2021届高三总复习——专题01集合(新高考地区专用)
- 格式:docx
- 大小:539.81 KB
- 文档页数:14
高考数学名校地市必刷题型01集合运算姓名:__________________ 班级:______________ 得分:_________________一、单选题(共10小题)1.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5]C.D.[﹣1,3]【解答】解:设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.【知识点】交集及其运算2.(2019•莱芜二模)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合:①M={(x,y)|y=x3﹣2x2+3};②M={(x,y)|y=log2(2﹣x)};③M={(x,y)|y=2﹣2x};④M={(x,y)|y=1﹣sin x};其中具有∟性的集合的个数是()A.1B.2C.3D.4【解答】解:由题意知:对于M中任意点P(x1,y1),在M中存在另一个点P′(x2,y2),使,即OP⊥OP′,即过原点任作一条直线与函数图象相交,都能过原点作另一条直线与此直线垂直,经验证①②③④皆满足.故选:D.【知识点】集合的表示法、函数的图象与图象的变换3.(2019•湖北模拟)已知集合A={x|0<x<2},集合B={x|﹣1<x<1},集合C={x|mx+1>0},若A∪B⊆C,则实数m的取值范围为()A.{m|﹣2≤m≤1}B.{m|﹣≤m≤1}C.{m|﹣1≤m≤}D.{m|﹣≤m≤}【解答】解:由题意,A∪B={x|﹣1<x<2},∵集合C={x|mx+1>0},A∪B⊆C,①m<0,x<﹣,∴﹣≥2,∴m≥﹣,∴﹣≤m<0;②m=0时,成立;③m>0,x>﹣,∴﹣≤﹣1,∴m≤1,∴0<m≤1,综上所述,﹣≤m≤1,故选:B.【知识点】集合的包含关系判断及应用4.(2020•安徽模拟)已知集合A={x|2x2+x﹣1<0),B={x|ln(3x﹣1)<0},则A∩B=()A.(﹣1,)B.(,)C.(,)D.(﹣1,)【解答】解:=,∴.故选:B.【知识点】交集及其运算5.(2020•石家庄一模)设集合P={x||x|>3},Q={x|x2>4},则下列结论正确的是()A.Q⫋P B.P⫋Q C.P=Q D.P∪Q=R【解答】解:集合P={x||x|>3}={x|x<﹣3或x>3},Q={x|x2>4}={x|x<﹣2或x>2},∴P⫋Q,故选:B.【知识点】集合的包含关系判断及应用6.(2020•重庆模拟)已知集合A={y|y=1﹣2x},B={x|x2﹣2x﹣3>0},则A∩∁R B=()A.∅B.[﹣1,1)C.(1,3]D.[﹣3,1)【解答】解:∵A={y|y<1},B={x|x<﹣1或x>3},∴∁R B={x|﹣1≤x≤3},∴A∩∁R B=[﹣1,1).故选:B.【知识点】交、并、补集的混合运算7.(2020•陕西一模)已知集合A={x|x2﹣4x+5>0},,则A∩B=()A.(﹣2,3)B.[﹣2,3]C.[﹣2,3)D.∅【解答】解:x2﹣4x+5=(x﹣2)2+1>0,∴集合A=R,且B={x|﹣2≤x<3},∴A∩B=[﹣2,3).故选:C.【知识点】交集及其运算8.(2020•郑州一模)设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B的子集个数为()A.2B.4C.8D.16【解答】解:∵A={x∈N|﹣2≤x≤2}={0,1,2},B={y|y≤1},∴A∩B={0,1},∴A∩B的子集个数为22=4个.故选:B.【知识点】交集及其运算、子集与真子集9.(2020•南充模拟)已知集合A={x|x﹣1≥0},B={x|x2≤1},则A∪B=()A.{x|x≥1}B.{x|x≥﹣1}C.{x|x≤1}D.{x|x≤﹣1}【解答】解:∵A={x|x≥1},B={x|﹣1≤x≤1},∴A∪B={x|x≥﹣1}.故选:B.【知识点】并集及其运算10.(2019•九江三模)已知集合A={x|x2<l},B={x|log2x<0},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:∵集合A={x|x2<l}={xx|﹣1<x<1},B={x|log2x<0}={x|0<x<1},∴B⊊A.故选:B.【知识点】集合的包含关系判断及应用二、填空题(共8小题)11.(2019•东城区一模)设A,B是R中两个子集,对于x∈R,定义:①若A⊆B.则对任意x∈R,m(1﹣n)=;②若对任意x∈R,m+n=1,则A,B的关系为.【解答】解:①∵A⊆B.则x∉A时,m=0,m(1﹣n)=0.x∈A时,必有x∈B,∴m=n=1,m(1﹣n)=0.综上可得:m(1﹣n)=0.②对任意x∈R,m+n=1,则m,n的值一个为0,另一个为1,即x∈A时,必有x∉B,或x∈B时,必有x∉A,∴A,B的关系为A=∁R B.故答案为:0,A=∁R B.【知识点】元素与集合关系的判断12.(2019•南京三模)设集合M={a|a=,2x+2y=2t,其中x,y,t,a均为整数},则集合M=.【解答】解:∵2x+2y=2t,∴2t=2x(2x﹣y+1)因x、y、t、a均为整数,则2x﹣y+1为2的整数幂,则x﹣y=0,即x=y,则2t=2x+1,t=x+1,则a==,显然x≠﹣1,当x=0时:y=0,t=1,a=0,当x≠0时:由a=,x与x+1互质,则2为x+1的倍数,则:x=﹣3,﹣2,1,则a=3,4,1,故M={0,1,3,4},故答案为:{0,1,3,4}【知识点】子集与交集、并集运算的转换13.(2019•西湖区校级模拟)如下四个结论:①∅⊆∅②0∈∅③{0}⊋∅④{0}=∅,其中正确结论的序号为.【解答】解:因为空集是任何集合的子集,故①③正确;空集是不含任何元素的集合,故②④错误,故答案为:①③【知识点】元素与集合关系的判断14.(2018•武清区校级模拟)用列举法表示集合=﹣3,﹣6,6,3,2,1【解答】解:根据x∈N,且可得:x=0时,;x=1时,;x=3时,;x=4时,;x=5时,;x=8时,;∴A={﹣3,﹣6,6,3,2,1}.故答案为:{﹣3,﹣6,6,3,2,1}.【知识点】集合的表示法15.(2018•河东区二模)集合A={x|y=},B={x|x﹣a≥0},A∩B=A,则a的取值范围是﹣∞.【解答】解:∵集合A={x|y=}={x|x≥1},B={x|x﹣a≥0}={x|x≥a},A∩B=A,∴a≤1,∴a的取值范围是(﹣∞,1].故答案为:(﹣∞,1].【知识点】子集与真子集16.(2019•上海模拟)若集合A={x|x2﹣(a+2)x+2﹣a<0,x∈Z}中有且只有一个元素,则正实数a的取值范围是【解答】解:∵x2﹣(a+2)x+2﹣a<0 且a>0∴x2﹣2x+2<a(x+1)令f(x)=x2﹣2x+2;g(x)=a(x+1)∴A={x|f(x)<g(x),x∈Z}∴y=f(x)是一个二次函数,图象是确定的一条抛物线;而y=g(x)一次函数,图象是过一定点(﹣1,0)的动直线.又∵x∈Z,a>0.数形结合,可得:.故答案为:(,]【知识点】元素与集合关系的判断17.(2020•江苏模拟)已知集合A={﹣2,1,},B={x|x2>2},则A∩B=﹣.【解答】解:∵集合A={﹣2,1,},B={x|x2>2}={x|x<﹣或x>},∴A∩B={﹣2}.故答案为:{﹣2}.【知识点】交集及其运算18.(2020•南通模拟)设集合A={0,1,2,3,4},B={2,3}.C={x∈R|1≤x<3},则(A∩C)∪B=.【解答】解:∵A={0,1,2,3,4},B={2,3},C={x∈R|1≤x<3},∴A∩C={1,2},(A∩C)∪B={1,2,3}.故答案为:{1,2,3}.【知识点】交、并、补集的混合运算三、解答题(共6小题)19.(2019•延庆区一模)已知集合S n={X|X=(x1,x2,…x n),x i∈{0,1},i=1,2,..,n}(n≥2).对于A=(a1,a2,..,a n),B=(b1,b2,..b n)∈S n,定义A与B之间的距离为d(A,B)=|a i﹣b i|.(Ⅰ)∀A,B∈S2,写出所有d(A,B)=2的A,B;(Ⅱ)任取固定的元素I∈S n,计算集合M k={A∈S n|d(A,I)≤k}(1≤k≤n)中元素个数;(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有不同元素间的距离的最小值为.证明:m.【解答】解:(Ⅰ)根据题意知,当d(A,B)=2时,对应A(1,1),B(0,0);或A(1,0),B(0,1);或A(0,1),B(1,0);或A(0,0),B(1,1);…………………(4分)(Ⅱ)当k=1时,,…………………(5分)当k=2时,;…………………(6分)写出|M k|=++…+;…………………(7分)特别的,|M n|=++…+=2n;所以M K元素个数为;…………………(8分)(Ⅲ)证明:记P′={(c1,c2,…,c n﹣α+1)|(c1,c2,…,c n﹣α+1,…,c n)∈P},我们证明|P′|=|P|.一方面显然有|P′|≤|P|;另一方面,∀A、B∈S n,且A≠B,假设他们满足a1=b1,a2=b2,…,a n﹣α+1=b n﹣α+1;则由定义有d(A,B)≤﹣1,与P中不同元素间距离至少为相矛盾;从而(a1,a2,…,a n﹣α+1)≠(b1,b2,…,b n﹣α+1);这表明P′中任意两元素不相等,从而|P′|=|P|=m;又P′中元素有n﹣+1个分量,至多有2n﹣α+1个元素.从而m≤2n﹣α+1.…………………(13分)【知识点】集合中元素个数的最值、函数最值的应用20.(2019•苏州模拟)已知非空集合M满足M⊆{0,1,2,…,n}(n≥2,n∈N+).若存在非负整数k(k≤n),使得当a∈M时,均有2k﹣a∈M,则称集合M具有性质P.设具有性质P的集合M的个数为f(n).(1)求f(2)的值;(2)求f(n)的表达式.【解答】解:(1)当n=2时,M={0},{1},{2},{0,2},{0,1,2}具有性质P,对应的k分别为0,1,2,1,1,故f(2)=5.(2)可知当n=k时,具有性质P的集合M的个数为f(t),则当n=k+1时,f(t+1)=f(t)+g(t+1),其中g(t+1)表达t+1∈M也具有性质P的集合M的个数,下面计算g(t+1)关于t的表达式,此时应有2k≥t+1,即,故对n=t分奇偶讨论,①当t为偶数时,t+1为奇数,故应该有,则对每一个k,t+1和2k﹣t﹣1必然属于集合M,且t和2k﹣t,…,k 和k共有t+1﹣k组数,每一组数中的两个数必然同时属于或不属于集合M,故对每一个k,对应的具有性质P的集合M的个数为,所以,②当t为奇数时,t+1为偶数,故应该有,同理,综上,可得又f(2)=5,由累加法解得即.【知识点】集合的表示法21.(2018•建邺区校级模拟)设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)【知识点】子集与真子集22.(2019•南关区校级模拟)已知集合A={(x,y)|x2+mx﹣y+2=0}和B={(x,y)|x﹣y+1=0,0≤x≤2},A∩B≠∅,求实数m的取值范围.【解答】解:由得x2+(m﹣1)x+1=0,①∵A∩B≠∅,∴方程①在区间[0,2]上至少有一个实数解,首先,由△=(m﹣1)2﹣4≥0,解得:m≥3或m≤﹣1.设方程①的两个根为x1、x2,(1)当m≥3时,由x1+x2=﹣(m﹣1)<0及x1•x2=1>0知x1、x2都是负数,不合题意;(2)当m≤﹣1时,由x1+x2=﹣(m﹣1)>0及x1•x2=1>0知x1、x2是互为倒数的两个正数,故x1、x2必有一个在区间[0,1]内,从而知方程①在区间[0,2]上至少有一个实数解.综上所述,实数m的取值范围为(﹣∞,﹣1].【知识点】集合的包含关系判断及应用23.(2019•西湖区校级模拟).已知集合,D={x|x∈A,或x∈B}.(1)当m=1时,求集合D;(2)若B⊆∁R A,求实数m的取值范围.【解答】解:(1)A={x|<2x≤8}={x|﹣1<x≤3},B={x|1≤x<4},则D=A∪B={x|﹣1<x<4};(2)∁R A={x|x>3或x≤﹣1},B⊆∁R A,当B=∅,即m≥1+3m,即m≤﹣,成立;当B≠∅,可得或,解得m>3或m∈∅,综上可得m的范围是m>3或m≤﹣.【知识点】集合关系中的参数取值问题24.(2019•西湖区校级模拟)已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}(1)若m=1时,求A∪B(2)若B⊆∁R A,求实数m的取值范围.【解答】解:(1)m=1时,A={x|﹣1<x≤3}=(﹣1,3],B={x|1≤x<4}=[1,4),A∪B=(﹣1,4);…(4分)(2)∁R A={x|x≤﹣1或x>3}=(﹣∞,﹣1]∪(3,+∞),由B⊆∁R A,可分以下两种情况:①当B=∅时,m≥1+3m,解得m≤﹣…(6分)②当B≠∅时,,解得m>3;…(8分)综上,m的取值范围是m∈(﹣∞,﹣]∪(3,+∞).…(10分)【知识点】并集及其运算、集合的包含关系判断及应用21/ 21。
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
