降落伞选择问题 数学建模
- 格式:doc
- 大小:459.50 KB
- 文档页数:12
降落伞优化选择的整数线性规划模型摘要本文讨论了降落伞合理选择使费用最低的问题。
通过对问题的分析,最大化载重量,最小化选购降落伞费用。
以牛顿定律建立微分模型,以空投物资重量2000千克,每种降落伞最大载重量为约束条件建立整数线性规划模型。
通过分步优化,最后以整数规划来解决这一问题。
首先,找出数据之间的关系,运用物理学和整数线性规划建立模型,并运用MATLABR软件描点作图进行数据拟合的方法,得出载重为300kg,半径为3米的降落伞从500米高空下降时的运动曲线,发现降落伞后期趋于做匀速直线运动.当降落伞作匀速直线运动时,求出空气阻力系数为2.959,落地速度为17.5794.在求出每种降落伞最大载重量,并通过隔离载重物体并进行受力分析,求出相应半径降落伞绳索长度,进而算出每种半径的降落伞的绳索费。
最后,根据每种降落伞的总成本关系把问题转化为整数线性规划问题,用LINGO解得到要购买半径为3m的降落伞数量为6把时总费用最少,总费用为4932元。
本文主要研究了降落伞优化选择问题。
主要优点是:本文通过建立优化选择的整数线性规划模型求解,思路清晰,并大量运用计算机运算使计算误差减少,最终使得降落伞的选择最优;另一方面,本文所建的模型简单合理,具有较强的推广意义。
主要缺点:在建立模型时,忽略了降落伞在实际应用中,会受到天气、风等一些自然因素的影响,使得模型与实际有些误差;本模型未考虑降落伞打开时间,将其假设成在下降时伞就已经打开;虽然大量运用计算机运算,但其中还是有不可避免的误差。
关键词: 数据拟合;单目标优化;微分方程;整数线性规划.一、问题的提出:为向灾区空投救灾物资共2000kg,需选购一些降落伞。
已知空投高度为500m,要求降落伞落地时的速度不能超过20m/s。
降落伞面为半径r的半球面,用每根长l共16根绳索连接着载重m,示意图如图1。
图1每个降落伞的价格由3部分组成。
伞面价格由半径r决定(见表1);绳索每米为4元,其他费用200元。
降落伞的选择问题一,问题的提出与重述1.1问题提出在物资救援中,空投已经成为一种十分重要且便利的方式,由于降落伞难以多次利用,所以如何减少空投的成本,让人们有更多的资金购买救援物资已经成为了一个不可忽视的课题。
1.2问题重述为向灾区空投救灾物资共2000kg,需选购一些降落伞。
已知空投高度过500m,要求降落伞落地时的速度不能超过20m/s。
降落伞面为半径r的半球面,用每根长l共16根绳索连接的载重m位于球心正下方球面处,如下图:每个降落伞的价格由三部分组成。
伞面费用C1由伞的半径r决定,;绳索费用C2由绳索总长度及单价6元/米决定;固定费用C3为400元。
降落伞在降落过程中受到的空气阻力,可以认为与降落速度和伞面积的乘积成正比。
为了确定阻力系数,用半径r=3m、载重m=300kg的降落伞从500m高度作降落试验,测得各时刻t的高度x。
试确定降落伞的选购方案,即共需多少个,每个伞的半径多大(在表1中选择),在满足空投要求的条件下,使费用最低。
二,问题分析本文主要解决的是在满足空投要求下的降落伞的选择问题,是典型的优化问题,通过对题目的分析可以进一步确定是整数线性规划问题。
本题所建的模型的目标函数比较简单,主要是约束条件,而在约束条件中每种降落伞的最大载重质量又与空气阻力系数是有一定的量化关系的,因此此模型的关键在于求空气阻力系数。
三,模型假设1.降落伞和绳索的质量均不计;2.救灾物资的大小不计,可以看作质点处理;3.降落伞下落的初速度为0; 4. 救灾物资可以任意分割.四,变量及符号说明第i 种降落伞:半径:i r ,伞面费用:i w ;所需绳索长:i l ;绳索费用:6i l ;最大载重质量:i m ;费用:i C ;选用的个数:i x .总的费用:Z.空气阻力系数:k.重力加速度:g(取29.8/m s ).五,模型建立与求解由载重m 位于球心正下方球面处可知:绳索与竖直方向的夹角为45度。
