RNA的转录及加工
- 格式:docx
- 大小:21.24 KB
- 文档页数:3
简述rna转录后加工过程摘要:1.RNA转录后加工过程的概述2.RNA转录后加工的主要步骤a.剪接b.剪切c.RNA编辑d.RNA降解3.各步骤的功能和意义4.实例分析5.RNA转录后加工在生物体中的作用6.研究RNA转录后加工的意义和前景正文:在我们生物体内,基因通过转录过程将DNA信息转化为RNA,但这只是RNA生命历程中的第一步。
接下来,RNA要经历一系列复杂的加工过程,才能最终发挥其生物学功能。
这个过程被称为RNA转录后加工。
RNA转录后加工的主要步骤包括剪接、剪切、RNA编辑和RNA降解。
剪接是指将RNA前体分子中的内含子去除,并将外显子连接成成熟的RNA分子。
这一过程通过特定的酶家族,如剪接酶,来实现。
剪切是指在RNA分子的3"端添加poly(A)尾巴,这是几乎所有真核生物RNA的共同特征。
RNA编辑则是指在RNA分子上发生碱基改变,这一过程依赖于特定的编辑酶和相应的底物。
最后,RNA降解是指RNA分子在细胞内的分解过程,这对于调控RNA水平和维持细胞内稳态至关重要。
这些加工过程对于RNA最终的生物学功能具有重要意义。
以剪接为例,它能消除RNA前体中无功能的RNA片段,使成熟的RNA更具特异性和高效性。
同时,RNA编辑能够改变RNA的序列,从而影响其翻译效率和稳定性。
在生物体中,RNA转录后加工涉及多种生物过程,如基因表达调控、病毒复制和免疫反应等。
对RNA转录后加工的研究,有助于我们深入了解生命过程中的基因表达调控机制,为治疗疾病和开发新型药物提供理论依据。
随着生物科学技术的不断发展,对RNA转录后加工的研究将越来越深入。
rna转录后加工方式
RNA转录后加工(RNA post-transcriptional processing)是指在RNA分子合成之后,在细胞中对其进行修饰和修剪的过程。
这些加工方式可以使原始RNA分子成熟,并使其具有功能性。
以下是几种常见的RNA转录后加工方式:
剪接(Splicing):在真核生物中,基因的转录产物(前体mRNA)经过剪接过程,去除其中的内含子(intron),保留外显子(exon),从而形成成熟的mRNA分子。
剪接是通过剪接体(spliceosome)来完成的,其中包括snRNPs等辅助因子。
5'端修饰:RNA的5'端通常经过加上7-甲基鸟苷(7-methylguanosine)和三磷酸核苷酸链(PPP 链)的修饰,形成5'甲基鸟苷帽(5' cap)。
这个帽子在RNA稳定性、转运和翻译起重要作用。
3'端修饰:RNA的3'端通常经过加上聚腺苷酸(polyadenylation)的修饰。
这个poly(A)尾巴有助于RNA的稳定性、转运和翻译,并参与转录终止的过程。
RNA编辑:在一些生物体中,RNA的序列可以通过RNA编辑(RNA editing)进行改变。
这种编辑通常涉及碱基的替换、插入或删除,从而改变RNA的编码能力和功能。
RNA修饰:RNA分子可能会经历各种修饰,如甲基化、脱氨基、糖基化等。
这些修饰可以增强RNA的稳定性、调节翻译和识别,以及影响RNA的功能。
RNA转录后加工是一个复杂而精确的过程,它可以使原始的转录产物转化为功能性的RNA 分子。
这些加工方式对于基因表达调控和细胞功能起着重要的作用。