专题1 集合与常用逻辑用语第一部分 真题分类一、单选题1.(2021·北京高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f ,若()f x 在[]0,1上的最大值为()1f ,比如()213f x x ⎛⎫=- ⎪⎝⎭,但()213f x x ⎛⎫=- ⎪⎝⎭在10,3⎡⎤⎢⎥⎣⎦为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数,故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件,故选:A.2.(2021·北京高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B = ( )A .()1,2-B .(1,2]-C .[0,1)D .[0,1]【答案】B【解析】由题意可得:{}|12A B x x =-<≤ ,即(]1,2A B =- .故选:B.3.(2021·浙江高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B = ( )A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.4.(2021·浙江高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r,推不出a b = ;若a b= ,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.5.(2021·全国高考真题(文))设集合{}{}1,3,5,7,9,27M N x x ==>,则M N = ( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【解析】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.6.(2021·全国高考真题(理))设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.7.(2021·全国高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.(2021·全国高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .S C .T D .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.9.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .10.(2021·全国高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=ð( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【解析】由题意可得:{}1,2,3,4M N =U ,则(){}5U M N = ð.故选:A.11.(2021·全国高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .12.(2020·全国高考真题(理))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.13.(2020·天津高考真题)设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选:A.14.(2020·北京高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k Z ∈使得(1)kk απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)kk απβ=+-.所以,“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的充要条件.故选:C.15.(2020·浙江高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx ∈S ;下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T = ,包含4个元素,排除选项 C ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T = ,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T = ,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈,同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =,又444231p p p p p >>>,故442232p pp p p ==,所以342p p =,故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==,又44441231p p p p p p p >>>>,故441331p pp p p ==,所以441p p =,故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T∈, 则31q S p ∈,故131,1,2,3,4iq p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .16.(2020·海南高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【解析】[1,3](2,4)[1,4)A B ==U U 故选:C17.(2020·全国高考真题(理))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【解析】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.18.(2020·全国高考真题(理))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4【答案】B【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.二、填空题19.(2020·全国高考真题(理))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.20.(2019·江苏高考真题)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.【答案】{1,6}.【解析】由题知,{1,6}A B = .三、解答题21.已知等差数列{}n a 的公差(]0,d π∈,数列{}n b 满足()sin n n b a =,集合{}|,n S x x b n N *==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.【答案】(1)S ⎧⎪=⎨⎪⎪⎩⎭;(2)23d π=或d π=;(3)3,4,5,6T =【解析】(1)10a =,23d π= 223a π⇒=,343a π=,42a π=1sin 00b ∴==,22sin 32b π==,34sin 32b π==-,40b =由周期性可知,n b 以3为周期进行循环,0,22S ⎧⎪⇒=-⎨⎪⎪⎩⎭(2)1sin12b π==,2sin 2b d π⎛⎫=+ ⎪⎝⎭,3sin 22b d π⎛⎫=+ ⎪⎝⎭ S 恰好有两个元素∴sinsin 222d ππ⎛⎫=+ ⎪⎝⎭或sin sin 222d d ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭即22d π=或2222d d πππ+++=d π⇒=或23d π=(3)由S 恰好有3个元素可知:3T ≥当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意; 当4T=时,4n n b b +=,()sin 4sin n na d a +=42n n a d a k π+=+或42n na d k a π+=-因为{}na为公差0d >的等差数列,故42nn ad a k π+=+ 2k d π⇒=又d π≤,故1,2k =当1k =时,如图取10a =,{}0,1,1S =-,符合条件当5T =时,5n n b b +=,()sin 5sin n na d a +=52n n a d a k π+=+或52n na d k a π+=-因为{}na为公差0d >的等差数列,故52n na d a k π+=+ 25k d π⇒=又d π≤,故1,2k =当1k =时,如图取110a π=,3sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭,符合条件当6T =时,6n n b b +=,()sin 6sin n na d a +=62n n a d a k π+=+或62n na d k a π+=-因为{}na为公差0d >的等差数列,故62n n a d a k π+=+ 3k d π⇒=又d π≤,故1,2,3k =当1k =时,如图取10a=时,22S =-⎨⎪⎪⎩⎭,符合条件当7T =时,7n n b b +=,()sin 7sin n na d a +=72n n a d a k π+=+或72n na d k a π+=-因为{}na为公差0d >的等差数列,故72n n a d a k π+=+ 27k d π⇒=又d π≤,故1,2,3k =当1k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=,即()22,m n d d m nππ-==-,即22=7m n ππ-,7,7m n m -=>,不符合条件;当2k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=,即()22,m n d d m n ππ-==-,即24=7m n ππ-,m n-不是整数,故不符合条件;当3k =时,因为127,,,b b b 对应3个正弦值,故必有一个正弦值对应三个点,必然有2m n a a π-=或4π若()22,m n d d m nππ-==-,即26=7m n ππ-,m n -不是整数,若()44,m n d d m nππ-==-,即46=7m n ππ-,m n -不是整数,故3k =不符合条件;综上:3,4,5,6T =22.设n 为正整数,集合A =(){}12{|,,,,0,1,1,2,,}n k t t t t k n αα=∈= .对于集合A 中的任意元素()12,,,n x x x α= 和()12,,,n y y y β= ,记M (αβ,)=()()()1111222212n n n n x y x y x y x y x y x y ⎡⎤+--++--+++--⎣⎦ .(Ⅰ)当n =3时,若()1,1,0α=,()0,1,1β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.【答案】(1)2,1;(2) 最大值为4;(3)【解析】(Ⅰ),.(Ⅱ)考虑数对只有四种情况:、、、,相应的分别为、、、,所以中的每个元素应有奇数个,所以中的元素只可能为(上下对应的两个元素称之为互补元素):、、、,、、、,对于任意两个只有个的元素,都满足是偶数,所以集合、、、满足题意,假设中元素个数大于等于,就至少有一对互补元素,除了这对互补元素之外还有至少个含有个的元素,则互补元素中含有个的元素与之满足不合题意,故中元素个数的最大值为.(Ⅲ),此时中有个元素,下证其为最大.对于任意两个不同的元素,满足,则,中相同位置上的数字不能同时为,假设存在有多于个元素,由于与任意元素都有,所以除外至少有个元素含有,根据元素的互异性,至少存在一对,满足,此时不满足题意,故中最多有个元素.第二部分 模拟训练一、单选题1.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈.给出如下三个命题:①若1m =,则{}1S =;②若12m =-,则114l ≤≤;③若12l =,则02m -≤≤.其中正确命题的个数是( )A .0B .1C .2D .3【答案】D 【解析】由定义设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,符合定义的参数m 的值一定大于等于1-,符合条件的l 的值一定大于等于0或小于等于1,对于①若1m =,21m S=∈,故必有21l l l ⎧≤⎨≥⎩,可得1l =,故{}1S =,故①正确;对于②若12m =-,214m S =∈,则214l l l ⎧≤⎪⎨≤⎪⎩,解得114l ≤≤,故②正确;对于③若12l =,则221212mm m m ⎧≥⎪⎪≥⎨⎪⎪≥⎩,可解得02m -≤≤,故③正确.①②③都为真命题,所以正确命题的个数是3,故选:D2.已知直线l 是平面α和平面β的交线,异面直线a ,b 分别在平面α和平面β内.命题p :直线a ,b 中至多有一条与直线l 相交;命题q :直线a ,b 中至少有一条与直线l 相交;命题s :直线a ,b 都不与直线l 相交.则下列命题中是真命题的为( )A .()p q ∨⌝B .()p s ⌝∧C .()q s ∧⌝D .