系式:222()(1)kstm mgt m g H t e ks k s-=+-,然后根据题中已给实验数据通过MATLAB 软件做出()H t -t 回归曲线图,回归并分析出了阻力系数k 的值: 2.9575k =。
通过对()v m 的函数关系式进行求导并分析可知当降落伞的速度最大时取得最大承载量,然后将()H t -t 、()v t -t 关系式联立起来并代入不同规格伞的半径值及k 值,得到了不同规格降落伞的最大承载量。
通过优化模型最终解出最佳方案,以及最小费用。
通过LINGO 软件计算出不同规格的伞的个数:1x =1,2x =2,3x =4,4x =0,5x =0及此时所对应的最低费用为4924.756元。
最后讨论模型的优缺点,推广应用,改进方向关键词:线性规划模型 微分方程模型 回归分析 MATLAB 软件 LINGO 软件一、问题及问题分析1.问题重述:2.问题分析一、模型假设及符号说明1.模型假设2.符号说明二、模型构成1.模型建立2.模型求解三、模型的评价与推广1.模型优点2.模型缺点3.模型的推广四、代码部分1.MATLAB软件2.LINGO软件。
降落伞的选择问题组长:张瑜组员:杨璐组员:胡潇摘要本文讨论并确定了降落伞的最佳选购方案,在满足空投物资重量的前提下,使购买降落伞的费用最小。
该问题是一个优化问题,以购买降落伞的费用最小构造目标函数,以救灾物资2000kg,5种不同半径的降落伞的最大载重量为限制条件,进行线性规划,建立优化模型。
通过LinDo软件对模型进行求解,最终得出最佳方案为3m的降落伞数量为6个,其他半径的降落伞不予选购,以及最小费用为4793元。
首先,我们需要计算各规格降落伞的价格,可知其价格由伞面费,绳索费,固定使用费三部分构成,以此进行计算。
其次,我们需要计算出阻力系数,我们利用了两种方法确定出阻力系数为2.95747;之后,我们要确定不同半径的降落伞的最大载重量,通过之前计算出的速度与时间的关系式,推出速度与质量的关系,再确定质量与速度的关系,从而通过计算得出不同半径降落伞的最大载重量;最后列出目标函数和约束条件,进行线性规划,利用LinDo软件得出最终结果。
总之,我们的模型在理论分析上提出了选择降落伞最优化,为选择合适的降落伞提供了可行的理论依据。
关键字:优化方案、线性规划、微分方程、MATLAB,LINDO问题重述为了向灾区空投救灾物资,需要选择不同类型的降落伞。
降落伞根据半径不同分为半径为2m、2.5m、3m、3.5m、4m五种型号,降落伞的造价由伞面费用,绳索费用和固定费用三部分组成。
每个降落伞用长为1m的16跟绳索连接重物,重物位于球心正下方的球面处,降落伞在下降过程中除了受到重力的影响外,还受到空气的阻力。
并且可以认为阻力的大小与降落伞的速度和伞的面积成正比。
其阻力系数可由题中给出的数据确定,问题要求在满足空投物资重量的前提下,使购买降落伞的费用最小。
(具体数据见附录中表格1,表格2)问题的提出为向灾区空投救灾物资共2000kg,需选购一些降落伞,已知空投高度为500m,要求降落伞落地时的速度不能超过20/m s。
降落伞的选择摘要本模型研究的是降落伞的选购方案问题,目的是在满足空投要求的条件下,使费用最少。
为了方便对降落伞进行受力分析,我们把降落伞和其负载的物资看做一个整体,忽略了伞和绳子的质量,并假设降落伞只受到竖直方向上空气阻力和重力的作用。
通过对降落伞在空中的受力情况的分析建立起了高度与时间的方程,然后以高度与时间的方程作为拟合曲线与题中给出的时间与高度的数据进行拟合,得出阻力系数k的值。
我们建立了速度与质量的方程,并证明其为严格增函数(证明过程见建模与求解)。
由于题中已限制降落伞的最大落地速度为20m/s,所以当速度为20m/s时,伞的承载量最大。
建立高度与时间,速度与时间的方程组,代入最大速度20m/s,高度500m,伞的半径(题中已给出可能选购的每种伞的半径),分别计算出每种伞的最大承载量。
