水轮机的结构和原理(+笔记)
- 格式:doc
- 大小:3.94 MB
- 文档页数:27
水轮机结构介绍水轮机是利用水能转换为机械能的一种装置,是发电厂中常用的主要发电设备之一、下面将对水轮机的结构进行详细介绍。
水轮机主要由机壳、转轮、导向装置、涡排装置、轴承和透水管道等组成。
1.机壳:水轮机的机壳是一个装置的外部保护壳,一般由钢板或钢铸件焊接而成。
机壳内有良好的润滑和密封装置,以保证机器的正常运转,并能减少机械损耗,并防止泄漏。
2.转轮:转轮是水轮机的核心部分,是水能转换为机械能的重要部分。
转轮的形状和组织结构根据不同的水轮机类型而有所不同,常见的有斜流式、混流式和轴流式等类型。
3.导向装置:导向装置起到引导水流进入转轮并调节进水流量的作用。
导向装置一般由多个可调节的导叶组成,导叶的位置和角度可以通过液压机构或机械装置进行调节,以实现对水流的控制。
4.涡排装置:涡排装置将已经转过水轮机的水流排出,将水流的动能转化为排出水流的动能。
一般情况下,涡排装置由锥壳、导管和涡轴组成,通过设计合理的导管形状和尺寸,使水流尽可能地获得动能转换。
5.轴承:轴承用于支撑和固定转轮和轴的位置,以减少旋转过程中的运动摩擦和机械损耗。
轴承在水轮机中至关重要,要求具有较高的承载能力和良好的摩擦性能。
6.透水管道:透水管道用于将调节好流量的水流引入水轮机的导叶中,以驱动转轮旋转。
透水管道的设计应保证水流顺利地进入和离开水轮机,并尽量减少水流中的压力损失和涡旋现象。
水轮机通过上述各部分的相互配合和工作,将水能转化为机械能,实现发电厂的发电功能。
在实际应用中,水轮机的转速和功率可根据工作需求进行调节和匹配,并通过自动控制系统来控制和监测水轮机的运行状态。
总之,水轮机是一种利用水能发电的设备,它通过机壳、转轮、导向装置、涡排装置、轴承和透水管道等部分的协同工作,将水能转化为有用的机械能。
水轮机的设计和运行状态对于发电厂的稳定运行至关重要,因此,在水轮机设计和制造过程中需要严格遵循相关的技术规范和要求,确保水轮机的性能和安全性。
水轮机结构及工作原理
水轮机是一种利用水流转动轮盘产生动力的机械装置,它可以将流体动能转化为机械能。
水轮机结构简单,主要由导流装置、转轮、出水装置和传动装置组成。
导流装置通常由水导管、导叶或导流管等构成,主要作用是引导水流进入转轮;转轮是水轮机的核心部件,通常由叶片和轮辐组成,它负责将水流的动能转化为机械能;出水装置用于将转轮后的水流排出;传动装置则将转轮的机械能传递给其他设备,如发电机或机械磨粉机等。
水轮机的工作原理基于液体在流动过程中所具有的动能和压力能。
当水流进入转轮时,叶片将水流的动能转化为转轮的旋转动能,然后通过传动装置将旋转动能传递出去。
在转轮内部,水流的压力能也会对转轮产生作用,进一步增加了转轮的驱动力。
水轮机的工作过程可以分为导流、冲击和排泄三个阶段。
在导流阶段,导流装置将水流引导进入转轮,并使其流向叶片;在冲击阶段,水流与叶片相互作用,使叶片受到冲击力,从而转动转轮;在排泄阶段,转轮后的水流通过出水装置被排出。
总之,水轮机通过利用水流动能和压力能的转化,将水流的动能转化为机械能,实现了能源的转换和利用。
水轮机具有结构简单、效率高等优点,在水力发电、水泵和机械加工等领域得到了广泛应用。
水轮机的基本结构及其主要部件的作用水轮机总体由引水、导水、工作和排水四大部分组成。
1、水轮机的引水部件:主要指蜗壳及座环等,水流由蜗壳引进,经过座环后才进入导水机构。
蜗壳的作用是使进入导叶以前的水流形成一定的旋转,并轴对称地、均匀地将水流引入导水机构;座环的作用是:承受整个机组及其上部混凝土的重量以及水轮机的轴向水推力;以最小的水力损失将水流引入导水机构;机组安装时以它为基准。
所以,座环既是承重件,又是过流件,也是基准件。
因此,要求座环必须有足够的强度、刚度和良好的水力性能。