()()p q ⌝∧⌝【答案】C【解析】由题意直线l 是平面α和平面β的交线,异面直线a ,b 分别在平面α和平面β内,可知,命题p :直线a ,b 可以都与直线l 相交,所以命题p 为假命题;命题q :若直线a ,b 都不与直线l 相交,则直线a ,b 都平行于直线l ,那么直线a ,b 平行,与题意a ,b 为异面直线矛盾,所以命题q 为真命题;命题s :直线a ,b 都不与直线l 相交,则直线a ,b 都平行于直线l ,那么直线a ,b 平行,与题意a ,b 为异面直线矛盾,所以命题s 为假命题;由复合命题真假可知,对于A ,p 为假命题,q ⌝为假命题,所以()p q ∨⌝为假命题,对于B ,p ⌝为真命题,s 为假命题,所以()p s ⌝∧为假命题,对于C ,q 为真命题,s ⌝为真命题,所以()q s ∧⌝为真命题,对于D ,p ⌝为真命题,q ⌝为假命题,所以()()p q ⌝∧⌝为假命题,综上可知,C 为真命题,故选:C.3.下列命题中,不是真命题的是( )A .命题“若22am bm <,则a b <”的逆命题.B .“1ab >”是“1a >且1b >”的必要条件.C .命题“若29x =,则3x =”的否命题.D .“1x >”是“11x<”的充分不必要条件.【答案】A【解析】命题“若22am bm <,则a b <”的逆命题为:若a b <,则22am bm >,显然是错误的,当m=0时则不成立,故A是假命题.4.已知集合{}2320A x x x =-+≥,(){}321B x log x =+<,则A B ⋂=( )A .{}21x x -<<B .{}12x x x 或≤≥C .{}1x x <D .∅【答案】A 【解析】{}{}232012A x x x x x x 或,=-+≥=≤≥ (){}{}32121B x log x x x =+<=-<<,{}21.A B x x ∴⋂=-<<选A.5.下列命题中错误的是( )A .命题“若x y =,则sin sin x y =”的逆否命题是真命题B .命题“0000,ln 1x x x ∃>=-”的否定是“0000,ln 1x x x ∀>≠-”C .若p q ∨为真命题,则p q ∧为真命题D .已知00x >,则“00x x a b >”是“0a b >>”的必要不充分条件【答案】C【解析】对于A ,若x=y ,则sinx=siny ,显然原命题正确,则逆否命题也为真命题.故A 正确;对于B ,命题“0000,ln 1x x x ∃>=-”的否定是“0000,ln 1x x x ∀>≠-”,故B 正确;对于C ,若p q ∨为真命题,则p q 与至少有一个是真命题,故p q ∧不一定为真命题,故C 错误;对于D ,充分性:当044b 2x a ==-=,,时,显然[]0,1不成立,即充分性不具备;必要性:因为00x >,[]0,1根据幂函数的单调性,显然00x x a b >,即必要性具备,故D 正确.故选C6.下列叙述中正确的是( )A .若,,a b c ∈R ,则“20ax bx c ++≥”的充分条件是“240b ac -≤”B .若,,a b c ∈R ,则“22ab cb >”的充要条件是“a c >”C .命题“对任意x ∈R ,有20x ≥”的否定是“存在x ∈R ,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ【答案】D【解析】当0a <时,2"40"b ac -≤推不出2"0"ax bx c ++≥,A 错,当0b =时,""a c >推不出22""ab cb >,B 错,命题“对任意x ∈R ,有20x ≥”的否定是“存在x ∈R ,有20x <”,C 错,因为与同一直线垂直的两平面平行,所以D 正确.7.下列有关命题的说法正确的是( )A .(0,)x π∃∈,使得2sin 2sin x x+=成立.B .命题p :任意x ∈R ,都有cos 1≤x ,则p ⌝:存在0x R ∈,使得0cos 1x ≤.C .命题“若2a >且2b >,则4a b +>且4ab >”的逆命题为真命题.D .若数列{}n a 是等比数列,*,,m n p N ∈则2m n p a a a ⋅=是2m n p +=的必要不充分条件.【答案】D 【解析】由2sin 2sin x x+=,得2sin 2sin 20x x -+=,其判别式4880∆=-=-<,此方程无解,故A 选项错误.对于B 选项,全称命题的否定是特称命题,0cos 1x ≤应改为0cos 1x >,故B 选项错误.对于C 选项,原命题的逆命题是“若4a b +>且4ab >,则2a >且2b >”,如1,5a b ==,满足4a b +>且4ab >但不满足2a >且2b >,所以为假命题.对于D 选项,若1n a =,为等比数列,2123a a a ⋅=,但1223+≠⨯;另一方面,根据等比数列的性质,若2m n p +=,则2m n p a a a ⋅=.所以2m n p a a a ⋅=是2m n p +=的必要不充分条件.故选D.。
第一章集合与常用逻辑用语第一讲集合的概念与运算ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测知识梳理知识点一集合的基本概念一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a与集合A,a∈A或a∉A,二者必居其一.(3)常见集合的符号表示.数集自然数集正整数集整数集有理数集实数集符号N N*Z Q R(4)(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.知识点二集合之间的基本关系关系定义表示相等集合A与集合B中的所有元素都相同A=B子集A中的任意一个元素都是B中的元素A⊆B真子集A是B的子集,且B中至少有一个元素不属于A A B 空集用∅表示.(2)若集合A中含有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A⊆B,B⊆C,则A⊆C.知识点三集合的基本运算符号交集A∩B 并集A∪B 补集∁U A 语言图形语言意义A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}∁U A={x|x∈U且x∉A}重要结论1.A∩A=A,A∩∅=∅.2.A∪A=A,A∪∅=A.3.A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.双基自测题组一走出误区1.(多选题)下列命题错误的是(ABCD)A.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为1或-1或0.B.方程x-2 020+(y+2 021)2=0的解集为{2 020,-2 021}.C.若A∩B=A∩C,则B=C.D.设U=R,A={x|lg x<1},则∁U A={x|lg x≥1}={x|x≥10}.题组二走进教材2.(必修1P5B1改编)若集合P={x∈N|x≤ 2 021},a=45,则(D)A.a∈P B.{a}∈PC.{a}⊆P D.a∉P[解析]452=2 025>2 021,∴a∉P,故选D.3.(必修1P7T3(2)改编)若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B 的关系是(B)A.A=B B.A BC.A B D.A⊆B[解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k ∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B.题组三考题再现4.(2019·全国卷Ⅰ,5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=(C)A.{1,6} B.{1,7}C .{6,7}D .{1,6,7}[解析] 依题意得∁U A ={1,6,7},故B ∩∁U A ={6,7}.故选C .5.(2019·北京,5分)已知集合A ={x |-1<x <2},B ={x |x >1},则A ∪B =( C ) A .(-1,1) B .(1,2) C .(-1,+∞)D .(1,+∞)[解析] 由题意得A ∪B ={x |x >-1},即A ∪B =(-1,+∞),故选C .6.(2019·全国卷Ⅱ,5分)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( A ) A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)[解析] 因为A ={x |x 2-5x +6>0}={x |x >3或x <2},B ={x |x -1<0}={x |x <1},所以A ∩B ={x |x <1},故选A .KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 集合的基本概念——自主练透例1 (1)(多选题)已知集合A ={x |x =3k +1,k ∈Z },则下列表示正确的是( ABD ) A .-2∈A B .2 021∉A C .3k 2+1∉AD .-35∈A(2)(2019·华师大第二附中10月月考)已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( C )A .2B .3C .4D .5(3)已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2 020a 的值为1;若1∉A ,则a 不可能取得的值为-2,-1,0,-1+52,-1-52.[解析] (1)当-2=3k +1时,k =-1∈Z ,故A 正确;当2 021=3k +1时,k =67313∉Z ,故B 正确;当-35=3k +1时,k =-12∈Z ,故D 正确.故选A 、B 、D .(2)∵32-x ∈Z ,∴2-x 的取值有-3,-1,1,3.又∵x ∈Z ,∴x 的取值为5,3,1,-1,故集合A中的元素个数为4,故选C .(3)若a +2=1,则a =-1,A ={1,0,1},不合题意;若(a +1)2=1,则a =0或-2,当a =0时,A ={2,1,3},当a =-2时,A ={0,1,1},不合题意;若a 2+3a +3=1,则a =-1或-2,显然都不合题意;因此a =0,所以2 0200=1.∵1∉A ,∴a +2≠1,∴a ≠-1;(a +1)2≠1,解得a ≠0,-2;a 2+3a +3≠1解得a ≠-1,-2.又∵a +2、(a +1)2、a 2+3a +3互不相等,∴a +2≠(a +1)2得a ≠-1±52;a +2≠a 2+3a+3得a ≠-1;(a +1)2≠a 2+3a +3得a ≠-2;综上a 的值不可以为-2,-1,0,-1+52,-1-52.名师点拨 ☞(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点二 集合之间的基本关系——师生共研例2 (1)已知集合A ={1,2,3},集合B ={x |x ∈A },则集合A 与集合B 的关系为( C ) A .A ⊆B B .B ⊆A C .A =BD .不能确定(2)(2020·江西赣州五校协作体期中)已知集合A ={x |x =sin n π3,n ∈Z },且B ⊆A ,则集合B 的个数为( C )A .3B .4C .8D .15(3)(多选题)设集合M ={x |x =k 3+16,k ∈Z },N ={x |x =k 6+23,k ∈Z },则下面不正确的是( ACD )A .M =NB .M NC .NMD .M ∩N =∅(4)已知集合A ={x |x 2-2 020x +2 019<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是[2_019,+∞).[解析] (1)B ={x |x ∈A }={1,2,3}=A ,故选C . (2)∵集合A ={x |x =sinn π3,n ∈Z }={0,32,-32},且B ⊆A ,∴集合B 的个数为23=8,故选C .(3)解法一:(列举法),由题意知 M ={…-12,-16,16,12,56,76,…}N ={…-16,0,16,13,12,23,56,…}显然M N ,故选A 、C 、D . 解法二:(描述法) M ={x |x =2k +16,k ∈Z },N ={x |x =k +46,k ∈Z } ∵2k +1表示所有奇数,而k +4表示所有整数(k ∈Z ) ∴M N ,故选A 、C 、D . (4)A ={x |1<x <2 019},∵A ⊆B , ∴借助数轴可得a ≥2 019,∴a 的取值范围为[2 019,+∞).名师点拨 ☞判断集合间关系的3种方法 列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第(1)、(2)题)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第(3)题)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(如第(4)题)(1)(2020·辽宁锦州质检(一))集合M ={x |x =3n ,n ∈N },集合N ={x |x =3n ,n ∈N },则集合M 与集合N 的关系是( D )A .M ⊆NB .N ⊆MC .M ∩N =∅D .M ⊆/ N 且N ⊆/ M(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =(12)x ,x ∈R },则下列不正确的是( ABD )A .M =NB .N ⊆MC .M =∁R ND .