仪器分析-气相色谱法
- 格式:ppt
- 大小:18.45 MB
- 文档页数:96
影响因素:第三章气相色谱法1. 当只要色谱柱的塔板数足够多,任何两物质都能被分离吗?答:错误的。
根据塔板理论,单位柱长的塔板数越多,表明柱效越高。
塔板理论给出了衡量色谱柱分离效能的指标,但柱效并不能表示被分离组分的实际组分的世纪分离效果,因为两组分的分配系数K相同时,无论该色谱柱的塔板数多大都无法实现分离。
2. 气相色谱中,固定液选择的基本原则是什么?如何判断化合物的出峰顺序?答:固定液选择的基本原则是:①挥发性小②热稳定性好③熔点不能太高④对试样中的各组分有适当的溶解能力⑤化学稳定性好,不与试样发生不可逆化学反应⑥有合适的溶剂溶解。
如何判断化合物的出峰顺序?答:①分离非极性组分时,通常选用非极性固体相,各组分按照沸点顺序出峰,低沸点组分先出峰②分离极性组分时,一般选用极性固定液,各组分按照极性大小顺序流出色谱柱,极性小的先出峰。
解答题1.为什么离子选择性电极对欲测电子具有选择性?如何估量这种选择性?答:离子选择性电极是以电位测量溶液中某些特定离子活度的指示电极。
各种离子选择性电极一般均由敏感膜极其支持体,内参比电极,内参比溶液组成,其电极电位产生的机制都是基于内部溶液与外部溶液活度不同而产生的电位差。
起核心部分是敏感膜,它主要对欲测电子有响应,而对其他离子则无响应或者响应很小,因此每一种离子选择性电极都具有一定的选择性。
而估量这种选择性可用离子选择性电极的选择性系数来估量其选择性。
2.何为分析线对?在光谱定量分析中选择内标元素及分析线对的原则是什么?答:在被测元素的光谱中选择一条作为分析线(强度为I),在选择内标物的一条谱线(强度为I0),组成分析线对。
选择原则:①内标元素含量一定②内标元素与被测元素在光源作用下应有相近的蒸发性质③分析线对应匹配,同为原子线或者离子线,且激发电位相近,形成“匀称线对”。
④分析线对波长应尽可能接近,分析线对的两条谱线应没有自吸或自吸很小,并且不受其他谱线干扰。
3.气相色谱定量的方法主要有哪几种?各适合什么条件下使用?答:归一化法:所有组分都出峰,且面积都能准确测定出来。
气相色谱习题一、填空题1.在气一固色谱柱内,各组分的分离是基于组分在吸附剂上的吸附、脱附能力的不同,而在气液色谱中,分离是基于各组分在固定液中溶解、挥发的能力的不同。
2.色谱柱是气相色谱的核心部分,色谱柱分为填充柱型和毛细管柱型两类,通常根据色谱柱内充填的固体物质状态的不同,可把气相色谱法分为气固色谱和气液色谱两种。
3.色谱柱的分离效能,主要由柱中填充物所决定的。
4.色谱分析选择固定液时根据“相似性原则”,若被分离的组分为非极性物质,则应选用非极性固定液,对能形成氢键的物质,一般选择极性或氢键型固定液。
5.色谱分析中,组分流出色谱柱的先后顺序,一般符合沸点规律,即低沸点组分先流出,高沸点组分后流出。
6.色谱分析从进样开始至每个组分流出曲线达最大值时所需时间称为保留时间,其可以作为气相色谱定性分析的依据。
7.一个组分的色谱峰其保留值可用于定性分析。
峰高或峰面积可用于定量分析。
峰宽可用于衡量柱效率,色谱峰形愈窄,说明柱效率愈高。
8.无论采用峰高或峰面积进行定量,其物质浓度和相应峰高或峰面积之间必须呈关系,符合数学式 mi=fA 这是色谱定量分析的重要依据。
9.色谱定量分析中的定量校正因子可分为绝对和相对校正因子。
10.色谱检测器的作用是把被色谱柱分离的组分根据其物理或物理化学特性,转变成电信号,经放大后由色谱工作站记录成色谱图。
11.在色谱分析中常用的检测器有热导、氢火焰、火焰光度、电子捕获等。
12.热导池检测器是由池体、池槽、热丝三部分组成。
热导池所以能做为检测器,是由于不同的物质具有不同的热导系数。
13.热导池检测器在进样量等条件不变的前提下,其峰面积随载气流速的增大而减小,而氢火焰检测器则随载气流速的增大而增大。
14.氢火焰离子化检测器是一种高灵敏度的检测器,适用于微量有机化合物分析,其主要部件是离子室。
15.分离度表示两个相邻色谱峰的分离程度,以两个组分保留值之差与其峰宽之比表示。
二、判断题1.色谱分析是把保留时间作为气相色谱定性分析的依据的。
:选择题1 .在气相色谱分析中,用于定性分析的参数是(A ) A 保留值 B 峰面积 C 分离度 D 半峰宽2 .在气相色谱分析中,用于定量分析的参数是(D )A 保留时间B 保留体积C 半峰宽D 峰面积3 .良好的气-液色谱固定液为 (D ) A 蒸气压低、稳定性好 B 化学性质稳定C 溶解度大,对相邻两组分有一定的分离能力D A 、B 和 C6 .色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时(B ) A 进入单独一个检测器的最小物质量B 进入色谱柱的最小物质量C 组分在气相中的最小物质量D 组分在液相中的最小物质量 7 .在气-液色谱分析中,良好的载体为(D ) A 粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C 化学惰性、热稳定性好,有一定的机械强度D A 、B 和C8 .热导池检测器是一种(A ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器D 只对含硫、磷化合物有响应的检测器 10.下列因素中,对色谱分离效率最有影响的是(A ) A 柱温 B 载气的种类C 柱压D 固定液膜厚度三:计算题 1 .热导池检测器的灵敏度测定:进纯苯1mL 苯的色谱峰高为4 mV,半峰宽为1 min,柱出 口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为0.88g/mL )。
