沈阳工业大学数值分析2018年考博试题真题
- 格式:pdf
- 大小:432.73 KB
- 文档页数:2
吉林大学《数值分析》2017-2018学年第一学期期末试卷一、 单项选择题(每小题3分,共15分)1. 以下误差限公式不正确的是( ) A .()()(1212)x x x εεε−=−x B. ()()()1212x x x x εεε+=+C .()()()122112x x x x x x εε=+ε D. ()()22x x x εε=2. 步长为的等距节点的插值型求积公式,当h 2n =时的牛顿-科茨求积公式为( ) A .()()()2bahf x dx f a f b ≈+⎡⎤⎣⎦∫B .()()()432bah a b f x dx f a f f b ⎡+⎛⎞≈++⎜⎟⎢⎥⎝⎠⎣⎦∫⎤ C .()()()32bah a b f x dx f a f f b ⎡+⎛⎞≈++⎜⎟⎢⎥⎝⎠⎣⎦∫⎤ D .()()3442bah b a a b f x dx f a f a f f a ⎡−+⎛⎞⎛⎞⎛≈+++++⎜⎟⎜⎟⎜⎢⎥⎝⎠⎝⎠⎝⎣⎦∫4b a −⎤⎞⎟⎠3. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .=0, B . ()00l x ()110l x =()00l x =0,()111l x = C .=1,()00l x ()111l x = D . ()00l x =1,()111l x =4. 用二分法求方程在区间()0f x =[],a b 上的根,若给定误差限ε,则计算二分次数的公式是( ) n ≥ A .ln()ln 1ln 2b a ε−++ B.ln()ln 1ln 2b a ε−+− C. ln()ln 1ln 2b a ε−−+ D.ln()ln 1ln 2b a ε−−− 5. 若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( )A . B.123123123104025261x x x x x x x x x −+=⎧⎪−+=⎨⎪−+=−⎩123123123315226x x x x x x x x x −+=⎧⎪01−−+=⎨⎪++=−⎩ C. D.12312312322526x x x x x x x x x −+=⎧⎪−−+=⎨⎪++=⎩01012312312310402501x x x x x x x x x −+=⎧⎪−+=⎨⎪−+=−⎩二、 填空题(每小题3分,共15分)6. 数x ∗=2.1972246···的六位有效数字的近似数的绝对误差限是 。
研究生考试命题纸沈阳工业大学 2012 / 2013 学年 第 一 学期课程名称:数值分析 课程编号:000304 任课教师:陈欣 曲绍波 考试形式:闭 卷一、填空(每题3分,共15分)1. 二分法是求解 方程f (x )=0的 根一种方法,其前提是f (x )在有根区间[a ,b ]内单调且 。
2. 设矩阵⎪⎪⎭⎫ ⎝⎛-=0112A ,则1A = 、=2A 、)(A ρ= 。
3. 对于正数a ,使用牛顿法于方程02=-a x 所得到的迭代格式为 ,其收敛阶为 、求110(取x 0=10)的第一个近似值为 。
4. 幂法用来计算实矩阵A 的 特征值及对应的 ,在计算过程中进行“归一化”处理的原因是为了 。
5. 高斯求积公式)33()33()(11f f dx x f +-≈⎰-的代数精度为 ,当区间不是[-1,1],而是一般区间[a , b ]时,需要做变换 ,使用该公式计算≈⎰311dx x。
二、解答下列各题(每题5分,共10分)1. 请写出经过点A (0,1),B (2,3),C (4,5)的拉格朗日插值多项式形式。
说明插值基函数的性质以及拉格朗日插值法的优缺点。
2. 设n 阶可逆矩阵A 已经分解成A =LU ,其中L 下三角矩阵,U 单位上三角矩阵,推导出解线性方程组AX =b 的计算公式。
三、(10分)用不选主元的直接三角分解法解下面线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=-342424344343232121x x x x x x x x x x 四、(20分,每题10分)对于线性方程组⎪⎩⎪⎨⎧=++=++=-+9223122321321321x x x x x x x x x 1. 分别写出使用GS 迭代法,SOR 迭代法(ω=1.3)求解的迭代格式,并对初始向量(1,0,0)T ,分别计算第一步近似解向量;2. 分别讨论求解此方程的J —方法和GS —方法的收敛性。
五、(10分)给出函数表如下,用牛顿向前插值公式求f (2.03)的近似值。
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差r i= (b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。
(2008级)数值分析试题一、选择题(本大题共8小题,每小题2分,共16分)1. 计算()432-=f ,取7.13≈,利用下列等式计算,结果最好的是( )。
(A )()4321+(B )()2347-(C )35697-(D )356971+2. 设()132++=x x x f ,则[]=35.0,3.0,2.0,1.0f ( )。
(A )0(B )1(C )2 (D )33. 选择常数a ,使ax x x -≤≤310max 达到极小,所用的逼近为( ),可以选择的逼近多项式为( )。
(A )最佳平方逼近(B )最佳一致逼近(C )Legendre 多项式 (D )Chebyshev 多项式4.如果()0>''x f ,用梯形公式()⎰=b adx x f I 计算所得结果记为,则有( )。