(∁R N )∩M =∅(3)已知集合A ={x |x 2-3x -10≤0},B ={x |mx +10>0},若A ⊆B ,则m 的取值范围是(-2,5).[解析] (1)因为1∈M,1∉N,6∈N,6∉M ,所以M ⊆/ N 且N ⊆/ M ,故选D .(2)由题意得y =x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,∴M =(-∞,0],N =(0,+∞),∴M =∁R N .故选A 、B 、D .(3)化简A ={x |x 2-3x -10≤0}={x |-2≤x ≤5},当m >0时,x >-10m ,因为A ⊆B ,所以-10m <-2,解得m <5,所以0<m <5.当m <0时,x <-10m ,因为A ⊆B ,所以-10m >5,解得m >-2,所以-2<m <0.当m =0时,B =R ,符合A ⊆B .综上所述,所求的m 的取值范围是(-2,5).考点三 集合的基本运算——多维探究角度1 集合的运算例3 (1)(2019·天津,5分)设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( D )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}(2)(2019·全国卷Ⅰ,5分)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( C ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2}D .{x |2<x <3}(3)(2020·百校联考)已知集合A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x ≥1},则∁B A=( C )A .[815,54]∪[3,+∞)B .[815,54)∪(3,+∞)C .[815,54]∪(3,+∞)D .[815,54)∪[3,+∞)[解析] (1)由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.(2)方法一:∵N ={x |-2<x <3},M ={x |-4<x <2},∴M ∩N ={x |-2<x <2},故选C . 方法二:由题可得N ={x |-2<x <3}.∵-3∉N ,∴-3∉M ∩N ,排除A ,B ;∵2.5∉M ,∴2.5∉M ∩N ,排除D .故选C .(3)因为A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x≥1},所以A =(54,3],B =[815,+∞),故∁B A =[815,54]∪(3,+∞).故选C .角度2 利用集合的运算求参数例4 (1)已知集合A ={0,1,2m },B ={x |1<22-x <4},若A ∩B ={1,2m },则实数m 的取值范围是( C )A .(0,12)B .(12,1)C .(0,12)∪(12,1)D .(0,1)(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}≠∅,若A ∩B =B ,则实数m 的取值范围为[2,3].[解析] (1)B ={x |0<2-x <2}={x |0<x <2},∵A ∩B ={1,2m },∴0<2m <2且2m ≠1,即0<m <1且m ≠12,故选C .(2)由A ∩B =B 知,B ⊆A .又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3,则实数m 的取值范围为[2,3].[引申1]本例(2)中若B ={x |m +1≤x ≤2m -1}情况又如何? [解析] 应对B =∅和B ≠∅进行分类. ①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,由例得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].[引申2]本例(2)中是否存在实数m ,使A ∪B =B ?若存在,求实数m 的取值范围;若不存在,请说明理由.[解析] 由A ∪B =B ,即A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3,不等式组无解,故不存在实数m ,使A ∪B =B . [引申3]本例(2)中,若B ={x |m +1≤x ≤1-2m },A B ,则m 的取值范围为(-∞,-3].[解析] 由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.名师点拨 ☞集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. 2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解. 〔变式训练2〕(1)(角度1)(2019·浙江,4分)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( A )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}(2)(角度1)设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( D ) A .(2,3] B .(-∞,1]∪(2,+∞) C .[1,2)D .(-∞,0)∪[1,+∞)(3)(角度2)设集合M ={x |y =2x -x 2},N ={x |x ≥a },若M ∪N =N ,则实数a 的取值范围是( B )A .[0,2]B .(-∞,0]C .[2,+∞)D .(-∞,2][解析] (1)由题意可得∁U A ={-1,3},则(∁U A )∩B ={-1}.故选A .(2)∁U A ={x |x <0或x >2},则(∁U A )∪B ={x |x <0或x ≥1},故选D . (3)M ={x |0≤x ≤2},∵M ∪N =N ,∴M ⊆N ,∴a ≤0,故选B .MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛┃·素养提升集合中的新定义问题例5 (2020·江西九江联考)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知M ={y |y =-x 2+2x ,0<x <2},N ={y |y =2x -1,x >0},则M ⊗N =(0,12]∪(1,+∞).[解析] M ={y |y =-x 2+2x,0<x <2}=(0,1],N ={y |y =2x -1,x >0}=(12,+∞),则M ∪N=(0,+∞),M ∩N =(12,1],所以M ⊗N =(0,12]∪(1,+∞).名师点拨 ☞集合新定义问题的“3定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 〔变式训练3〕对于集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( C )A .(-94,0]B .[-94,0)C .(-∞,-94)∪[0,+∞)D .(-∞,-94]∪(0,+∞)[解析] A ={y |y ≥-94},B ={y |y <0},A -B ={y |y ≥0},B -A ={y |y <-94},(A -B )∪(B -9A)={y|y≥0或y<-4},故选C.。
新高考数学复习考点知识与题型专题讲解1 集合的概念考点知识讲解1 元素与集合1.元素与集合的概念(1)元素:一般地,把统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的叫做集合(简称为__).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的是一样的,就称这两个集合是相等的.(4)元素的特性:、、.答案:(1)研究对象(2)总体集(3)元素(4)确定性无序性互异性2.元素与集合的关系答案:∈∈NN*或N+ZQR考点知识讲解2 集合的表示方法1.列举法把集合的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:运用列举法表示集合,应注意:(1)元素间用“,”分隔,不能用其它符号代替;(2)元素不重复;(3)元素间无顺序;(4)“{}”表示“所有”、“整体”的含义,不能省略2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)书写形式:,其中x代表集合中的元素,p(x)为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.答案:一一列举共同特征{x|p(x)}题型一对集合含义的理解1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B【解析】①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.故选:B.2.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)【解析】(1)“高个子”没有明确的标准,因此(1)不能构成集合. (2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5)”不明确精确到什么程度,所以不能构成集合.故答案为:(2)题型二元素与集合的关系3.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 题型三 元素的特性的应用5.已知集合A ={x ∈Z|2x -4x -5<0},B ={x|4x >2m },若A∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4] 【答案】C【解析】∵A ={x ∈Z|-1<x<5}={0,1,2,3,4},B ={x|x>},A∩B 有三个元素,∴1≤<2,即2≤m<4. 故答案为C6.设a ,b ∈R ,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .﹣1D .不确定 【答案】A【解析】由题意可知a ≠0,则只能a +b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②; 由①得a =﹣1,b =1,符合题意; ②无解;则a +2b =﹣1+2=1. 故选:A题型四 用列举法表示集合 7.集合M ={61aN a ∈+,且a Z ∈},用列举法表示集合M =______________ 【答案】{}0,1,2,5 【解析】61N a ∈+016a ∴<+≤,即15a -<≤ 又a Z ∈0a ∴=时,661N a =∈+;1a =时,631N a =∈+;2a =时,621N a =∈+; 3a =时,6312N a =∉+;4a =时,6615N a =∉+;5a =时,611N a =∈+ {}0,1,2,5M ∴=本题正确结果:{}0,1,2,5 8.根据要求写出下列集合.(1)已知{}25|50x x ax -∈--=,用列举法表示集合{}2|40x x x a --=. (2)已知集合16|8A N x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A .(3)已知方程组10240x y x y -+=⎧⎨+-=⎩,分别用描述法、列举法表示该集合.(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合. (5)用适当的方法表示坐标平面内坐标轴上的点集.【答案】(1){2};(2){2,4,8,16};(3){(x ,y )|x =1,y =2},{(1,2)};(4){(0,5),(1,3),(2,1)};(5){(x ,y )|xy =0}. 【解析】(1){}25|50x x ax -∈--=,()()25550a ∴--⨯--=,解得4a =-,2440x x -+=的解为2x =,∴用列举法表示集合{}2|40x x x a --=为{}2;(2)168N x∈-,则8x -可取的值有1,2,4,8,16,x 的可能值有7,6,4,0,8-, x N ∈,7,6,4,0x ∴=,162,4,8,168x∴=-, {}2,4,8,16A ∴=;(3)方程组10240x y x y -+=⎧⎨+-=⎩的解为12x y =⎧⎨=⎩,∴用描述法表示该集合为(){},1,2x y x y ==,列举法表示该集合为(){}1,2;(4)当0x =时,5y =;当1x =时,3y =;当2x =时,1y =,∴用列举法表示该集合为()()(){}0,5,1,3,2,1;(5)坐标轴上的点满足0x =或0y =,即0xy =, 则该集合可表示为(){},0x y xy =.题型五 用描述法表示集合9.用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________. 【答案】()()()(){}1,42,33,24,1,,,{}41z x z x k k ∈=+∈,【解析】由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈.