仪器分析气相色谱法
- 格式:pptx
- 大小:633.83 KB
- 文档页数:78
有机分析气相色谱分析法一、GC的原理GC是一种基于样品挥发性物质在固定相柱中传质的方法。
样品在高温下气化,进入气相色谱柱。
柱子中填充了一种固定相,用来分离混合物中的化合物。
不同化合物在固定相上的亲和力不同,因此会按照相对亲和力的大小顺序通过柱子,最终达到分离的目的。
二、GC的仪器设备GC仪器主要由进样系统、色谱柱、检测器和数据处理系统组成。
进样系统用于将样品引入色谱柱。
色谱柱是分离化合物的关键,通常由玻璃制成,内部填充着固定相。
检测器用于检测化合物,并将信号转化为电信号。
数据处理系统用于记录和分析检测到的信号。
三、GC的操作步骤1.样品制备:将待分析的样品制备成气相可挥发的形式,例如通过溶解或萃取等方法。
2.进样:将样品注入进样器中,通过进样系统引入柱子中。
3.分离:样品在柱子中被分离,分离速度取决于化合物的挥发性和在固定相上吸附的亲和力大小。
4.检测:化合物通过柱子后,进入检测器。
根据检测器的原理,可以获得不同化合物的信号。
5.数据处理:将检测到的信号转化为峰,通过峰的面积和高度等参数来定量和分析化合物。
四、GC的应用领域1.环境分析:GC可用于检测大气、水体和土壤中的有机化合物,例如揮发性有机化合物(VOCs)、农药残留等。
2.药物分析:GC可用于药物分析,如药物的质量控制和生物样品中药物的测定。
3.食品安全:GC可用于检测食品中的添加剂、农药残留和食品中有害物质的分析。
4.石油和化学工业:GC用于石油和化学工业中原料和产品的质量控制和分析。
5.化妆品和香料:GC可用于检测和分析化妆品和香料中的挥发性成分。
综上所述,有机分析气相色谱分析法是一种广泛应用于化学、环境和食品等领域的分析方法。
其原理简单、分离效果好、分析速度快且灵敏度高,因而得到了广泛的应用。
:选择题1 .在气相色谱分析中,用于定性分析的参数是(A ) A 保留值 B 峰面积 C 分离度 D 半峰宽2 .在气相色谱分析中,用于定量分析的参数是(D )A 保留时间B 保留体积C 半峰宽D 峰面积3 .良好的气-液色谱固定液为 (D ) A 蒸气压低、稳定性好 B 化学性质稳定C 溶解度大,对相邻两组分有一定的分离能力D A 、B 和 C6 .色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时(B ) A 进入单独一个检测器的最小物质量B 进入色谱柱的最小物质量C 组分在气相中的最小物质量D 组分在液相中的最小物质量 7 .在气-液色谱分析中,良好的载体为(D ) A 粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C 化学惰性、热稳定性好,有一定的机械强度D A 、B 和C8 .热导池检测器是一种(A ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器D 只对含硫、磷化合物有响应的检测器 10.下列因素中,对色谱分离效率最有影响的是(A ) A 柱温 B 载气的种类C 柱压D 固定液膜厚度三:计算题 1 .热导池检测器的灵敏度测定:进纯苯1mL 苯的色谱峰高为4 mV,半峰宽为1 min,柱出 口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为0.88g/mL )。
若仪器噪声为0.02 mV 计算其检测限。
S _ —G# 哥 尿】时F _ 4x1x20 二 go §解: ,, . mV- ml-- mg 1& =9= ^^=44x10-4 'J : 一:mg. mL 1 2 . 一根2 m 长的填充柱的操作条件及流出曲线的数据如下:流量 20 mL/min ( 50 C)柱前压力:133.32 kpa空气保留时间0.50 min 正己烷保留时间3.50 min气相色谱法练习柱温50 C 柱后压力101.32kPa正庚烷保留时间4.10 min①计算正己烷,正庚烷的校正保留体积;②若正庚烷的半峰宽为0.25 min ,用正庚烷计算色谱柱的理论塔板数和理论塔板高度;③求正己烷和正庚烷的分配比k1和k2。
⾷品仪器分析⽓相⾊谱法参考答案⼀、填空题1. 在⽓⼀固⾊谱柱内,各组分的分离是基于组分在吸附剂上的吸附、脱附能⼒的不同,⽽在⽓液⾊谱中,分离是基于各组分在固定液中溶解、挥发的能⼒的不同。
2. ⾊谱柱是⽓相⾊谱的核⼼部分,⾊谱柱分为填充柱型和⽑细管柱型两类,通常根据⾊谱柱内充填的固体物质状态的不同,可把⽓相⾊谱法分为⽓固⾊谱和⽓液⾊谱两种。