A题:降落伞在下降过程中安全性问题
降落伞是利用空气阻力,依靠相对于空气运动充气展开的可展式气动力减速器,使人或物从空中安全降落到地面的一种航
空工具。
主要由柔性织物制成。
是空降兵作战和
训练、航空航天人员的救生和训练、跳伞运动员
进行训练、比赛和表演,空投物资、回收飞行器
的设备器材(如右图所示)。
降落伞的主要组成
部分有伞衣、引导伞、伞绳、背带系统、开伞
部件和伞包等。
随着我国航空、航天事业的飞
跃发展,降落伞的性能好坏直接关系到飞行员、宇航员和飞行设备的安全性,所以对于降落伞性能的研究就显得越来越重要。
就降落伞性能研究,完成以下问题:
1、参照所给图像,人体和伞衣之间由四根弹性绳连接,从一定高度处降落。
忽略降落伞的重力,考虑人体的重力、伞的空气阻力(与受力面积成正比),弹性绳的拉力。
各参数自拟,通过受力分析,进行合理假设,建立人体竖直方向的运动模型,并得到相应的运动方程。
2、通过该模型,讨论在不同参数下,对系统的运动情况进行分析。
3、考虑到人员的安全性,分析该系统在何种条件下可以让人员安全降落。
4、对于你所提出的安全条件进行可行性分析和评价。
降落伞选择优化模型学生: 韩章英吴冬冬唐明指导老师:马明远摘要本文研究的是降落伞的最优选择方案问题,目的是在满足空投要求的条件下,怎样选择降落伞使总费用最低。
我们在详细分析和合理假设的基础上,建立了一个线性整数规划模型,目标函数是最小费用,约束条件是总载重量大于或等于2000kg。
通过对降落伞整个过程运动状态的分析,运用牛顿第二定律,建立微分方程模型,得到高度 h(t)函数, 加速度a(t)函数和速度v(t)函数。
利用h(t)函数和题目所给数据,运用matlab软件拟合出空气阻力系数为3.005。
利用a(t)可证明伞的整个降落过程为加速运动。
利用v(m)函数证明降落伞在任意时刻的速度与载重质量成正比,即速度越大,质量越大,分别把最大速度和空投高度代入v(t)和h(t)中,解得每种伞的载重量即为最大载重量。
由已知条件可分别求出每种伞的伞面费用,绳索费用和固定费用,三者之和即为每种伞的总费用。
建立线性整数规划模型,运用Lingo软件求解确定最优方案为选购6个半径为3米的降落伞,总费用为4926元。
关键词: 空气阻力系数最大载重量数据拟合线性规划一问题重述选购一些降落伞向灾区空投2000kg的救灾物资,要求降落伞落地时的速度不能超过20m/s。
已知空投高度为500m,降落伞面为半径r的半球面,用每根长L, 共16根绳索连接的载重m的物体位于球心正下方球面处。
每个降落伞的价格由三部分组成。
伞面费用C1由伞的半径r决定,见表1;绳索费用C2由绳索总长度及单价4元/米决定;固定费用C3为200元。
表1降落伞在降落过程中受到重力作用外还受到的空气阻力,可以认为与降落速度和伞的受力面积的乘积成正比。
为了确定阻力系数,用半径r=3m、载重m=300kg 的降落伞从500m高度作降落试验,测得各时刻的高度,见表2。
表2(在表1中选择),在满足空投要求的条件下,使费用最低。
二符号说明和名词解释C1 伞面费用C2 绳索费用C3 固定费用C 总费用S 伞面面积r 伞的半径L 绳索长度k 阻力系数g 重力加速度h(t) t时刻降落伞的下降高度v(t)t时刻降落伞的下降速度M r半径为r的降落伞的最大载重三基本假设1 降落伞在下落的过程中只受重力及垂直方向上的空气阻力。
降落伞选择的数学模型
降落伞选择的数学模型是一个用于确定合适的降落伞尺寸的数学模型。
此模型基于物体的重量、体积、下降速度等因素来计算需要的降落伞尺寸。
数学模型公式
根据相关研究和实验数据,我们可以使用下面的公式来计算降落伞的尺寸:
降落伞尺寸= (0.5 * 物体重量* 下降速度) / (空气密度* 降落伞开伞面积)
公式中的各个参数含义如下:
•物体重量:降落伞需要支撑的物体总重量,单位为千克。