故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈ 题型六 集合表示方法的综合应用10. (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x=0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} 1.下列集合中,结果是空集的是( ) A .{x ∈R |x 2-1=0}B .{x |x >6或x <1} C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1} 【答案】D【解析】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数, 即:{x |x >6且x <1}=∅. 故选:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【解析】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;⑤的近似值的全体的对象”不确定,不能构成集合;故③④正确.故选:A.4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 5.下列各组中的M ,P 表示同一集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)} C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R } 【答案】CD【解析】在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =x -1}={y |y ≥-1},P ={t |t =x -1}={t |t ≥-1},二者表示同一集合,故正确;在D 中,M ={m |m ≥4,m ∈R },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4≥4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确. 故选:CD 6.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:187.下列命题正确的个数__ (1)很小的实数可以构成集合;(2)集合{y |y =x 2﹣1}与集合{(x ,y )|y =x 2﹣1}是同一个集合; (3)1,361,,||,0.5242-,这些数组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. 【答案】0【解析】解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合{y |y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合{(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确, 故答案为:0.8.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A =∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A , 所以11A a∈-, 所以1111111a A a a a -==-∈---. 9.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【解析】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
专题01 集合与常用逻辑用语(知识梳理)一、集合1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A 、B 、C 、…来表示。
2、元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a 、b 、c 、…来表示。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
3、空集的含义:不含任何元素的集合叫做空集,记为∅。
4、元素与集合的关系:之间只能用“∈”或“∉”符号连接。
(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作A a ∈;(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作A a ∉。
5、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例:集合},1{a A =,则a 不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例:}2,1,0{有}1,2,0{、}2,0,1{、}0,2,1{、}1,0,2{、}0,1,2{等六种表示方法。
6、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
7、常见的特殊集合:(1)正整数集*N 或+N ;(2)非负整数集N (即自然数集,包括零);(3)整数集Z (包括负整数、零和正整数);(4)有理数集Q (包括整数集Z 和分数集→正负有限小数或无限循环小数);(5)实数集R (包括所有的有理数和无理数);注意:①}{整数=Z (√);}{全体整数=Z (×);②},,0|),{(R y R x y x y x ∈∈=⋅表示坐标轴上的点集;③},,0|),{(R y R x y x y x ∈∈>⋅表示第一、三象限的点集;④},,0|),{(R y R x y x y x ∈∈<⋅表示第二、四象限的点集;⑤对方程组解的集合应是点集,例:⎩⎨⎧=-=+1323y x y x 解的集合)}1,2{(; 例1-1.判断下列说法是否正确,并说明理由。
考点01 集合的概念与表示以及基本关系一、集合的有关概念1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =.3.集合的常用表示法 集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法.4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.空集:不含有任何元素的集合,记作∅.2.集合与集合之间的关系(1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =.(3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B 或B A .空集是任何集合的子集,是任何非空集合的真子集.难度:★★★☆☆ 建议用时: 15分钟 正确率 : /141.(2018·全国高考真题(理))已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为() A .9 B .8 C .5 D .4【答案】A【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.2.(2013·江西高考真题(文))若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( ) A .4B .2C .0D .0或4 【答案】A 【解析】2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系.3.(2013·全国高考真题(理))设集合={1,2,3}A ,B={45},,={x|x=a+b,a A,b B}M ∈∈,则M 中元素的个数为( )A .3B .4C .5D .6【答案】B【详解】由题意知x a b =+,,a A b B ∈∈, 则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B.【考点定位】集合的概念4.(2012·全国高考真题(理))已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .10 【答案】D【解析】列举法得出集合()()()()()()()()()(){}2,1314151324252435354B =,,,,,,,,,,,,,,,,,,,共含10个元素. 故答案选D5.(2013·全国高考真题(理))已知集合A ={x |x 2-2x >0},B ={x |x },则( ). A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B 【答案】B【详解】 依题意{}|02A x x x =或,又因为B ={x |x ,由数轴可知A ∪B =R ,故选B.6.(2015·重庆高考真题(理))已知集合A={}1,2,3,B={}2,3,则( )A .A=BB .A B=∅C .A BD .B A【答案】D【详解】 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.考点:本题考查子集的概念,考查学生对基础知识的掌握程度.8.(2020·东台市创新学校高一月考)设28150A x x x ,10B x ax ,若A B B =,则实数a 的值可以为( ) A .15 B .0 C .3 D .13【答案】ABD【分析】先将集合A 表示出来,由A B B =可以推出B A ⊆,则根据集合A 中的元素讨论即可求出a 的值.【详解】 28150x x -+=的两个根为3和5,3,5A ,A B B =,B A ∴⊆,B ∴=∅或{}3B =或5B 或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=, 当5B 时,满足510a ,15a ∴=, 当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.故选:ABD.【点睛】本题主要考查集合间的基本关系,由A B B =推出B A ⊆是解题的关键.9.(2020·福建省华安县第一中学高一期中)设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A .x Q ∀∈,有x P ∈B .x P ∃∈,使得x Q ∉C .∃∈x Q ,使得x P ∉D .x Q ∀∉,有x P ∉【答案】CD【分析】由两集合交集的结果推出Q 是P 的真子集,再根据真子集的概念进行判断.【详解】因为P Q Q ⋂=,且P Q ≠,所以Q 是P 的真子集,所以x Q ∀∈,有x P ∈,x P ∃∈,使得x Q ∉,CD 错误.故选:CD【点睛】本题考查集合交集的概念、真子集的概念10.(2020·福建三明市·高一期中)(多选题)已知集合{}220A x x x =-=,则有( )A .A ∅⊆B .2A -∈C .{}0,2A ⊆D .{}3A y y ⊆< 【答案】ACD【分析】 先化简集合{0,2}A =,再对每一个选项分析判断得解.【详解】由题得集合{0,2}A =,由于空集是任何集合的子集,故A 正确:因为{}0,2A =,所以CD 正确,B 错误.故选ACD.【点睛】本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平. 11.(2020·平潭县新世纪学校高一期中)(多选)已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}2【答案】AC【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果. 【详解】∪A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∪结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,12.(2015·湖北高考真题(理))已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C【详解】 因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.考点:1.集合的相关知识,2.新定义题型.13.(2010·湖南高考真题(文))若规定E={}1,210...a a a 的子集{}12...,n k k k a a a 为E 的第k 个子集,其中k=12111222n k k k ---+++,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______【答案】5,【详解】(1)由题意新定义知,{}1,3,a a 中11k =,23k =,,故第一空应填5; (2)因为,所以E 的第211个子集包含,此时211-128=83;又因为,,所以E 的第211个子集包含,此时83-64=19;又因为,,所以E 的第211个子集包含,此时19-16=3;又因为,,所以E 的第211个子集包含,此时3-2=1;因为,所以E 的第211个子集包含;故E 的第211个子集是.故第二空应填.14.(2019·上海高考真题)已知集合[][],14,9A t t t t =+⋃++,0A ∉,存在正数λ,使得对任意a A ∈,都有A a λ∈,则t 的值是____________【答案】1或3-【分析】根据t 所处的不同范围,得到[],1a t t ∈+和[]4,9a t t ∈++时,aλ所处的范围;再利用集合A 的上下限,得到λ与t 的等量关系,从而构造出方程,求得t 的值.【详解】 0A ∉,则只需考虑下列三种情况:①当0t >时,[][],14,9a t t t t ∈+++11111,,941a t t t t ⎡⎤⎡⎤∴∈⎢⎥⎢⎥+++⎣⎦⎣⎦ 又0λ> ,,941a t t t t λλλλλ⎡⎤⎡⎤⇒∈⎢⎥⎢⎥+++⎣⎦⎣⎦ A a λ∈ 914t t t t λλ⎧≥⎪⎪+∴⎨⎪≤+⎪+⎩且419t t t tλλ⎧≥+⎪⎪+⎨⎪≤+⎪⎩ 可得:()()()()()()991414t t t t t t t t λλ⎧+≤≤+⎪⎨++≤≤++⎪⎩()()()914t t t t λ∴=+=++ 1t ⇒=②当90t +<即9t <-时,与①构造方程相同,即1t =,不合题意,舍去③当1040t t +<⎧⎨+>⎩即41t -<<-时 可得:11t t t t λλ⎧≥⎪⎪+⎨⎪≤+⎪⎩且4994t t t t λλ⎧≥+⎪⎪+⎨⎪≤+⎪+⎩ ()()()149t t t t λ∴=+=++ 3t ⇒=-综上所述:1t =或3-【点睛】本题考查利用集合与元素的关系求解参数的取值问题,关键在于能够通过t 的不同取值范围,得到a 与a λ所处的范围,从而能够利用集合的上下限得到关于λ的等量关系,从而构造出关于t 的方程;难点在于能够准确地对t 的范围进行分类,对于学生的分析和归纳能力有较高的要求,属于难题.。