生物信息的传递——从DNA到RNA 第六节RNA的转录后加工RNA加工事件的功能mRNA的末端修饰——加帽、加尾剪接——三种RNA前体剪接切除事件——rRNA和tRNA前体加工化学修饰——rRNA和tRNA修饰、RNA编辑前体的加工甲基化作用专一核酸外切酶30S前体17StRNA25S 专一核酸外切酶16S rRNA tRNA 23S rRNA 5S rRNA专一核酸外切酶1.原核生物非编码RNA 的加工前体分子的加工RNAasePRNAaseF RNAaseP RNAaseFRNAaseD RNAaseDA C Cϕϕϕ表示核酸内切酶的作用表示核苷酸转移酶的作用表示核酸外切酶的作用表示异构化酶的作用1.切除tRNA前体两端多余的序列:5’端切除几到10个核苷酸。
2.末端添加:3’-端添加CCA序列。
3.修饰:形成稀有碱基如DH2。
真核生物RNA的加工RNA中的内含子在RNA剪接过程中,mRNA前体分子hnRNA中被切除的非编码区被称为内含子(intron)。
而那些被内含子隔开的,保留在成熟mRNA中并连接在一起的区域,称为外显子(exon)。
生物体内的内含子种类内含子类型细胞内定位GU-AG细胞核,前mRNA(真核)AU-AC细胞核,前mRNA(真核)Ⅰ类内含子细胞核,前rRNA(真核),细胞器RNA,少数细菌DNA Ⅱ类内含子细胞器RNA,少数细菌DNAⅢ类内含子细胞器RNA双内含子细胞器RNAtRNA前体中的内含子细胞核,tRNA前体(真核)2.真核生物RNA的加工 RNA中内含子的剪接鸡卵清蛋白基因hnRNA首、尾修饰hnRNA剪接成熟的mRNA 鸡卵清蛋白基因及其转录、转录后修饰真核生物RNA的加工2.1GU-AG与AU-AC内含子的剪接GU-AG代表了不同内含子5’和3’边界序列,即5’为GU,3’为AG。
在5’端剪接位称供体位(donor site),3’端剪接位称受体位(acceptor site)。
第二节 RNA转录后得加工与修饰不论原核或真核生物得rRNAs都就是以更为复杂得初级转录本形式被合成得,然后再加工成为成熟得RNA分子。
然而绝大多数原核生物转录与翻译就是同时进行得,随着mRNA开始得DNA上合成,核蛋白体即附着在mRNA上并以其为模板进行蛋白质得合成,因此原核细胞得mRNA并无特殊得转录后加工过程,相反,真核生物转录与翻译在时间与空间上就是分天得,刚转录出来得mRNA就是分子很大得前体,即核内不均一RNA。
hnRNA分子中大约只有10%得部分转变成成熟得mRNA,其余部分将在转录后得加工过程中被降解掉。
(一)mRNA得加工修饰原核生物中转录生成得mRNA为多顺反子,即几个结构基因,利用共同得启动子与共同终止信号经转录生成一条mRNA,所以此mRNA分子编码几种不同得蛋白质。
例如乳糖操纵子上得Z、Y及A基因,转录生成得mRNA可翻译生成三种酶,即半乳糖苷酶,透过酶与乙酰基转移酶。
原核生物中没有核模,所以转录与翻译就是连续进行得,往往转录还未完成,翻译已经开始了,因此原核生物中转录生成得mRNA没有特殊得转录后加工修饰过程。
真核生物转录生成得mRNA为单顺反子,即一个mRNA分子只为一种蛋白质分子编码。
真核生物mRNA得加工修饰,主要包括对5’端与3’端得修饰以及对中间部分进行剪接。
1.在5’端加帽成熟得真核生物mRNA,其结构得5’端都有一个m7G-PPNmN结构,该结构被称为甲基鸟苷得帽子。
如图17-9所示。
鸟苷通过5’-5’焦磷酸键与初级转录物得5’端相连。
当鸟苷上第7位碳原子被甲基化形成m7G-PPNmN时,此时形成得帽子被称为“帽0”,如果附m7G-PPNmN外,这个核糖得第“2”号碳上也甲基化,形成m7G-PPNm,称为“帽1”,如果5’末端N1与N2中得两个核糖均甲基化,成为m7G-PPNmPNm 2,称为“帽2”。