•下降速度:物体从空中下降的速度,单位为米/秒。
•空气密度:当前环境中的空气密度,单位为千克/立方米。
•降落伞开伞面积:降落伞完全展开后的表面积,单位为平方米。
实际应用
降落伞选择的数学模型在航空、运动、救援等领域具有重要应用价值。
通过合理选择降落伞尺寸,可以确保物体在下降过程中获得自由落体状态下的最小加速度,同时确保降落过程的稳定和安全。
降落伞的选择模型:M:为所载物体的重量;g 为重力常数a为下降的加速度r为球面的半径l为绳长(单位为米)C为总费用C1为伞面所需费用(单个伞)C21绳索的单价(每米)C2为绳索所需费用(单个伞)C3固定所需费用(单个伞)k阻力系数v为下降的速度s为伞下降的位移x伞离地面的距离y为用伞量不考虑伞水平的位移,不考虑伞和物体刚从飞机上放下速度,忽略伞本身的质量;模型建立与求解:由题意知:总费用C由三个部分组成:第一部分是伞面费用C1第二部分是绳索费用C2第三部分是固定费用C3所以总费用C=(C1+C2+C3)*y;其中固定费用C3题中已经给出:C3=200元;绳索的费用C2=l*C22;C2题中已经给出:C22=4元/米;则2C=又由题设说:物体位于球心正下方的球面上如图:可知:222l r r=+l→=C2,C3已经确定,现在只需确定C1的值即可由题意知:C1的确定与球面的半径r有关,由表1用matlab:r=2:0.5:4c1=[65 170 350 660 1000]plot(r,c1)由图可以看出C1与r 的关系是指数模型: 则可设:C1=r ab11ln 1ln ln C a r b c a br⇒=+⇒=+ 其中11ln 1,ln ,ln ;c C a a b b ===用matlab 拟合:r=2:0.5:4;c1=[65 170 350 660 1000];x=log(c1);C=polyfit(r,x,1);a1=C(1);b1=C(2);a=exp(a1)b=exp(b1)得出:1 3.9143*5.0517r C =由以上可得:(3.9143*5.0517200)*rC y =++ 有由题意得: 22()100022000**yr g u t mg r uv ma m v c e e y dv a dt ππ-⎧⎪-=⎪⎪=⇒=⎨⎪⎪=⎪⎩当t=0时,v=0;所以22()21000221500500***2200012yr g u t mg r uv ma dv a dt x sx gt t c e e m ys vt gt ππ-⎧⎪-=⎪⎪=⎪⎪=-⇒=+-⎨⎪⎪=⎪⎪⎪=-⎩。
降落伞的选择论文精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】降落伞的选择摘要 本文针对降落伞的选购方案问题,建立两个模型,并给出了相关算法。
模型1:假设不考虑降落伞费用,通过对降落伞下降时运动规律的分析,利用牛顿第二定律列出微分方程,由题目中给定的m r 3=时所对应的下降高度,利用Matlab 进行拟合,进而求出空气阻力系数0035.3=k ,因为当伞落地时要求其速度不大于s m 20,所以把降落伞到达地面时的速度v 以及空气阻力系数k 代回伞面面积与载物质量的微分方程中,求得伞面面积v 与最大载物质量m 之间的关系为s 6.0071⨯=m ,由题目知降落伞的半径一定,故每个降落伞所能承受的最大载重量即可求出,据此kg 2000的物资如果要求用一种降落伞空投,则所需降落伞的数量即可求出。
模型2:在对降落伞费用考虑的情况下,因为伞的价格由伞面费用、绳索费用和固定费用三部分组成,据此求出每个降落伞的价格,再依据模型1中解得每个降落伞最大载重量,求出每个伞单位载重量的价格,在此建立只选一种降落伞费用最少的方案1,解得方案1为选用6个半径为m 3的降落伞。
其次考虑使用多种降落伞进行空投,由物资总重量和各降落伞所能承载的最大载重量之间的关系,以及各个降落伞所花费的费用等条件,建立线性方程组,利用Matlab 整数规划求解最优降落伞选用方案2,求解出方案2为选用6个半径为m 3的降落伞。