2、水轮机的导水机构:导水机构主要由操纵机构(推拉杆、接力器及其锁锭装置)、导叶传动机构(包括控制环、拐臂、连杆和连接板等)、执行机构(导叶及其轴套等)和支撑机构(顶盖、底环等)四大部分组成。
其作用使进入转轮前的水流形成旋转,并可改变水流的入射角度,当发电机负荷发生变化时,用它来调节流量,正常与事故停机时,用它来截断水流。
导水机构的操纵机构导水机构的操纵机构的作用是:在压力油的作用下,克服导叶的水力矩及传动机构的摩擦力矩,形成对导叶在各种开度下的操作力矩。
导水机构的操纵机构分为直缸式和环形接力器两大类。
调速环或接力器锁锭装置锁锭装置的作用是:当导叶全关闭后,锁锭投入,可阻止接力器活塞向开侧移动;一旦关侧油压消失,又可防止导叶被水冲开。
导水机构的传动机构导水机构的传动机构的作用:是将操纵机构的操作力矩传递给导叶轴并使之发生转动。
其型式主要有叉头式和耳柄式两种。
太站为耳柄式,长站为叉头式。
正常运行时应着重检查控制环、拐臂、连杆和连接板之间的连接销有无串出或脱落。
剪断销及引线是否完好。
导水机构的执行机构导水机构的执行机构包括导叶和轴套,为了操作导叶使其转动,既减少摩擦阻力又不摆动,在水轮机导叶上均装有三个滑动轴承。
下轴套装在底环上,上、中轴套装在导叶套筒内,套筒固定在顶盖上。
为了减少沿轴颈的漏水量和减轻泥沙对轴颈的磨损,导叶轴颈均装有密封,当密封损坏时可能造成顶盖水位升高。
混流式水轮机的结构与工作原理分析引言:混流式水轮机是一种常见的水力发电设施,利用水流的动能将其转化为机械能,再通过发电机将机械能转化为电能。
本文将对混流式水轮机的结构和工作原理进行详细分析。
一、混流式水轮机的结构混流式水轮机由以下几个主要部分组成:1. 水轮机框架:水轮机框架承载着整个水轮机的结构,并将水轮机与发电机连接在一起。
2. 水泵:混流式水轮机的入水部分是一个水泵,用于将水引入水轮机。
3. 水轮机转子:水轮机转子是整个水轮机的核心部件,主要负责将水流的动能转化为机械能。
4. 水轮机导叶:水轮机导叶位于水轮机转子的周围,通过控制导叶角度来控制水流的流向和流量。
5. 水轮机叶片:水轮机叶片是水轮机转子上的可调叶片,用于改变水流通过叶片时的流向和速度。
6. 发电机:发电机是将水轮机转子输出的机械能转化为电能的设备,通过电磁感应原理生成电能。
二、混流式水轮机的工作原理混流式水轮机的工作原理可以分为下面几个步骤:1. 水的引入:水首先通过水泵被引入混流式水轮机。
2. 水的控制:水流经过水轮机导叶时,导叶角度的调整可以改变水流的流向和流量。
通过控制导叶的开度,可以控制水流进入水轮机转子的形式,从而实现对水轮机的输出功率的控制。
3. 动能转换:当水流通过水轮机转子的叶片时,水流的动能被转化为机械能。
水轮机叶片的形状和数量会影响到水流通过叶片时的流向和速度,从而影响机械能的转化效率。
4. 电能产生:水轮机转子输出的机械能被传递给发电机,发电机通过电磁感应原理将机械能转化为电能。
电能可以进行输送和利用,供给电网或者使用在其他需要电力的设备中。
三、混流式水轮机的特点和应用混流式水轮机具有以下特点和应用:1. 宽广调功范围:混流式水轮机适用于水头较高的水流,工作范围较宽,可以根据需要调整输出功率。
2. 节能环保:由于混流式水轮机可以更好地利用水流的动能,相对于传统的水轮机具有更高的转化效率,可以节约水资源,减少对环境的影响。
水轮机原理及构造水轮机是一种将水流动能转化为机械能的能量转换装置。
它的工作原理基于动能守恒定律和能量守恒定律。
水轮机的构造主要包括水轮机轮盘、水轮机叶片、水轮机导叶和水轮机主轴等。
水轮机的工作原理:水轮机的工作原理是利用水流的冲击力和动能来推动轮盘旋转,从而进行能量转换。
具体来说,水轮机是利用流体在受力后产生的动量变化来实现动能转化的。
当水流经过水轮机叶片时,由于叶片形状和速度的变化,水流的动量发生了变化。
这个过程中,水流的动能减小,而叶片所受到的水流冲击力增加,从而推动轮盘旋转。