(A )T I >(B )T I <(C )T I =(D )不能确定5. 用复化辛普森公式计算积分⎰=1dx e I x ,若使截断误差不超过51021-⨯,则区间[]2,1至少应分( )等分。
(A )1(B )2(C )3(D )46. 线性方程组的迭代公式f Bx x k k +=+1收敛的充要条件为( )。
(A )11<B(B )1<∞B(C )1)(<B ρ(D )以上都对7. 求方程a x =2正根的迭代公式⎪⎪⎭⎫⎝⎛+=+k k k x a x x 211,收敛阶为( )。
(A )1(B )2(C )3(D )非线性收敛8. 对于常微分方程的一阶初值问题,若数值方法的局部截断误差为()31h O T n =+,则( )。
(A )1 (B )2 (C )3 (D )4二、填空题(本大题共8小题,每小题2分,共16分) 1. 若x 的相对误差为ε,则3x 的相对误差为()。
2. 若()()()x bg x af x F +=,则[]=Λn x x x F ,,,10()。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数值分析考试试卷篇一:数值分析试题及答案一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为?的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4?2dx?12. 已知求积公式1f?x?6f?1??Af(213)?6f(2),则A=()1112A. 6 B.3C.2 D.33. 通过点?x0,y0?,?x1,y1?的拉格朗日插值基函数l0?x?,l1?x?满足()A.=0,l1?x1??0B.l0?x0?=0,l1?x1??1C.l0?x0?=1,l1?x1??1D.l0?x0?=1,l1?x1??14. 设求方程f?x??0的根的牛顿法收敛,则它具有()敛速。
A.超线性 B.平方 C.线性 D.三次?x?1?2x2?x3?0?2x1?2x2?3x3?35. 用列主元消元法解线性方程组???x1?3x2 ?2作第一次消元后得到的第3个方程( A.B.?2x2?1.5x3?3.5C.?2x2?x3?3D.x2?0.5x3??1.5单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分).)1. 设X?(2,3,?4), 则||X||1?,||X||2?2. 一阶均差f?x0,x1??TC0x?3?3. 已知n?3时,科茨系数4. 因为方程内有根。
?18,C1?3??C2?3??38,那么C3?3??f?x??0f?x??x?4?2?0在区间?1,2?上满足,所以在区间5. 取步长h?0.1,用欧拉法解初值问题y??y??y?2x??y?1??1?的计算公式 .填空题答案1三、计算题(每题15分,共60分)y?1?x的一组数据:21. 已知函数求分f?1.5?。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, (0.02,0.22,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<;10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=, 011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=. 3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
研究生2002级数值分析一(12分)、对于积分⎰=+1,2,1,0,999n dx x x n。
(1)试推导递推公式 ,2,1,19991=+-=-n nI I n n ;(2)分析上述算法的数值稳定性;(3)若上面算法不稳定,请选择合适的算法,并分析其稳定性。
二(12分)、解方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00001.8800001.626221x x 和⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00002.8800001.626221x x ,就所观察到的现象进行分析。
三(12分)、设方程组⎪⎩⎪⎨⎧=--=+-=+-7989783212121x x x x x x x ;(1)适当调整方程的排列顺序,使得用Gauss-Seidel 迭代法求解时收敛?说明收敛原因。
(2)取初始向量()()Tx0,0,00=,用Gauss-Seidel 迭代求近似解()2x ,并求其()()k k x x -+1误差。
四(12分)、(1)已知函数()4xe xf =,在[0,1]内三点0,1/2,1的函数值,求其二次插值的余项;(2)三个节点如何安排能使其余项达最小,此时人余项为多少?五(12分)、对于方程()02ln =+-x x ,若求[-1.9,-1]内的根,分别选取迭代方程()2ln +=x x 和2-=x e x ,它们的收敛性如何?再写出牛顿迭代公式。
六(10分)、设()⎩⎨⎧=>+-='100,5y x x y y ,解析解x e x y -+-=25262515,分别取45.0,4.0,2.0,1.0=h ,利用Euler 方法计算得y(10)的近似值分别为1.96,1.96,5.2851,142.8863,对此现象进行分析。
七(10分)、设()xe xf =,分别取步长0001.0,01.0,5.0=h ,用中心差商公式计算()0f '的近似值并求出误差,对结果作分析比较。