§1.1集合1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法交集属于A且属于B的所有元素组成的集合{x|x∈A,且x∈B} A∩B并集属于A或属于B的元素组成的集合{x|x∈A,或x∈B} A∪B概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1.(×)(4)若P∩M=P∩N=A,则A⊆(M∩N).(√)题组二教材改编2.若集合A={x∈N|x≤ 2 021},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D3.已知集合A={a,b},若A∪B={a,b,c},满足条件的集合B有________个.答案 4解析因为(A∪B)⊇B,A={a,b},所以满足条件的集合B可以是{c},{a,c},{b,c},{a,b,c},所以满足条件的集合B有4个.4.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=________.答案(-∞,0)∪[1,+∞)解析因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).题组三易错自纠5.(多选)已知集合A={x|x2-2x=0},则有()A.∅⊆A B.-2∈AC.{0,2}⊆A D.A⊆{y|y<3}答案ACD解析易知A={0,2},A,C,D均正确.6.已知集合A={1,3,m},B={1,m},若B⊆A,则m=________.答案0或3解析因为B⊆A,所以m=3或m=m.即m=3或m=0或m=1,根据集合元素的互异性可知m≠1,所以m=0或3.7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.答案0或1或-1解析易得M={a}.∵M∩N=N,∴N⊆M,∴N=∅或N=M,∴a=0或a=±1.集合的含义与表示1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9 答案 C解析 当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5 答案 C 解析 因为32-x∈Z ,且x ∈Z ,所以2-x 的取值有-3,-1,1,3,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 3.给出下列四个命题: ①{(x ,y )|x =1或y =2}={1,2};②{x |x =3k +1,k ∈Z }={x |x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.(填序号) 答案 ②③④解析 ①中左边集合表示横坐标为1,或纵坐标为2的所有点组成的集合,即x =1和y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,易错点在于认为3k +1与3k -2中的k 为同一个值,对集合的属性理解错误.③中集合有4个元素,其真子集的个数为24-1=15(个).④中x =-2 021或x =- 2 021,满足条件的所有x 组成的集合为{-2 021,- 2 021},其真子集有22-1=3个.所以②③④正确.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.集合间的基本关系例1 (1)集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =m +12,m ∈Z ,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x ∈R |x 2-3x +2=0},B ={x ∈N |0<x <5},则满足条件A ⊆C ⊆B 的集合C 的个数为________. 答案 4解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},∴有4个.(3)已知集合A={x|x2-2 021x+2 020<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________________________________________________________________.答案[2 020,+∞)解析由x2-2 021x+2 020<0,解得1<x<2 020,故A={x|1<x<2 020}.又B={x|x<a},A⊆B,如图所示,可得a≥2 020.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练1(1)已知集合A={x|y=1-x2},B={x|x=m2,m∈A},则()A.A B B.B AC.A⊆B D.B=A答案 B解析由题意知A={x|y=1-x2},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以B A ,故选B.(2)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.答案 (-∞,-2)∪⎣⎡⎦⎤0,52 解析 A ={x |-1≤x ≤6}. ∵B ⊆A ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m <-2.符合题意. 当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m <-2或0≤m ≤52.集合的基本运算命题点1 集合的运算例2 (1)(2019·日照模拟)已知集合A ={x |x 2-2x -3≤0},B ={x |x <2},则A ∩B 等于( ) A .(1,3) B .(1,3] C .[-1,2) D .(-1,2)答案 C解析 因为A ={x |x 2-2x -3≤0}={x |-1≤x ≤3},B ={x |x <2},所以A ∩B =[-1,2).(2)(2020·沈阳检测)已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示的阴影区域表示的集合为()A.{3} B.{7} C.{3,7} D.{1,3,5}答案 B解析由图可知,阴影区域为∁U(A∪B).由题意知,A∪B={1,3,5},U={1,3,5,7},则由补集的概念知,∁U(A∪B)={7}.故选B.命题点2利用集合的运算求参数例3(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)答案 B解析因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3),故选B.(2)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是() A.a<1 B.a≤1C.a>2 D.a≥2答案 D解析集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,作出数轴如图.可知a≥2.本例(2)中,若集合A={x|x>a},其他条件不变,则实数a的取值范围是________.答案(-∞,1]解析∵A={x|x>a},B={x|1<x<2},由B⊆A结合数轴观察(如图).可得a≤1.思维升华(1)一般来讲,集合中的元素若是离散的,可用Venn图表示;数集中的元素若是连续的,则可用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.跟踪训练2(1)(2019·全国Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A等于()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}答案 C解析∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴∁U A={1,6,7}.又B={2,3,6,7},∴B∩∁U A={6,7}.(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案 D解析在数轴上画出集合A,B(如图),观察可知a >-1.解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.例1 对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________. 答案 {1,6,10,12}解析 要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.例2 (多选)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,ab ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( ) A .数域必含有0,1两个数 B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集 答案 AD解析 当a =b 时,a -b =0,ab =1∈P ,故可知A 正确.当a =1,b =2时,12∉Z 不满足条件,故可知B 不正确.当M 比Q 多一个元素i 时,则会出现1+i ∉M ,所以它也不是一个数域,故可知C 不正确. 根据数域的性质易得数域有无限多个元素,必为无限集,故可知D 正确.例3 已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.1.下列各组集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.已知集合M={x|x2-x-6=0},则下列表述正确的是()A.{-2}∈M B.2∈MC.-3∈M D.3∈M答案 D解析∵集合M={x|x2-x-6=0}.∴集合M={-2,3},∴-2∈M,3∈M,故选D.3.(2018·全国Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为() A.9 B.8 C.5 D.4答案 A解析将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.4.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有()A.7个B.8个C.15个D.16个答案 A解析 ∵集合A ={x ∈N *|x 2-3x -4<0}={x ∈N *|-1<x <4}={1,2,3}, ∴集合A 中共有3个元素,∴真子集有23-1=7(个).5.已知集合M ={x |x >4或x <1},N =[-1,+∞),则M ∩N 等于( ) A .(-∞,+∞) B .(-1,1)∪(4,+∞) C .∅ D .[-1,1)∪(4,+∞)答案 D解析 因为M ={x |x >4或x <1},N =[-1,+∞),所以M ∩N =[-1,1)∪(4,+∞). 6.(2020·山东模拟)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B 等于( ) A .{(1,1)} B .{(-2,4)} C .{(1,1),(-2,4)} D .∅答案 C解析 首先注意到集合A 与集合B 均为点集,联立⎩⎪⎨⎪⎧ x +y =2,y =x 2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4.从而集合A ∩B ={(1,1),(-2,4)}.7.