水流的动力作用可分为冲击力和剪力两部分,它们共同作用在叶片上,产生一个向环形斜盘中心方向的作用力,使其在金属皮带或摩擦轮的拉力下转动。
水轮机的构造:1.水轮机轮盘:水轮机轮盘是水轮机的主要部件,它可以分为定子轮盘和转子轮盘两部分。
定子轮盘通常是固定的,而转子轮盘则与主轴连接,并能转动。
轮盘的外形和材料选择需根据具体的工作条件和需求来确定。
2.水轮机叶片:水轮机叶片是位于轮盘上的一系列叶片,其形状和角度的设计对水轮机的性能具有很大的影响。
一般来说,叶片可以分为定叶和移动叶两种类型。
定叶是固定在轮盘上的,主要用于导向水流;移动叶则可以调整角度,用于控制水流的进入和出口。
叶片通常由耐磨和高强度的材料制成,如钢铁或铝合金。
3.水轮机导叶:水轮机导叶位于叶片和进水管道之间,用于引导水流进入叶片。
导叶的设计可根据水流的速度和压力来决定。
通常,导叶是可调角度的,通过调整导叶的角度,可以控制水流的流向和流速,从而实现对水轮机的调节。
4.水轮机主轴:水轮机主轴是连接轮盘和发电机或其他设备的中心轴。
它负责传输轮盘旋转产生的机械能,使之转化成用于发电或其他工作的机械能。
主轴的设计需考虑到承载能力、刚度和传动效率等要素。
除了以上主要构造部件外,水轮机还包括导叶机构、轴承、机壳和冷却系统等辅助部件。
导叶机构通常是由液压或电动设备控制,用于调节导叶的角度。
水轮发电机结构及工作原理介绍水轮发电机是一种利用自然水流的动能来产生电能的装置。
它是电力工业中最为常见的发电机之一,被广泛应用于水力发电站和小型水电站中。
本文将介绍水轮发电机的结构组成及其工作原理。
一、水轮发电机的结构组成1. 水轮机水轮机是水轮发电机中的核心部件,它通过水的冲击力将水的动能转化为机械能。
水轮机通常由转子、转子叶片和轴组成。
转子是水轮机的主要部件,负责承载叶片和转动。
转子叶片用来接收水流冲击力,将动能转化为转子运动能量。
轴则将转子连接到发电机,使其能够转动。
2. 水导装置水导装置是控制水流进入水轮机的装置,它的作用是将水流引导到水轮机的转子上。
水导装置通常由水闸、引水渠和水轮机进水口组成。
水闸和引水渠用来控制水流的流量和流速,可以根据实际需要进行调节。
水轮机进水口是水流进入水轮机转子的地方,需要保证水流的稳定和流量的均匀分布。
3. 输电系统输电系统是将水轮发电机产生的电能传输到用户端的系统。
它由发电机、变压器、输电线路和配电系统组成。
发电机是将机械能转化为电能的设备,它通过转子的旋转产生感应电动势,从而产生交流电。
变压器负责将发电机产生的低电压升高为输电线路所需的高电压,以减少输电损耗。
输电线路将电能从发电厂传输到用户端,而配电系统则将电能从输电线路引导到用户家庭或工厂。
二、水轮发电机的工作原理水轮发电机的工作原理基于水能转化为机械能,再由机械能转化为电能的过程。
其工作原理可以概括为以下几个步骤:1. 水的冲击力当水流通过水闸和引水渠进入水轮机时,会受到水轮机转子上叶片的阻力,从而产生冲击力。
这种冲击力将水的动能转化为机械能,使转子开始旋转。
2. 转子的旋转转子受到冲击力作用后开始旋转,旋转的速度取决于水流的流量和水轮机的设计。
转子旋转会带动轴一起旋转,将机械能传递到发电机中。
3. 感应电动势转子的旋转会产生变化的磁场,使静子(固定在发电机内部的零部件)中的导体产生感应电动势。
根据法拉第电磁感应定律,当导体在磁场中运动时,会在导体两端产生电势差,即感应电动势。
水轮机的工作原理水轮机是一种利用水能转换成机械能的装置,是水电站发电的主要设备之一。
它通过水流的动能转换成机械能,驱动发电机发电。
水轮机的工作原理主要包括水流入口、叶轮、转子、出口等几个部分,下面将详细介绍水轮机的工作原理。
首先,水轮机的工作原理是基于水的动能转换成机械能。
当水流通过水轮机的叶轮时,水的动能被传递给叶轮,使叶轮产生旋转运动。