从真核生物帽子结构形成得复杂可以瞧出,生物进化程度越高,其帽子结构越复杂。
简述RNA转录的概念及其基本过程
RNA转录是指在细胞内,通过RNA聚合酶(RNA polymerase)将DNA模板转录成RNA分子的过程。
它是基因表达的重要步骤,将DNA中的遗传信息转化为可被细胞翻译成蛋白质的RNA分子。
RNA转录的基本过程如下:
1. 转录起始:在DNA的启动子区域,RNA聚合酶结合到DNA的双链上,并开始脱掉DNA 的双链中的氢键。
2. 转录:RNA聚合酶沿着DNA模板链向下滑动,依次合成RNA链。
它根据DNA模板链的碱基序列,选择并连接适应的核苷酸单元(A、U、G和C),在合成RNA链时形成RNA与DNA的互补碱基配对。
3. 终止:当RNA聚合酶到达终止序列时,终止转录过程。
在原核生物中,终止序列会形成一个稳定的RNA二级结构,阻止RNA聚合酶进一步合成。
在真核生物中,终止信号会导致RNA聚合酶释放,并形成成熟的mRNA分子。
4. 加工和修饰:在真核生物中,转录后的RNA分子(称为原始RNA或前体RNA)经过一系列的加工和修饰,包括剪接、5'端修饰、3'端修饰和RNA修饰。
这些过程将产生成熟的mRNA,可以被核糖体读取并翻译成蛋白质。
RNA转录是基因表达的重要步骤,它将DNA中的遗传信息转录成RNA分子,为蛋白质合成提供模板。
这个过程在细胞内发挥着关键的调控和调整功能,对维持正常的细胞功能和生命活动至关重要。
1.真核生物基因为什么要进行RNA转录后加工?(P209)
原核生物没有细胞器的分化,转录与翻译同时进行。
真核生物有细胞器的分化,基因表达在时间和空间上存在明显间隔。
转录在细胞核内进行,翻译在细胞质内完成。
真核生物基因的初始转录产物被非编码序列或间隔区段分开,转录产物不连续,需要转录后加工。
2.细胞内RNA原初转录物一般都需要经过哪些过程的加工修饰?(P209)
真核生物细胞内转录的RNA原初转录物要经过一系列变化,包括:①5’端形成帽子结构;
②3’端形成一段PolyA;③切去内含子;④反式剪接;⑤部分核苷酸修饰;⑥RNA 编辑;⑦RNA的再编辑;⑧RNA链的断裂等过程。
3.真核生物RNA前体内含子的剪接分为哪几类?简述其区别。
(P217,P232)
内含子的剪接分为三类:①自我剪接内含子②蛋白质或酶参与的内含子剪接③依赖于snRNA剪接的内含子。
区别:
4.写出下列英文缩写的含义:PNaseP(212)、hnRNA(217)、RISC(252)、RNAi(251)、
剪接体(220)、自我剪接(228)、反义RNA(251或上课PPT)、RNA干涉(251)、siRNA(252)、选择性剪接(235)、核酶(229)
PNaseP:催化切除5’端额外核苷酸的酶
hnRNA:核内不均一RNA
RISC:沉默复合物
RNAi:RNA干涉
剪接体:是mRNA前提在剪接过程中组装形成的多组分复合物,由多种snRNA和蛋白质因子组成,即剪接体是具有催化剪接过程的核塘核蛋白复合体。
自我剪接:rRNA的内含子能够自我剪接,无需剪接体
反义RNA:与mRNA互补的RNA分子,也包括与其它RNA互补的RNA分子
RNA干涉:在双链RNA引导的抑制过程中存在某种扩增效应,且有某种没活性参与其中。
siRNA:短干涉RNA,发生转录后基因沉默的小的双链RNA