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( ) A .A ∩B =∅B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3} 答案 BD解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2}, ∴A ∩B ={x |-1<x ≤3}∩{x |-2≤x ≤2}={x |-1<x ≤2},A 不正确; A ∪B ={x |-1<x ≤3}∪{x |-2≤x ≤2}={x |-2≤x ≤3},B 正确; ∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |-1<x ≤3}∪{x |x <-2或x >2}={x |x <-2或x >-1},C 不正确; A ∩∁R B ={x |-1<x ≤3}∩{x |x <-2或x >2}={x |2<x ≤3},D 正确.8.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是( )A .A ∪B =B B .(∁R B )∪A =RC .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )=R答案 ABD解析 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}; 因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3}. 所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.9.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =________. 答案 {1,3}解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.10.(2019·湖北黄石一中模拟)设集合M ={y |y =2cos x ,x ∈[0,5]},N ={x |y =log 2(x -1)},则M ∩N =________. 答案 {x |1<x ≤2}解析 ∵M ={y |y =2cos x ,x ∈[0,5]}={y |-2≤y ≤2},N ={x |y =log 2(x -1)}={x |x >1}, ∴M ∩N ={y |-2≤y ≤2}∩{x |x >1}={x |1<x ≤2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1. 经检验,a =-2和a =1均满足题意.12.已知集合A ={x |x 2+x =0,x ∈R },则集合A 中的元素为________.若集合B 满足B ⊆A ,则集合B 的个数是________. 答案 -1,0 4解析 解方程x 2+x =0得x =-1或x =0, 所以集合A ={x |x 2+x =0,x ∈R }={-1,0},故集合A中的元素为-1,0.因为集合B满足B⊆A,所以集合B的个数为22=4.13.(2020·青岛模拟)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B =(-1,n),则m=______,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.14.设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为________.答案(-∞,2]解析当a>1时,A=(-∞,1]∪[a,+∞),B=[a-1,+∞),当且仅当a-1≤1时,A∪B=R,故1<a≤2;当a=1时,A=R,B={x|x≥0},A∪B=R,满足题意;当a<1时,A=(-∞,a]∪[1,+∞),B=[a-1,+∞),又∵a-1<a,∴A∪B=R,故a<1满足题意,综上知a∈(-∞,2].15.(多选)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题中是真命题的有()A.集合S={a+b i|a,b为整数,i为虚数单位}为封闭集B.若S为封闭集,则一定有0∈SC.封闭集一定是无限集D.若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集答案AB解析两个复数的和、差、积仍是复数,且运算后的实部、虚部仍为整数,所以集合S={a+b i|a,b为整数,i为虚数单位}为封闭集,A正确.当S为封闭集时,因为x-y∈S,取x=y,得0∈S,B正确.对于集合S={0},显然满足所有条件,但S是有限集,C错误.取S={0},T={0,1},满足S⊆T⊆C,但由于0-1=-1不属于T,故T不是封闭集,D错误.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N =⎩⎨⎧⎭⎬⎫-12,12,1,若M 与N “相交”,则a =________.答案 1 解析 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意;当a =1时,M ={-1,1},满足题意.。
专题01 集合—2021高考数学(理)高频考点、热点题型归类强化【高频考点及备考策略】1.集合的概念与表示,多与不等式的解集等结合确定集合中的元素或元素个数,明确集合中的元素是点集还是数集,明确元素的特征意义.2.判断集合间的关系,确定给定集合子集的个数.解题时注意两个方面:给定集合的元素是什么;集合的元素间有何关系.3.集合的交、并、补运算,新定义题,多与不等式、函数等结合命题. 考向预测:以选择题的第1题或第2题的形式主要考查集合的基本运算.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法:自然数集N 、正整数集+N 或*N 、整数集Z 、有理数集Q 、实数集R. 2.集合间的基本关系关系自然语言符号语言Venn 图子集集合A 中的任意一个元素都是集合B 中的元素(若x∈A,则x∈B)A∈B(或B∈A)真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B 或BA必备知识【重要结论】 1.集合中子集的性质(1)一个集合的真子集必是其子集,一个集合的子集不一定是其真子集; (2)任何一个集合是它本身的子集;空集是任何集合的子集; (3)对于集合A ,B ,C ,若A∈B ,B∈C 则A∈C (真子集也满足); (4)若A∈B ,则有∅=A 和∅≠A 两种可能.2.集合子集的个数:集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有2n -1个,非空子集有2n -1个,非空真子集有2n -2个.3.活用集合的三类运算性质:(1)并集的性质:A B A B A A B B A A A A A A ⊆⇔====∅ ;;;. (2)交集的性质:B A A B A A B B A A A A A ⊆⇔===∅=∅ ;;;.(3)补集的性质:);()()(;)(;)(;)(B C A C B A C A A C C A C A U A C A U U U U U U U ==∅==)()()(B C A C B A C U U U =.【易错警示】1.忽略集合元素互异性:在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根. 2.忽略空集:空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则. 3.区分集合的三种形式:(1){})(x f y x =表示函数的定义域; (2){})(x f y y =表示函数的值域; (3){})(),(x f y y x =表示点集.1、已知集合{}0,1,2P =,{|2}Q x x =<,则P Q =( )A .{}0B .{0,1}C .{}1,2D .{0,2}2、已知集合{|1}A x x =<,{|31}x B x =<,则( ) A .{}1A B x x => B .A B =R C .{|0}AB x x =<D .AB =∅3、已知集合}1|{≥=x x A ,{|230}B x x =->,则A B =( )A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭4、已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为( )基础自测A .1B .5C .6D .无数个5.已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a = ( ) A .0 B .0或1 C .2D .0或1或2考点 集合的概念及运算【典例】(1)已知集合A ={x |x >2},B ={x |x <2m },且A ∈∈R B ,那么m 的值可以是( ) A .1 B .2 C .3D .4(2)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1D .0(3)已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ∈B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ∈B 中元素的个数为( ) A .77 B .49 C .45 D .30 【备考策略】(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果. (2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.【对点训练】1、设集合M ={x |-2<x <3},N ={x |2x +1≤1}则M ∩(∈R N )=( ) A .(3,+∞) B .(-2,-1] C .[-1,3)D .(-1,3)2、已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )高频考点、热点题型强化A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}3、已知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( )A .A ∈B B .B ∈AC .A ∩∈R B =RD .A ∩B =∈1.(2019·全国卷∈)已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =( )A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.(2019·全国卷Ⅱ)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)3.(2019·全国卷Ⅲ)已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.(2019·天津卷)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =( )A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,45.(2019·浙江卷)已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-真题验证。
专题01 集合姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2020·河北邢台·高考模拟)在“①个子较高的人;②所有的正方形;③方程260x +=的实数解”中,能够表示成集合的是( ) A .② B .③C .①②③D .②③【答案】D【解析】①个子较高的同学,不满足集合中元素的确定性,不能构成集合;②所有的正方形满足集合元素的确定性,互异性,可以构成集合;③方程2+6=0x 的实数解,能构成集合,故选D.2.(2020·四川凉山·高考模拟(文))若集合{}21A x x =≤,则下列结论正确的是( )A .2A -∉B .2A -∈C .{}2A -∈D .{}2A -⊆【答案】A【解析】集合{}[]211,1A x x =≤=-,显然2A -∉, 故选:A3.(2020·湖南郴州·高考模拟(文))已知集合{0,1,2,3,4,6}A =,{|2,}nB x x n N ==∈,则AB 的元素个数是( ) A .0B .1C .2D .3【答案】D【解析】{}{}0,1,2,3,4,6,|2,n A B x x n N ===∈{}1,2,4A B ∴=,即A B 中的元素个数为3.故选D 项.4.(2020·广东湛江·高考模拟(文))已知集合{}1,2,3,4,A ={}23,B y y x x A ==-∈,则集合A B 的子集个数为( ) A .1 B .2C .4D .8【答案】C【解析】∵{}1,2,3,4,A = {}23,B y y x x A ==-∈, ∴{}1,1,3,5B =- ∴{}1,3A B ⋂=所以该集合的子集个数为22=4. 故选C .5.(2020·山东烟台·高考模拟(理))若集合{|1}M x x =>,{|04}N x Z x =∈≤≤,则()R C M N ⋂=( )A .{0}B .{0,1}C .{0,1,2}D .{2,3,4}【答案】B【解析】N ={0,1,2,3,4},∁R M ={x|x≤1}; ∴(∁R M )∩N={0,1}. 故选B .6.(2020·遵义航天高级中学高考模拟(文))已知集合{}03A x x =<<,{}2log 1B x x =>则A B =( )A .(2,3)B .(0,3)C .(1,2)D .