最后运用LINGO软件进行线性规划求解得:x1=0,x2=0,x3=6,x4=0,x5=0.即购买半径为3m的降落伞6个时总费用最少为4932元。
关键字:线性规划、空气阻力系数、拟合一、问题的重述为向灾区空投救灾物资共2000kg,需选购一些降落伞。
已知空投高度为500m,要求降落伞落地时的速度不能超过20m/s。
降落伞面为半径r的半球面,用每根长 L, 共16根绳索连接的载重m的物体位于球心正下方球面处,每个降落伞的价格由三部分组成。
伞面费用C1由伞的半径r决定,见表1;绳索费用C 2由绳索总长度及单价4元/米决定;固定费用C3为200元。
表1降落伞在降落过程中受到重力作用外还受到的空气阻力,可以认为与降落速度和伞的受力面积的乘积成正比。
为了确定阻力系数,用半径r=3m、载重m=300kg 的降落伞从500m高度作降落试验,测得各时刻的高度,见表2。
表2试根据以上条件确定降落伞的选购方案,即共需多少个,每个伞的半径多大(在表1中选择),在满足空投要求的条件下,使费用最低。
二、模型的假设1、假设空投物资的瞬时伞已打开。
降落伞的选择问题摘要本文主要讨论了在物资救援中使用空投救援时降落伞的选择问题。
降落伞的正确选择可以大大的减少在满足空投要求的条件下所需的费用,避免造成资金浪费。
本文就给出的5种不同半径的降落伞,提出了在满足空投要求下的优化模型。
此问题的模型比较简单,是一个线性的整数规划的最优值问题。
但是此问题的关键在于求空气阻力系数k 和各种降落伞的最大载重质量,这个两量解出则所有的问题即可迎刃而解。
本文在求k 的过程中,用到了Origin 的非线性拟合功能,利用此方法拟合求得k=2.945。
再通过分析可求得每种降落伞的最大载重质量与其对应的半径的关系为:237.744m r =,进而可求得每种降落伞的最大载重质量。
最后通过lingo求得了目标函数:minz=12345736.529909.4111157.2941535.1761943.058x x x x x ++++再约束条件下的最优解,求得选取半径为3m ,3.5m 的降落伞各一个,半径为4m 的降落伞2个,既能满足空投需要,又能使总费用最小,为6578.586元。
在本文的最后还进行了模型的评价、改进,和并作出了具有比较实际意义的推广应用,提出了在不同高度投下,不同的落地速度要求下的结决方法,并且也提出了当降落伞的半径连续时的解决办法。
关键词:空气阻力系数 最大载重质量 非线性拟合 整数规划一, 问题的提出与重述1.1问题提出在物资救援中,空投已经成为一种十分重要且便利的方式,由于降落伞难以多次利用,所以如何减少空投的成本,让人们有更多的资金购买救援物资已经成为了一个不可忽视的课题。
1.2问题重述为向灾区空投救灾物资共2000kg,需选购一些降落伞。
已知空投高度过500m,要求降落伞落地时的速度不能超过20m/s。
降落伞面为半径r的半球面,用每根长l共16根绳索连接的载重m位于球心正下方球面处,如下图:每个降落伞的价格由三部分组成。
伞面费用C1由伞的半径r决定,;绳索费用C2由绳索总长度及单价6元/米决定;固定费用C3为400元。
降落伞在降落过程中受到的空气阻力,可以认为与降落速度和伞面积的乘积成正比。
为了确定阻力系数,用半径r=3m、载重m=300kg的降落伞从500m高度作降落试验,测得各时刻t的高度x。
试确定降落伞的选购方案,即共需多少个,每个伞的半径多大(在表1中选择),在满足空投要求的条件下,使费用最低。
二,问题分析本文主要解决的是在满足空投要求下的降落伞的选择问题,是典型的优化问题,通过对题目的分析可以进一步确定是整数线性规划问题。
本题所建的模型的目标函数比较简单,主要是约束条件,而在约束条件中每种降落伞的最大载重质量又与空气阻力系数是有一定的量化关系的,因此此模型的关键在于求空气阻力系数。