3. ⾊谱柱的分离效能,主要由柱中填充物所决定的。
4?⾊谱分析选择固定液时根据“相似性原则” ,若被分离的组分为⾮极性物质,则应选⽤⾮极性固定液,对能形成氢键的物质,⼀般选择极性或氢键型固定液。
5. ⾊谱分析中,组分流出⾊谱柱的先后顺序,⼀般符合沸点规律,即低沸点组分先流出,⾼沸点组分后流出。
6?⾊谱分析从进样开始⾄每个组分流出曲线达最⼤值时所需时间称为保留时间,其可以作为⽓相⾊谱定性分析的依据。
7?—个组分的⾊谱峰其保留值可⽤于定性分析。
峰⾼或峰⾯积可⽤于定量分析。
峰宽可⽤于衡量柱效率,⾊谱峰形愈窄,说明柱效率愈⾼。
8. ⽆论采⽤峰⾼或峰⾯积进⾏定量,其物质浓度和相应峰⾼或峰⾯积之间必须呈 _________ 关系,符合数学式 m=A 这是⾊谱定量分析的重要依据。
12.热导池检测器是由池体、池槽、热丝三部分组成。
热导池所以能做为检测器, 是由于不同的物质具有不同的热导系数。
13. 热导池检测器在进样量等条件不变的前提下,其峰⾯积随载⽓流速的增⼤⽽_J4,⽽氢⽕焰检测器则随载⽓流速的增⼤⽽增⼤。
14. 氢⽕焰离⼦化检测器是⼀种⾼灵敏度的检测器,适⽤于微量有机化合物分析,其主要部件是离⼦室。
15.分离度表⽰两个相邻⾊谱峰的分离程度,以两个组分保留值之差与其9. ⾊谱定量分析中的定量校正因⼦可分为 10. ⾊谱检测器的作⽤是把被⾊谱柱分离的转变成电信号,经放⼤后由⾊谱⼯作站11. 在⾊谱分析中常⽤的检测器有热导绝对和相对校正因⼦。
组分根据其物理或物理化学特性, ____ 记录成⾊谱图。
现代仪器分析方法
现代仪器分析方法包括:
1. 液相色谱法(HPLC):用于分离和测定液体和溶液中的化学成分。
2. 气相色谱法(GC):用于分离和测定气体和挥发性液体中的化学成分。
3. 质谱法(MS):用于确定化合物的分子式、结构和质量。
可以与色谱法结合使用,例如气相色谱-质谱联用(GC-MS)。
4. 原子吸收光谱法(AAS):用于测定金属元素的含量和浓度。
5. 荧光光谱法:测量物质在吸收紫外或可见光后放射出的荧光。
6. 红外光谱法(IR):用于确定物质中的官能团和分子结构。
7. 核磁共振光谱法(NMR):用于确定物质的分子结构和官能团。
8. X射线衍射法(XRD):用于确定物质的结晶结构。
9. 表面分析技术(如扫描电子显微镜(SEM)和透射电子显微镜(TEM)):用于观察和分析材料的表面形貌和结构。
10. 热分析技术(如差示扫描量热仪(DSC)和热重分析(TGA)):用于测量材料在不同温度下的热稳定性和热性质。
这些现代仪器分析方法在科学研究、环境监测、食品安全、制药和化工等领域广泛应用。
仪器分析气相色谱法气相色谱法(Gas Chromatography,GC)是一种常用的分析技术,在化学、生物、环境等领域中广泛应用。
该技术通过样品在气相色谱柱中的分离和检测,可以对复杂的混合物进行分析和定量。
本文将介绍气相色谱法的基本原理、仪器分析方法以及应用领域。
一、气相色谱法的基本原理气相色谱法是一种层析技术,原理是通过样品在一个固定相(色谱柱内涂层的液体或固体)和一个惰性气体流动的气相之间的分配来进行分离。
在气相色谱仪中,样品通过进样口被注入到气相色谱柱中,柱温控制使得样品能够在柱内发生分离。
分离后的组分通过检测器检测,得到相应的信号图谱。
气相色谱法的分离机理有吸附、分配、离子交换、凝聚相分离等方式。
其中最常用的是吸附分离,即通过固定相对不同组分的吸附性能进行选择性分离。
二、气相色谱仪的基本组成及原理气相色谱仪主要由进样系统、色谱柱、载气系统、检测器和数据处理系统等部分组成。
进样系统用于将样品引入到气相色谱柱中,色谱柱进行分离,载气系统用于将惰性气体送入色谱柱以推动样品的迁移,检测器用于检测组分的信号,数据处理系统则用于对检测信号进行分析和处理。
在气相色谱仪中,进样系统的关键部分是进样口、进样器和进样针。
色谱柱是气相色谱法中的核心装置,决定了样品的分离效果。
检测器根据不同的检测原理可以分为不同种类,如火焰光度检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
三、气相色谱法的应用领域气相色谱法广泛应用于化学、生物、环境等领域。
在化学领域,气相色谱法可用于研究化合物的结构和性质、分析有机物、无机物等;在生物领域,可以用于检测生物样品中的氨基酸、脂肪酸、激素等;在环境领域,可用于监测空气、水、土壤中的有机物、农药、挥发性物质等。
总之,气相色谱法是一种重要的分析技术,具有高分析效率、分辨率高、样品消耗少等优点,被广泛应用于各个领域。
通过不断改进仪器设备和方法,气相色谱法将在未来的研究中发挥更重要的作用。