(0,1)【答案】A【解析】{}03A x x =<<,{}2B |1{|2}x log x x x =>=>,∴A B ={|23}x x <<,故选A.7.(2020·山东日照·高考模拟(文))若集合A ={-1,0,1,2},B ={x |x ≥1},则图中阴影部分所表示的集合为( )A .{-1}B .{0}C .{-1,0}D .{-1,0,1}【答案】C【解析】图中阴影部分表示()RAB ,{}R|1B x x =<,所以(){}R1,0A B ⋂=-.故选:C8.(2020·吉林长春·高考模拟(理))学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( ) A .20B .17C .14D .23【解析】因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为8+12−3=17.故选B二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·全国高一课时练习)(多选)满足{1,3}{1,3,5}A 的集合A 可能是()A .{}5B .{}1,5C .{}3D .{}1,3【答案】AB 【解析】由{1,3}{1,3,5}A 知,{1,3,5}A ,且A 中至少有1个元素5,故选AB.10.(2020·全国高一课时练习)(多选)设集合{1,2,3},{|23}PQx x ,则下列结论中正确的有()A .P Q ⊆B .PQ P =C .()P Q PD .RQ P【答案】CD【解析】对A ,集合P 中1Q ∉,故A 错误;对B ,2,3P Q ,故B 错误; 对C ,因为2,3P Q,{1,2,3}P,显然()P Q P ,故C 正确;对D ,R{|2Q x x =<或3}x >,R1Q P ,故D 正确11.(多选题)设集合{}1,A x x a x R =-<∈,{}15,B x x x R =<<∈,则下列选项中,满足A B =∅的实数a 的取值范围的有( ) A .[]0,6 B .(][),24,-∞+∞C .(][),06,-∞+∞D .[)8,+∞【答案】CD【解析】由题得{}11A x a x a =-<<+,{}15,B x x x R =<<∈, 又因为AB =∅,所以11a +≤ 或15a -≥,即0a ≤或6a ≥.所以满足题意的有选项C ,D. 故故故CD.12.(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( ) A .整数集ZB .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 【答案】ABD【解析】1是整数,因此实数1是整数集Z 中的元素,故A 选项正确;由||x x =得0x =或1x =,因此实数1是集合{|||}x x x =中的元素,故B 选项正确;1不满足11x -<<,因此实数1不是集合{|11}x x ∈-<<N 中的元素,故C 选项不正确;当1x =时,101x x -=+,因此实数1是集合1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R 中的元素,故D 选项正确;当1x =时,11x x +-无意义,因此实数1不是集合1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 中的元素,故E 选项不正确.故选:ABD.三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·山西月考)已知集合1,2n M x x n Z ⎧⎫==+∈⎨⎬⎩⎭,1,2N y y m m Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 与N 之间的关系是______. 【答案】NM【解析】11,,22n n M x x n Z x x n Z ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 121,,22m N y y m m Z y y m Z ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,由1n Z +∈,21m +为偶数, 所以NM.故答案为:N M14.(2020·湖南开福·长沙一中月考)高二某班共有60人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理、化学、生物的学生各有至少25人,这三门学科均不选的有15人.这三门课程均选的有10人,三门中任选两门课程的均至少有16人.三门中只选物理与只选化学均至少有6人,那么该班选择物理与化学但未选生物的学生至多有________人. 【答案】8【解析】把学生60人看出一个集合U ,选择物理科的人数组成为集合A ,选择化学科的人数组成集合B ,选择生物科的人数组成集合C ,记选择物理与化学但未选生物的学生组成集合D要使选择物理和化学这两门课程的学生人数最多,除这三门课程都不选的有15人,这三门课程都选的有10人, 则其它个选择人数均为最少,即得到单选物理的最少6人, 单选化学的最少6人,单选化学、生物的最少6人, 单选物理、生物的最少6人,单选生物的最少3人, 以上人数最少52人,可作出如下图所示的韦恩图, 故D 区域至多8人,所以单选物理、化学的人数至多8人, 故答案为:815.(2020·上海崇明·月考)对于集合A 、B ,定义运算{A B x x A -=∈且}x B ∉,若{}11A x x =-<<,{}02B x x =<<,则A B -=__________.【答案】{}10x x -<≤【解析】{}11A x x =-<<,{}02B x x =<<,则{}01A B x x ⋂=<<,根据题中定义可得{}10A B x x -=-<≤.故答案为{}10x x -<≤.16.(2020·泰兴市第三高级中学高一月考)设{}2,1,3M a a =+-,{}23,21,1N a a a =--+,若{}3MN =-,则a 的值为______,此时M N ⋃=______.【答案】1- {}4,3,0,1,2-- 【解析】∵{}3MN =-,∴33a -=-或213a -=-,解得0a =或1a =-.当0a =时,{}0,1,3M =-,{}3,1,1N =--, 得{}1,3M N ⋂=-,不符合题意,舍去!当1a =-时,{}0,1,3M =-,{}4,3,2N =--,得{}3MN =-,{}4,3,0,1,2M N ⋃=--.故答案为:1-;{}4,3,0,1,2--. 四、解答题(本大题共6小题,共70分)17.(2020·山东菏泽·高一月考)已知集合()(){}120A x x x =--=,()(){}30B x x x a =--=. (1)用列举法表示集合B (2)求AB ,A B .【答案】(1)当3a =时, {}3B =,当3a ≠时,{}3,B a =;(2)当1a =时,{}1,2,3AB =,{}1A B ⋂=;当2a =时,{}1,2,3AB =,{}2A B ⋂=;当3a =时,{}1,2,3A B =,A B =∅;当1,2,3a ≠时,{}1,2,3,A B a ⋃=,AB =∅.【解析】由()()30x x a --=得:3x =或x a =, 当3a =时, {}3B =,当3a ≠时,{}3,B a =,所以{}3,B a =或{}3B =,(2)()(){}{}1201,2A x x x =--==, 当1a =时,{}1,2A ={}1,3B =,此时{}1,2,3A B =,{}1A B ⋂=;当2a =时,{}1,2A ={}2,3B =,此时{}1,2,3A B =,{}2A B ⋂=; 当3a =时,{}1,2A ={}3B =,此时{}1,2,3AB =,A B =∅;当1,2,3a ≠时,{}1,2A =,{}3,B a =,此时{}1,2,3,A B a ⋃=,AB =∅;18.(2020·渝中·重庆巴蜀中学高一月考)已知A ={x |a <x <a 2},B ={x |2511x x -<-},命题p :x ∈A ,命题q :x ∈B .(1)若1∈A ,求实数a 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围. 【答案】(1)1a <-;(2)02a ≤≤.【解析】(1)因为1A ∈,所以21a a <<,故1a <-. (2)因为p 是q 的充分不必要条件,故A 是B 的真子集.又()4|01,41x B x x -⎧⎫=<=⎨⎬-⎩⎭. 当2a a ≥时即01a ≤≤时,A =∅,满足A 是B 的真子集; 当0a <或1a >时,A ≠∅,因为A 是B 的真子集,所以2014a a a <⎧⎪≤⎨⎪≥⎩(无解舍去)或2114a a a >⎧⎪≤⎨⎪≥⎩(等号不同时成立),故12a <≤,故02a ≤≤.19.(2020·涟水县第一中学高一月考)在“①A =∅,② A 恰有两个子集,③ 1,22A ⎛⎫⋂≠∅⎪⎝⎭”这三个条件中任选一个,补充在下列横线中,求解下列问题.已知集合{}2210A x R mx x =∈-+=, (1)若1A ∈,求实数m 的值;(2)若集合A 满足__________,求实数m 的取值范围. 【答案】(1)1;(2)答案见解析.【解析】(1)若1A ∈,则1x =是方程2210mx x -+=的根,210m ∴-+=,1m ∴=;(2)选①:若A =∅,则关于x 的方程2210mx x -+=没有实数解, 所以0m ≠,且440m ∆=-<, 所以1m ;选②:若A 恰有两个子集,则A 为单元素集,所以关于x 的方程2210mx x -+=只有一个实数解或有两个相等的实数根,(i )当0m =时,12x =,满足题意; (ii )当0m ≠时,Δ440m =-=,所以1m =. 综上所述,m 的取值集合为{}0,1;选③:若1,22A ⎛⎫⋂≠∅⎪⎝⎭, 则关于x 的方程2210mx x -+=在区间1,22⎛⎫⎪⎝⎭内有解,所以当1,22x ⎛⎫∈ ⎪⎝⎭时,2221111m x x x ⎛⎫=-=-- ⎪⎝⎭有解, 因为当1,22x ⎛⎫∈ ⎪⎝⎭时,(]21110,1x ⎛⎫--∈ ⎪⎝⎭, 所以](0,1m ∈. 20.(2020·上海黄浦·格致中学高一月考)已知集合2{|8160,,}A x kx x k x =-+=∈∈R R . (1)若A 只有一个元素,试求实数k 的值,并用列举法表示集合A ; (2)若A 至多有两个子集,试求实数k 的取值范围.【答案】(1)0k =,{2}A =;1k =,{4}A =;(2){}[)01,+∞.【解析】(1)①当0k =时,方程化为:8160x -+=,解得2x =, 此时集合{2}A =,满足题意;②当0k ≠时,方程28160kx x -+=有一个根,∴∆2(8)4160k =--⨯=,解得:1k =,此时方程为28160x x -+=,解得4x =,∴集合{4}A =,符合题意,综上所述,0k =时集合{2}A =;1k =时集合{4}A =;(2)A 至多有两个子集,∴集合A 中元素个数最多1个,①当0k ≠时,一元二次方程28160kx x -+=最多有1个实数根,∴∆2(8)4160k =--⨯,解得1k ,②当0k =时,由(1)可知,集合{2}A =符合题意,综上所述,实数k 的取值范围为:{}[)01,+∞.21.(2020·公主岭市第一中学校高二期末(文))已知集合1282x A x⎧⎫=≤≤⎨⎬⎩⎭,(){}22R B x m x m m =-≤≤+∈.(1)若a A ∈,求实数a 的取值范围;(2)若全集U =R ,U A B ⊆,求实数m 的取值范围.【答案】(1)[]1,3-;(2)()(),35,-∞-+∞.【解析】解:(1)∵1282x ≤≤, ∴13222x -≤≤∴13x -≤≤, ∴{}13A x x =-≤≤.又∵a A ∈,∴13a -≤≤,即实数a 的取值范围是[]1,3-.(2)∵U =R ,(){}22B x m x m m R =-≤≤+∈, ∴{2U B x x m =<-或}2x m >+.又据(1)求解知,[]1,3A =-, ∴当U A B ⊆时,32m <-或12m ->+,∴3m <-或5m >.即所求实数m 的取值范围是()(),35,-∞-+∞.22.(2019·北京北师大实验中学高一月考)已知M 是满足下列条件的集合:①0,1M M ∈∈②若,x y M ∈,则x y M -∈,③若x M ∈且0x ≠,则1M x∈ (1)判断13M ∈是否正确,说明理由 (2)证明:若,x y M ∈则x y M +∈(3)证明:若,x y M ∈则xy M ∈【答案】(1)正确,理由见解析;(2)证明见解析;(3)证明见解析.【解析】(1)13M ∈正确. 证明如下:由①知0,1M M ∈∈由②可得()()011,112,213M M M -=-∈∴--=∈--=∈ 由③得13M ∈ (2)证明:由①知0M ∈由题知y M ∈, ∴由②可得0y y M -=-∈又()x M x y M ∈∴--∈,即x y M +∈(3)证明:,x M y M ∈∈,由②可得1x M -∈,再由③可得11,1M M x x ∈∈- 111M x x ∴-∈-即()11M x x ∈-, ()1x x M ∴-∈即2x x M -∈,2x M ∴∈即当2,x M x M ∈∈由(2)可知,当,,x y M x y M ∈+∈112M x x x ∴+=∈2M x∴∈ ∴当,x y M ∈,可得()22222,,,22x y x y x y M ++∈ ()22222x y x y xy M ++∴-=∈。