然后,将方案1所用费用与方案2所用费用相比较来选择花费费用最少的方案,但方案1与方案2所求降落伞选用结果相同,即只有一种方案。
最后,通过逆推,对模型进行了检验,进一步证明了模型的准确性和可行性,并对所建模型进行了评价与推广。
关键词拟合Matlab 最大载重量整数规划优化1问题重述为向灾区空投救灾物资,需购买一批降落伞。
在空投高度为500米,降落伞的半径类型及相关价格和空气阻力系数一定的情况下,要求降落伞到达地面时的速度不超过20/m s ,现要选择一种或几种类型降落伞来空投救灾物资,在满足要求的情况下需要解决以下两个问题:1需要多少降落伞?2所选降落伞的半径多大时,使得总费用最低?2模型假设与符号说明模型假设1投物当天天气晴朗,且无风。
降落伞的选择摘要本文针对降落伞的选择问题建立了二个模型,并给出最优选择方案。
二个?模型Ⅰ:本模型研究的是降落伞的选购方案问题,即怎样选择降落伞才能把2000kg 救灾物资投放下去。
要解决此问题,必须考虑到各种型号降落伞的最大载重量M。
i 首先对降落伞进行受力分析,伞和绳索的质量忽略不计,并假设降落伞只受到竖直方向上的阻力和重力作用。
根据空气阻力与伞面的面积和下落速度成正比,得出空气阻力f的表达式,由牛顿第二定律得出加速度a,然后对物体下落高度h进行求导,列出h 与a的微分方程。
其次确定阻力系数,使物资到达地面的速度不超过20m s,用题中3r时所给实验数据进行拟合分析,用MATLAB软件进行编程,得到阻力系数k=3.0035。
进而求出各种型号降落伞的最大载重M(见附表1)。
(太细了些)i模型Ⅱ:本模型主要是解决的是在满足空投的条件下,使得费用最少,并求出需要多少降落伞,每个伞的半径的多大。
(简短些)首先求各个降落伞价格,包括伞面费用、绳索费用和固定费用组成,其中绳索费用未知,其它两个已知,通过分析和计算可以求出各个降落伞的价格分别为:446.02元,596.27元,821.53元,1176.78元,1562.06元。
然后通过最大载重量求出每种伞所需要范围,确立最少费用为目标函数,以空投物资2000kg为约束条件,求解线性规划问题。
最后通过MATLAB软件进行编程,可以得出需要6个半径为3m的降落伞可满足空投,并使得费用W最少为4932元。
1、摘要太罗嗦了2、写作能力不错,但下次要简洁些,明了些3、排版要规范些,其他还好关键词:阻力系数微分方程M A T L A B软件线性规划最小费用1 问题重述(OK)向某灾区空投一批救灾物资(2000kg),对降落伞有多种选择,为得到最佳选择方案,需综合考虑各方面因素。
现有以下条件可供参考:每个降落伞共有两部分组成,包括伞面和绳索,伞面是半径为r的半球面,由16根长度为l的绳索连接,重物位于伞中心正下方球面处(如图1-1);其中绳索单价为4元/米,伞面的费用由伞面半径决定,半径为2米时,伞面费用是65元;半径为2.5米时,伞面费用是170元;半径为3米时,伞面费用是350元;半径为3.5米时,伞面费用是660元;半径为4米时,伞面费用是1000元。
降落伞的选购摘要针对降落伞的最优选购问题,通过建立线性规划模型求得在将2000kg 的物资运往目的地的前提条件下所选不同规格降落伞的个数,从而使其总费用最低。
通过对问题分析,此线性规划模型建立的目标函数是:总费用=伞面费+绳索费+固定使用费,模型的约束条件为所选降落伞的最大承载量之和大于等于投送物资的总重量G 。
首先求解阻力系数,然后确定5种不同半径的降落伞的最大载重。
以牛顿第二定律建立微分方程模型,推导出降落伞的下落高度与时间之间的关系式:222()(1)kstm mgt m g H t e ks k s-=+-,然后根据题中已给实验数据通过MATLAB 软件做出()H t -t 回归曲线图,回归并分析出了阻力系数k 的值: 2.9575k =。
