线性代数 矩阵的初等变换与线性方程组 第二课时
- 格式:ppt
- 大小:1.24 MB
- 文档页数:26
第三章知识点总结矩阵的初等变换与线性方程组第三章主要介绍了矩阵的初等变换与线性方程组的关系,以及利用矩阵的初等变换来求解线性方程组的方法。
一、矩阵的初等变换1.矩阵的初等变换包括三种操作:互换两行、用一些非零标量乘以其中一行、将其中一行的若干倍加到另一行上。
2.初等变换的性质:初等变换保持矩阵的秩不变;有逆变换;多次初等变换的结果等于这些变换分别作用于单位矩阵的结果的乘积。
二、线性方程组的解1.线性方程组可用矩阵表示为AX=B,其中A为系数矩阵,X为未知向量,B为常数列。
2.系数矩阵A的秩等于增广矩阵(A,B)的秩,即r(A)=r(A,B)。
3.齐次线性方程组与非齐次线性方程组:-齐次线性方程组为AX=0,其中0为零向量。
它总有零解,即使有非零解也有无穷多个。
-非齐次线性方程组为AX=B,其中B不为零向量。
它只有唯一解或无解两种可能。
4.矩阵的秩和线性方程组解的关系:r(A)=n,即系数矩阵A的秩等于未知数的个数,则线性方程组只有唯一解;r(A)<n,则线性方程组有无穷多解或无解。
三、求解线性方程组的方法1.初等变换法:-将线性方程组的系数矩阵A和常数列B增广为(A,B)的增广矩阵。
-利用初等变换将增广矩阵化为行简化形式。
-根据化简后的增广矩阵,确定线性方程组的解。
2.矩阵的逆法:-若系数矩阵A可逆,则可将AX=B两边同时左乘A的逆矩阵A-1,得到X=A-1B。
-利用矩阵的逆可以直接求解线性方程组的解。
3.克拉默法则:-若系数矩阵A可逆,则线性方程组AX=B的解可以表示为Xi=,Ai,/,A,其中Ai是将系数矩阵A的第i列替换为常数列B后所得到的矩阵,A,是系数矩阵A的行列式。
-克拉默法则可以用来求解二元线性方程组和三元线性方程组的解。
综上所述,矩阵的初等变换与线性方程组有着密切的关系。
利用矩阵的初等变换可以简化线性方程组的求解过程,而线性方程组的解与系数矩阵的秩有关。
在求解线性方程组时,可以通过初等变换法、矩阵的逆法或克拉默法则来得到方程组的解。
知识点总结矩阵的初等变换与线性方程组矩阵的初等变换是线性代数中的一个重要概念,常用于解线性方程组。
这篇文章将对矩阵的初等变换及其与线性方程组的关系进行详细阐述。
一、矩阵的初等变换的定义和种类矩阵的初等变换是指对矩阵进行的三种基本操作:交换两行,用数乘一个非零常数乘以其中一行,以及把一行的倍数加到另一行上去。
这三种操作都可以表示为可逆矩阵的乘积,因此初等变换不改变矩阵的行秩和行空间。
三种初等变换可以分别表示为:1. 交换两行:用一个单位矩阵的行交换矩阵作用于原矩阵,例如将第i行与第j行交换可以表示为Pij * A,其中Pij为单位矩阵的行交换矩阵。
2.用数乘一个非零常数乘以其中一行:用一个对角矩阵作用于原矩阵,例如将第i行乘以非零常数k可以表示为Di(k)*A,其中Di(k)为对角矩阵。
3. 把一行的倍数加到另一行上去:用一个单位矩阵与其中一倍数的矩阵的和作用于原矩阵,例如将第j行的k倍加到第i行可以表示为Lij(k) * A,其中Lij(k)为单位矩阵与其中一倍数的矩阵的和。
二、矩阵的初等变换和线性方程组的关系解线性方程组的过程中,我们常用到矩阵的初等变换来简化方程组的形式,从而更容易找到方程组的解。
下面以一个简单的线性方程组为例进行说明。
假设有一个线性方程组:a1*x1+a2*x2=b1c1*x1+c2*x2=b2将该线性方程组表示为矩阵形式:A*X=B其中A为系数矩阵,X为未知数向量,B为常数向量。
我们可以通过矩阵的初等变换来简化系数矩阵A,从而简化方程组的求解过程。
1.交换两行:通过交换方程组的两个方程,可以改变线性方程组的次序,从而改变系数矩阵A的排列顺序。
这样做有时可以使系数矩阵更容易进行进一步的变换和求解。
2.用数乘一个非零常数乘以其中一行:通过将一些方程的系数乘以一个常数k,可以改变该方程的形式。
这样做可以使一些系数简化为1,从而更容易求解。
如果系数k为0,则可以直接删除该方程。
3.把一行的倍数加到另一行上去:通过将一些方程的系数与另一个方程相加,可以使两个方程中的一些系数为0,从而进一步简化系数矩阵A。