仪器分析-气相色谱法
- 格式:ppt
- 大小:17.60 MB
- 文档页数:97
:选择题1 .在气相色谱分析中,用于定性分析的参数是(A ) A 保留值 B 峰面积 C 分离度 D 半峰宽2 .在气相色谱分析中,用于定量分析的参数是(D )A 保留时间B 保留体积C 半峰宽D 峰面积3 .良好的气-液色谱固定液为 (D ) A 蒸气压低、稳定性好 B 化学性质稳定C 溶解度大,对相邻两组分有一定的分离能力D A 、B 和 C6 .色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时(B ) A 进入单独一个检测器的最小物质量B 进入色谱柱的最小物质量C 组分在气相中的最小物质量D 组分在液相中的最小物质量 7 .在气-液色谱分析中,良好的载体为(D ) A 粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C 化学惰性、热稳定性好,有一定的机械强度D A 、B 和C8 .热导池检测器是一种(A ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器D 只对含硫、磷化合物有响应的检测器 10.下列因素中,对色谱分离效率最有影响的是(A ) A 柱温 B 载气的种类C 柱压D 固定液膜厚度三:计算题 1 .热导池检测器的灵敏度测定:进纯苯1mL 苯的色谱峰高为4 mV,半峰宽为1 min,柱出 口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为0.88g/mL )。
若仪器噪声为0.02 mV 计算其检测限。
S _ —G# 哥 尿】时F _ 4x1x20 二 go §解: ,, . mV- ml-- mg 1& =9= ^^=44x10-4 'J : 一:mg. mL 1 2 . 一根2 m 长的填充柱的操作条件及流出曲线的数据如下:流量 20 mL/min ( 50 C)柱前压力:133.32 kpa空气保留时间0.50 min 正己烷保留时间3.50 min气相色谱法练习柱温50 C 柱后压力101.32kPa正庚烷保留时间4.10 min①计算正己烷,正庚烷的校正保留体积;②若正庚烷的半峰宽为0.25 min ,用正庚烷计算色谱柱的理论塔板数和理论塔板高度;③求正己烷和正庚烷的分配比k1和k2。
现代仪器分析方法
现代仪器分析方法包括:
1. 液相色谱法(HPLC):用于分离和测定液体和溶液中的化学成分。
2. 气相色谱法(GC):用于分离和测定气体和挥发性液体中的化学成分。
3. 质谱法(MS):用于确定化合物的分子式、结构和质量。
可以与色谱法结合使用,例如气相色谱-质谱联用(GC-MS)。
4. 原子吸收光谱法(AAS):用于测定金属元素的含量和浓度。
5. 荧光光谱法:测量物质在吸收紫外或可见光后放射出的荧光。
6. 红外光谱法(IR):用于确定物质中的官能团和分子结构。
7. 核磁共振光谱法(NMR):用于确定物质的分子结构和官能团。
8. X射线衍射法(XRD):用于确定物质的结晶结构。
9. 表面分析技术(如扫描电子显微镜(SEM)和透射电子显微镜(TEM)):用于观察和分析材料的表面形貌和结构。
10. 热分析技术(如差示扫描量热仪(DSC)和热重分析(TGA)):用于测量材料在不同温度下的热稳定性和热性质。
这些现代仪器分析方法在科学研究、环境监测、食品安全、制药和化工等领域广泛应用。
仪器分析气相色谱法气相色谱法(Gas Chromatography,GC)是一种常用的分析技术,在化学、生物、环境等领域中广泛应用。
该技术通过样品在气相色谱柱中的分离和检测,可以对复杂的混合物进行分析和定量。
本文将介绍气相色谱法的基本原理、仪器分析方法以及应用领域。
一、气相色谱法的基本原理气相色谱法是一种层析技术,原理是通过样品在一个固定相(色谱柱内涂层的液体或固体)和一个惰性气体流动的气相之间的分配来进行分离。
在气相色谱仪中,样品通过进样口被注入到气相色谱柱中,柱温控制使得样品能够在柱内发生分离。
分离后的组分通过检测器检测,得到相应的信号图谱。
气相色谱法的分离机理有吸附、分配、离子交换、凝聚相分离等方式。
其中最常用的是吸附分离,即通过固定相对不同组分的吸附性能进行选择性分离。
二、气相色谱仪的基本组成及原理气相色谱仪主要由进样系统、色谱柱、载气系统、检测器和数据处理系统等部分组成。
进样系统用于将样品引入到气相色谱柱中,色谱柱进行分离,载气系统用于将惰性气体送入色谱柱以推动样品的迁移,检测器用于检测组分的信号,数据处理系统则用于对检测信号进行分析和处理。
在气相色谱仪中,进样系统的关键部分是进样口、进样器和进样针。
色谱柱是气相色谱法中的核心装置,决定了样品的分离效果。
检测器根据不同的检测原理可以分为不同种类,如火焰光度检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
三、气相色谱法的应用领域气相色谱法广泛应用于化学、生物、环境等领域。
在化学领域,气相色谱法可用于研究化合物的结构和性质、分析有机物、无机物等;在生物领域,可以用于检测生物样品中的氨基酸、脂肪酸、激素等;在环境领域,可用于监测空气、水、土壤中的有机物、农药、挥发性物质等。
总之,气相色谱法是一种重要的分析技术,具有高分析效率、分辨率高、样品消耗少等优点,被广泛应用于各个领域。
通过不断改进仪器设备和方法,气相色谱法将在未来的研究中发挥更重要的作用。