通过对()v m 的函数关系式进行求导并分析可知当降落伞的速度最大时取得最大承载量,然后将()H t -t 、()v t -t 关系式联立起来并代入不同规格伞的半径值及k 值,得到了不同规格降落伞的最大承载量。
通过优化模型最终解出最佳方案,以及最小费用。
通过LINGO 软件计算出不同规格的伞的个数:1x =1,2x =2,3x =4,4x =0,5x =0及此时所对应的最低费用为4924.756元。
最后讨论模型的优缺点,推广应用,改进方向关键词:线性规划模型 微分方程模型 回归分析 MATLAB 软件 LINGO 软件一、问题及问题分析1.问题重述:2.问题分析一、模型假设及符号说明1.模型假设2.符号说明二、模型构成1.模型建立2.模型求解三、模型的评价与推广1.模型优点2.模型缺点3.模型的推广四、代码部分1.MATLAB软件2.LINGO软件。
降落伞的选择问题组长:张瑜组员:**组员:**摘要本文讨论并确定了降落伞的最佳选购方案,在满足空投物资重量的前提下,使购买降落伞的费用最小。
该问题是一个优化问题,以购买降落伞的费用最小构造目标函数,以救灾物资2000kg,5种不同半径的降落伞的最大载重量为限制条件,进行线性规划,建立优化模型。
通过LinDo软件对模型进行求解,最终得出最佳方案为3m的降落伞数量为6个,其他半径的降落伞不予选购,以及最小费用为4793元。
首先,我们需要计算各规格降落伞的价格,可知其价格由伞面费,绳索费,固定使用费三部分构成,以此进行计算。
其次,我们需要计算出阻力系数,我们利用了两种方法确定出阻力系数为2.95747;之后,我们要确定不同半径的降落伞的最大载重量,通过之前计算出的速度与时间的关系式,推出速度与质量的关系,再确定质量与速度的关系,从而通过计算得出不同半径降落伞的最大载重量;最后列出目标函数和约束条件,进行线性规划,利用LinDo软件得出最终结果。
总之,我们的模型在理论分析上提出了选择降落伞最优化,为选择合适的降落伞提供了可行的理论依据。
关键字:优化方案、线性规划、微分方程、MATLAB,LINDO问题重述为了向灾区空投救灾物资,需要选择不同类型的降落伞。
降落伞根据半径不同分为半径为2m、2.5m、3m、3.5m、4m五种型号,降落伞的造价由伞面费用,绳索费用和固定费用三部分组成。
每个降落伞用长为1m的16跟绳索连接重物,重物位于球心正下方的球面处,降落伞在下降过程中除了受到重力的影响外,还受到空气的阻力。
并且可以认为阻力的大小与降落伞的速度和伞的面积成正比。
其阻力系数可由题中给出的数据确定,问题要求在满足空投物资重量的前提下,使购买降落伞的费用最小。
(具体数据见附录中表格1,表格2)问题的提出为向灾区空投救灾物资共2000kg,需选购一些降落伞,已知空投高度为500m,要求降落伞落地时的速度不能超过20/m s。
降落伞面为半径r的半球面,用每根长为1m的16根绳索连着载重m的物体位于球心正下方球面处,如图1所示。
图1每个降落伞的价格由三部分组成。
伞面费用由伞的半径r决定;绳索费用由绳索总长度及单价4元/米决定;其他费用为200元。
降落伞在降落的过程中受到了空气的阻力,为了确定阻力的大小,用半径3m、载重为300kg的降落伞从500m高度做降落实验,测得各时刻的高度。
确定降落伞的选购方案,即共需多少个,每个伞半径多大,在满足空投要求的条件下,使费用最低。
模型分析这是一个优化问题,所求目标函数是降落伞的总费用。
针对这个问题我们主要分三部分来分析的。
首先,计算各规格降落伞的价格,由已知其价格的三部分组成:伞面费,绳索费,固定使用费。
伞面费为题目所给不同半径决定,绳索由长度决定,固定使用费为常数。
其次,我们分析物资在投放过程中的受力情况。
忽略了了其他因素影响,有牛顿第二定律分析可得,是物资受到向下的重力和向上的阻力。
接下来的问题就是求出阻力系数。
求阻力系数,我们用了两种方法。