三,模型假设1.降落伞和绳索的质量均不计;2.救灾物资的大小不计,可以看作质点处理;3.降落伞下落的初速度为0;4.救灾物资可以任意分割.四,变量及符号说明第i 种降落伞:半径:i r ,伞面费用:i w ;所需绳索长:i l ;绳索费用:6i l ; 最大载重质量:i m ;费用:i C ;选用的个数:i x . 总的费用:Z.空气阻力系数:k.重力加速度:g(取29.8/m s ).五,模型建立与求解由载重m 位于球心正下方球面处可知:绳索与竖直方向的夹角为45度。
每种降落伞的费用由三部分组成,所以第i 种降落伞的费用为:6400400i i i i i C w l w =++=++,又每种降落伞选用的个数为i x ,目标函数为51iiZ x C =∑,(i=1,2,3,4,5).=12345736.529909.4111157.2941535.1761943.058x x x x x ++++ 约束条件为:11223344552000m x m x m x m x m x ++++≥此问题的关键在于求每种降落伞的最大载重质量i m 。
而最大载重质量与空气阻力系数k 有关,归根结底,想要求得目标函数的最优解必须先得求出空气阻力系数k 的值。
一.求解空气阻力系数k 。
对物体做受力分析,物体受重力mg 和空气阻力f ,物体在这两个力的作用下以初速度00v =m/s ,(1)向下运动,由牛顿第二定律知:m g f a m-=,(2)又题中知,降落伞在降落过程中受到的空气阻力,可以认为与降落速度和伞面积的乘积成正比,所以,22f k r v π=(3)又由牛顿第二定律的微分形式得:dv a dt=(4)由(1)(2)(3)(4)得:22(0)0dv k r vg dt mv π⎧=-⎪⎨⎪=⎩应用MATLAB 可求得此微分方程:syms g m k pi r v;v=dsolve('Dv=g-2*k*pi*r^2*v/m','v(0)=0','t') v =1/2*g/k/pi/r^2*m-1/2*exp(-2*k*pi*r^2/m*t)*g/k/pi/r^2*m即22212k rtm ev m gk rππ--=。
由速度的微分定义知:()dH t v dt=,所以0()tt H t v dt =⎰利用MATLAB 可求得()H tsyms t;z=int(1/2*g/k/pi/r^2*m-1/2*exp(-2*k*pi*r^2/m*t)*g/k/pi/r^2*m); [N,D]=numden(z)N =g*m*(2*k*pi*r^2*t+m*exp(-2*k*pi*r^2/m*t)); D =4*k^2*pi^2*r^4; H=N/D ;所以2222242()4k rtmk r t m eH t m gk rπππ-+=将m=300,g=9.8,r=3代入得:0.188252.017276.099()ktkt eH t k-+=利用Origin 进行H 与t 的非线性拟合,可求得: k=2.945.k 求出了可进一步通过分析求得降落伞的最大载重质量。
当降落伞的半径为r 时,最大载重质量为m 。
由22212k rtm ev m gk rππ--=可得v 随着m 的增大而增大,由反函数的性质可知若m 是v 的函数,则m 随着v 的增大而增大。
而在此题中最大的落地速度为20。
因此v=20所对应的质量就是降落伞的最大载重质量。
因为v 中含有t 所以无法解出m 。
此时将v 和H 联立消去t 之后,可得: syms g m k pi r v;v=dsolve('Dv=g-2*k*pi*r^2*v/m','v(0)=0','t');a=solve('v=1/2*g/k/pi/r^2*m-1/2*exp(-2*k*pi*r^2/m*t)*g/k/pi/r^2*m','t ');syms t;z=int(1/2*g/k/pi/r^2*m-1/2*exp(-2*k*pi*r^2/m*t)*g/k/pi/r^2*m); [N,D]=numden(z);N =g*m*(2*k*pi*r^2*t+m*exp(-2*k*pi*r^2/m*t)); D =4*k^2*pi^2*r^4; H=N/D;subs(H,'t',a)利用MATLAB 可解得:2222422(1ln(1))42m g k r v m v H k rm gk rπππ=---将H=500,v=20,k=2.945代入可得solve('500=1/4*9.8*m*(-log(-(2*20*2.945*3.14*r^2-9.8*m)/9.8/m)*m-(2*20*2.945*3.14*r^2-9.8*m)/9.8)/2.945^2/3.14^2/r^4','m') ans =37.744262265421074325678782244657*r^2 所以237.744m r =。
由此代入不同的i r 即可得与之相对应的最大载重质量i m 利用MATLAB 可求得:12345150.976kg,235.900kg,339.696kg,462.364kg,603.904kg m m m m m =====现在空气阻力系数k ,和各种降落伞的最大载重质量均已求得。
接下来的工作就是求线性规划的最优解问题了。
目标函数:min z=12345736.529909.4111157.2941535.1761943.058x x x x x ++++s.t.12345150.976235.900339.696462.364603.904200001,2,3,4,5i x x x x x x i ++++≥⎧⎨≥=⎩且为整数,利用Lingo 编程(程序见附录1)可求得:1x =0,20,x =31,x =4x =1,5x =2。
此时求得最优解:z=6578.586元。
即用半径为3m ,3.5m 的降落伞各一个,用半径为4m 的降落伞2个,既能满足空投需要,又能使总费用最小。
六,模型的应用与推广在实际生活中,空投已经成为一种比较重要的物资救援方式了,因此降落伞的选择问题具有比较重要的实际意义,此模型能够解决在不同的高度投下,具有不同的落地速度要求的降落伞的选择问题,只需要改变H 和v 的值即可。
进一步,当降落伞的半径连续时,此问题就要先对降落伞的半径和费用进行数据拟合,根据已知数据拟合出降落伞的半径和费用的函数关系则此问题又变为了非线性优化问题,利用MATLAB一样可以求得目标函数的最优解。
七,模型的评价与改进此模型比较简单,求解也比较方便,但模型也有明显的不足之处,在实际生活中很多物资是不能任意分割的,每种物资的质量都有一定的规格,应在约束条件中,加上此约束条件。
空投物资的时候有物理知识可知物资是有一定的水平方向的速度的,物资并不能竖直下落,与竖直线是有一定的夹角的,此模型并未考虑这一点,应在此方面加以改进,加上约束条件物资下落时与竖直线的夹角。
参考文献【1】马文蔚《物理学》(第五版)高等教育出版社 2008【2】王正林刘明《精通MATLAB7》电子工业出版社 2007【3】姜启源谢金星叶俊《数学模型》(第三版)高等教育出版社 200附录1min=736.529*x1+909.411*x2+1157.294*x3+1535.176*x4+1943.058*x5;150.976*x1+235.900*x2+339.696*x3+462.364*x4+603.904*x5>=2000;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x5);Global optimal solution found.Objective value: 6578.586Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 0.000000 736.5290X2 0.000000 909.4110X3 1.000000 1157.294X4 1.000000 1535.176X5 2.000000 1943.058Row Slack or Surplus Dual Price1 6578.586 -1.0000002 9.868000 0.000000。