若仪器噪声为0.02 mV 计算其检测限。
S _ —G# 哥 尿】时F _ 4x1x20 二 go §解: ,, . mV- ml-- mg 1& =9= ^^=44x10-4 'J : 一:mg. mL 1 2 . 一根2 m 长的填充柱的操作条件及流出曲线的数据如下:流量 20 mL/min ( 50 C)柱前压力:133.32 kpa空气保留时间0.50 min 正己烷保留时间3.50 min气相色谱法练习柱温50 C 柱后压力101.32kPa正庚烷保留时间4.10 min①计算正己烷,正庚烷的校正保留体积;②若正庚烷的半峰宽为0.25 min ,用正庚烷计算色谱柱的理论塔板数和理论塔板高度;③求正己烷和正庚烷的分配比k1和k2。
仪器分析气相色谱法气相色谱法(Gas Chromatography,GC)是一种常用的分析技术,在化学、生物、环境等领域中广泛应用。
该技术通过样品在气相色谱柱中的分离和检测,可以对复杂的混合物进行分析和定量。
本文将介绍气相色谱法的基本原理、仪器分析方法以及应用领域。
一、气相色谱法的基本原理气相色谱法是一种层析技术,原理是通过样品在一个固定相(色谱柱内涂层的液体或固体)和一个惰性气体流动的气相之间的分配来进行分离。
在气相色谱仪中,样品通过进样口被注入到气相色谱柱中,柱温控制使得样品能够在柱内发生分离。
分离后的组分通过检测器检测,得到相应的信号图谱。
气相色谱法的分离机理有吸附、分配、离子交换、凝聚相分离等方式。
其中最常用的是吸附分离,即通过固定相对不同组分的吸附性能进行选择性分离。
二、气相色谱仪的基本组成及原理气相色谱仪主要由进样系统、色谱柱、载气系统、检测器和数据处理系统等部分组成。
进样系统用于将样品引入到气相色谱柱中,色谱柱进行分离,载气系统用于将惰性气体送入色谱柱以推动样品的迁移,检测器用于检测组分的信号,数据处理系统则用于对检测信号进行分析和处理。
在气相色谱仪中,进样系统的关键部分是进样口、进样器和进样针。
色谱柱是气相色谱法中的核心装置,决定了样品的分离效果。
检测器根据不同的检测原理可以分为不同种类,如火焰光度检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
三、气相色谱法的应用领域气相色谱法广泛应用于化学、生物、环境等领域。
在化学领域,气相色谱法可用于研究化合物的结构和性质、分析有机物、无机物等;在生物领域,可以用于检测生物样品中的氨基酸、脂肪酸、激素等;在环境领域,可用于监测空气、水、土壤中的有机物、农药、挥发性物质等。
总之,气相色谱法是一种重要的分析技术,具有高分析效率、分辨率高、样品消耗少等优点,被广泛应用于各个领域。
通过不断改进仪器设备和方法,气相色谱法将在未来的研究中发挥更重要的作用。
仪器分析气相色谱分析气相色谱(Gas Chromatography, GC)是一种常用的仪器分析技术,用于分离和测定混合气体或挥发性液体样品中的组分。
它基于分子在固定相或涂在固定相上的液态载体上的分配和吸附行为的差异,将混合物分离为不同的峰,通过峰的面积或峰高比例来定量分析。
气相色谱通常包括样品处理、进样、分离和检测等过程。
在气相色谱分析中,样品处理至关重要。
首先,样品需要确保完全气化,这可以通过液体/固体萃取、溶解、热解等方法来实现。
然后,样品通常需要进行预处理,包括稀释、浓缩、衍生化等。
预处理的目的是提高目标物的检测灵敏度,同时降低可能的干扰物。
最后,将样品进样到气相色谱仪中。
进样器是气相色谱仪中的关键部分之一、它可以通过体积或压力进样两种方式将样品引入色谱柱。
采用体积进样时,样品通过一个准确的体积放样器引入色谱柱,其体积可以校准和调整。
而压力进样则是通过一定压力将样品推入色谱柱中,其进样体积由进样时间和色谱柱流速决定。
分离是气相色谱分析的核心过程,它通过色谱柱将混合物中的组分分离开来。
色谱柱通常由不同的固定相或液态载体制成,例如聚二甲硅氧烷(PDMS)、聚酯、聚酰胺等。
不同的固定相有不同的极性和选择性,可以选择具有特定性能的柱进行不同的分析。
例如,聚酰胺柱对极性化合物具有较好的分离效果,而PDMS柱对非极性化合物更为适用。
检测器是气相色谱仪中的重要组成部分,用于检测分离出的化合物。
常见的检测器有火焰光度检测器(FLD)、热导检测器(TCD)、质谱检测器(MS)等。
FLD适用于大多数有机化合物的检测,通过化合物的荧光特性进行分析。
TCD则根据样品中物质导热性能的改变进行检测。
质谱检测器可以提供化合物分子结构的信息,对于复杂的样品分析有很高的选择性和灵敏度。
在气相色谱分析中,为了提高分离效果和减少背景噪声,通常进行方法优化和条件调整。
例如,可以调整进样量、柱温、载气类型和流速、柱长度和内径等参数来优化分离过程。