第一种:利用牛顿第二定律,得出速度关于时间的表达式,又由对速度的积分,得出高度与速度的关系,再用MATLAB 作出时间与高度的关系图,分析图像作线性回归,利用MATLAB 软件计算出阻力系数;第二种:求出的速度的表达式,用MATLAB 软件做出速度与时间的关系图,分析可得出阻力系数的大小。
另外,对于确定不同规格的降落伞最大载重量,利用给速度的关系式,逐步推出速度与质量的关系,进而求得最大载重量。
最后,我们写出了目标函数,并且结合约束条件得出了线性规划,利用LINDO 软件得出结果模型分析符号说明1i c (1,2,3,4,5;i =):分别表示购买的半径为2,2.5,3,3.5,4;r =的降落伞的价格,单位(元)。
2i c (1,2,3,4,5;i =):分别表示购买半径为2,2.5,3,3.5,4r =的降落伞的绳索的价格,单位(元)。
3i c (1,2,3,4,5;i =):分别表示购买的半径为2,2.5,3,3.5,4;r =的伞面面积,单位(m )。
i c (1,2,3,4,5;i =): 分别表示购买一个半径为2,2.5,3,3.5,4;r =的降落伞的各自总费用,单位(元)。
(2,2.5,3,3.5,4)r M r =:指的是半径2,2.5,3,3.5,4,r =的最大载重量,单位(kg )。
()v t : 表示t 时刻降落伞的速度单位(/m s )。
s : 表示降落伞的受力面积,单位(2m )。
t : 表示时间,单位(s )。
k : 表示空气阻力系数m : 货物的质量,单位(kg )。
g : 重力加速度,单位(2/m s )。
模型假设1.假设2000kg 物资可以任意分割。
2.假设在降落伞下落过程中只受到重力,和一个可以视为非重力因素共同作用下的合力 空气阻力的影响,不考虑横向受力。
3.假设绳索和伞面的质量忽略不计。
4.假设在受力分析过程中,和下落过程中计算高度时,可将物资看做质点。
5.假设降落伞的阻力与速度和面积的成绩成正比,其系数成为空气阻力系数,为常数。
6.假设绳索的价格每米1元,每个降落伞固定费用是常数为200元。
模型建立由模型分析可知,这是一个优化问题,要建立费用最小的目标函数,和以不同规格的降落伞总载重量大于等于2000kg 作为约束条件,在LINDO 软件中计算出不同规格降落伞的选择个数,得出一个最优方案。
对此问题分三步进行:第一步:计算各规格单个降落伞的费用在建立目标函数时,总费用是各规格降落伞的个数和相应的单个降落伞的费用,所以首先要计算出各规格单个降落伞的费用。
由题目可知,其价格i c 由三部分组成,伞面费1i c ,绳索费2i c ,固定使用费3i c ,而其中伞面费1i c 为题目中所给的不同半径r 决定,绳索费2i c 由绳索长度和单位长度的价格决定,固定费3i c 为常数由题目中所给表格1(见附录)及计算可得其费用:表格 32r第二步:计算阻力系数为表述不同规格总载重量大于等于2000kg 这一条件,并求解降落伞速度满足的微分方程,方正中的重要参数——空气阻力系数是未知的,在此我们需要对已知表格2中的数据进行拟合,从而求出空气阻力系数。
对降落伞进行受力分析见 图1图2由牛顿运动定律及假设有:mg f ma -= (1)其中(a 指下落过程中的加速度) 即(0)0dv mg kvs m dt v ⎧-=⎪⎨⎪=⎩ (2) 解之得()[1]kstm mgv t e ks-=- (3)积分有:2222220()()tkstm mgt m g m gH t V t dt e ks k s k s -==+-⎰即222()(1)kstmmgt m g H t e ks k s -=+- (4)由假设将原实验表的数据变为: t 0 3 6 9 1215 18 21 24 27 30()H t0 30 75 128 183 236 285 340 392 445 499表格 4在matlab 中作图可得:图3在MATLAB 