选择性剪接:一个基因的初始转录产物在不同的分化细胞、不同的发育阶段乃至不同的生理状态下,可以有不同的剪接方式,得到不同的成熟mRNA和蛋白质产物
核酶:RNA本身具有酶的活性称为核酶
5.名词解释:套索结构(219)、转酯反应(227)、Dicer酶(253)、顺式剪接(239)、
反式剪接(239)
套索结构:RNA剪接过程中的中间结构,其中有形成的带尾巴的环形结构
转酯反应:在剪接体上完成剪接反应的生化本质是磷酸二酯键的转移,又称转酯反应
Dicer酶:能将双链RNA特异性切成大小均一的片段的酶称为Dicer酶
顺式剪接:存在与同一基因中的两个或多个外显子和内含子的剪接,称为顺式剪接
反式剪接:几个外显子不在同一基因甚至不在同意染色体上的剪接叫反式剪接
6.什么是RNA的自我剪接?自我剪接有哪些类型?(217或232)
RNA的自我剪接:能自发进行剪接,无需酶或蛋白质参与。
自我剪接有两种类型:Ⅰ和Ⅱ型两个亚型的自我剪接内含子
7.什么是核酶?(229)
类型Ⅰ内含子剪接的重要特点是自我催化,即RNA本身具有酶的活性,称为核酶
8.简述poly(A)尾的生物功能(243)
①提高mRNA在细胞质中的稳定性,保护mRNA ②增强mRNA的可翻译能力
9.什么是RNA编辑(246)? RNA编辑有什么重要的生物学意义?(249)
RNA编辑:是一种较为独特的遗传信息的加工方式,即转录后的mRNA在编码区发生碱基插入、删除或转换的现象,是在RNA分子上的一种修饰。
生物学意义:①改变和补充遗传信息; ②增加基因产物的多样性; ③与生物细胞发育和分化有关,是基因表达调控的一种重要方式; ④能使基因产物获得新的结构和功能,有利于复杂的生物进化; ⑤很可能与学习和记忆有关
10.写出RNA干涉的几个重要特征(256),RNA干涉应用在哪些方面?(258或上课PPT)
① RNAi是转录水平的基因沉默机制,具有很高的特异性,只降解与之序列相应的单个内源基因的mRNA ② RNAi抑制基因表达具有很高的效率,其表型科达到缺失突变体表型的程度,
且相对很少量的dsRNA分子就能完全抑制相应基因的表达,以催化放大的方式进行。
③RNAi一直基因表达的效应科穿越细胞界限,在不同细胞之间常距离传递和维持信号甚至传播至整个生物体④ dsRNA不得短于21bp,且长链dsRNA也在细胞内被Dicer酶切割为21bp 作右的siRNA,并由siRNA介导mRNA切割;大于30bp的dsRNA不能再哺乳细胞中诱导特意的RNA干涉,而是以细胞非特异性方式及机体全面的基因表达收到抑制或凋亡。
⑤ RNAi 的过程由dsRNA浓度、作用时间的依赖性,dsRNA诱发的RNAi效应的强度随浓度的增高而增强,高浓度的dsRNA能产生较多的siRNA,不仅能增强反应体系的效应,而且还能抵消RNA 依赖的腺苷脱氨酶的作用。
⑥ RNA干涉依赖于ATP,在去除ATP的样品中,RNAi现象降低或消失,Dicer酶和RISC的酶切反应必须由ATP提供能量⑦RNAi的生物安全性高。
应用:①在医学领域的应用主要是可以有选择性地使致病基因沉默②功能基因组学的研究③用RNAi构建转基因动物模型④RNAi用在SARS防治研究中
11. 举例说明RNAi作用机理(上课PPT)
例:肿瘤的基因治疗:肿瘤是多个基因相互作用的基因网络调控异常的结果,传统技术诱发的单个癌基因的阻断不可能完全抑制或逆转肿瘤的生长,而RNAi可以利用同一基因家族的多个基因具有一段同源性很高的保守序列这一特性,设计针对这一序列的dsRNA分子,只导入一种dsRNA 即可以使多个基因同时沉默。