软件中输入以下程序:见 (附录 程序1)由图像可见H(t)~图像的后段几乎为线性关系,即 后期几乎为匀速运动,则选择 t=9s,以后的点作线性回归()H t pt q =+ (5)(其中 ,p q : 计算过程中线性回归的系数) 通过MATLAB 软件拟合 写出程序2 (见附录 程序2) 可得:p=17.0667m/s,q=-18.4545m那么17/,18p m s q m ≈≈-由分析,则mg kvs ≈ v pt =得2.959k ≈另一个方面为了检验上述拟合是否高度近似,我们用下面的方法进行检验 由(3)式可知()(1)kstm mg v t e k s-=- (6)利用表格 2 的数据和(3)式,输入MATLAB 软件中作 v(t)~t 图像 可得:图417.9278mgk s= 在9t s =之后,作拟合,可得 2.95147k =在第一个方法中计算所得空气阻力系数k 和此方法中计算的近似相等,可以看出第一个方法的拟合度是很高的。
第三步:求各种规格降落伞的最大载重量在列约束条件时,不同规格总载重量大于等于2000kg ,总载重量为不同规格降落伞的个数乘其相应的最大载重量得到,在此我们需要计算不同规格降落伞的最大载重量。
由(3)式可知v(t)=(1)kstm mg e ks--这是下落速度的方程,而我们要求出降落伞最大载重量,在这里将参数转换,将t 变为常量而将质量m 视为变量,更容易求解。
上式可写为:()v v m =要求出最大载重量,需要得出m 关于v 是一个递增函数,那么在20/v m s =时,便可以得到安全范围内的最大载重量。
即'()(1)()kst kstm m g mg kstv m e e ks ks m ---=-+kst kstm m g g gt e e ks ks m--=-- ''222()kst kst kstm m m g kst gt gt kstv m e e e ks m m m m ---=-+-30kstm gt e m-=->,则 ''()0v m >则 ()v v m = 为单调递增函数 故 ()m m v =也为单调递增函数由此可得当 20/v m s = ,每种规格降落伞取得最大载重量 联立(3)式,(4)式,得222v(t)=(1)()(1)kstm kst m mg e ksmgt m g H t e ks k s --⎧-⎪⎪⎨⎪=+-⎪⎩(8) 消去参数 t,有222(1)()kvsm g mvmgH t k s ks-=-(9) 将2,2.5,3,3.5,4,r =22s r π=,代入(9)式有:其中((2,2.5,3,3.5,4)r M r =指的是半径2,2.5,3,3.5,4,r =的最大载重量)模型求解则所得线性规划为:根据购买降落伞的总费用最少可得出目标函数为:51min i i i z c x ==∑ 1,2,3,4,5;i =以采购的降落伞载重量之和不少于空投物资的总重量为约束条件:512000i ii x M=≥∑ 1,2,3,4,5;i =决策条件为采购的各种规格的降落伞个数不为负,所以有:0i x ≥且为整数 i=1,2,3,4,5;由已知:1446c = 2596c =3822c =41177c =51562c =1152.396M = 2238.119M = 3342.892M = 4466.713M =5609.585M =带入数据则有:12345min 44659682211771562z x x x x x =++++ST 123415223834346761052000x x x x x ++++≥且0i x ≥且为整数 i=1,2,3,4,5;通过LINDO 软件可得10x =;20x =;36x =;40x =;50x =;4793z =即在此次降落伞的选择中选择半径为3m 的降落伞6个,最小费用为4793元模型的评价与推广优点:1.分析阻力时用两种方法计算出了k 的大小,大大简化了问题。