这种旋转运动将驱动水轮机的转子旋转,转子与发电机相连,通过机械传动将机械能转换成电能。
其次,水轮机的叶轮是实现水能转换的核心部件。
叶轮通常由多个叶片组成,叶片的形状和排列方式会影响叶轮的效率和性能。
当水流通过叶轮时,叶片受到水流的冲击力,产生转动力,从而驱动叶轮旋转。
因此,叶轮的设计和制造对水轮机的工作效率和稳定性有着重要的影响。
另外,水轮机的转子是叶轮传递动能的部分,也是驱动发电机发电的关键。
转子通常由轴承、转子盘和转子叶片等部件组成,其主要作用是将叶轮传递的动能转换成机械能,并输出到发电机上。
转子的设计和制造需要考虑其承受水流冲击的能力和转动的平衡性,以确保水轮机的正常运行和发电效率。
最后,水轮机的出口是水流离开水轮机的地方,也是水轮机工作原理的最后一环。
当水流通过叶轮后,其动能已经转换成机械能,水流将从水轮机的出口流出,继续向下游流动。
在水轮机出口处通常设置有排水装置,用于控制水流的排放和保证水轮机的正常运行。
总的来说,水轮机的工作原理是基于水的动能转换成机械能,通过叶轮、转子等部件的协同作用实现水能的利用和发电。
水轮机的工作原理涉及流体力学、机械传动、发电原理等多个领域,是一种高效、可靠的水能利用装置。
希望通过本文的介绍,读者对水轮机的工作原理有了更深入的了解。
水轮机结构一、简介(一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。
1、按能量方式转换的不同,它可分为反击式和冲击式两类。
反击型利用水流的压能和动能,冲击型利用水流动能。
2、反击式中又分为混流、轴流、斜流和贯流四种;3、冲击式中又分为水斗、斜击和双击式三种。
1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m特点:结构简单、运行稳定且效率高2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨3)、冲击式转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。
水头范围:300~1700m适用于高水头,小流量机组。
(二)、水轮机主要类型归类二、水轮机主要基本参数1、水轮机主要基本参数水头:Hg、H、Hmax、Hmin、Hr(设计水头)流量:Q转速:f=np/60出力:N=9.81QHη(Kw)效率:η2、水轮机型式代号混流式:HL斜流式:XL轴流转桨式:ZZ轴流定桨式:ZD冲击(水斗式):CJ双击式:SJ斜击式:XJ贯流转桨式:GZ贯流定桨式:GD对于可逆式,在其代号后增加N3、混流式水轮机型号:HL100—LJ—210HL:代表混流式水轮机100:转轮型号(也称比转速)LJ:立式金属蜗壳210:转轮直径(210厘米)4、轴流式水轮机ZZ560—LH—1130ZZ:轴流转桨式水轮机560:转轮型号LH:立式混凝土蜗壳1130:表示转轮直径为1130厘米5、冲击式水轮机CJ47—W—170/2X15.0CJ:冲击式W:卧轴170:转轮直径170cm2:2个喷嘴15.0:射流直径三、水轮机主要部件(一)、组成引水部件、导水部件、工作部件、泄水部件1、引水部件组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。
水轮机工作原理水轮机是一种利用水能转换为机械能的装置,其工作原理主要是利用水流的动能来驱动水轮机转动,从而产生机械能。
水轮机广泛应用于水电站、水泵站、水利灌溉等领域,是一种重要的水利工程设备。
水轮机的工作原理可以分为以下几个方面来进行解析:1. 水流的动能转换。
水轮机的工作原理首先是利用水流的动能转换为机械能。
当水流经过水轮机叶片时,水流的动能会使叶片产生转动,从而驱动水轮机转动。
这种动能转换的过程是通过水流的作用力来实现的,水流的速度和流量会直接影响到水轮机的转动效果。
2. 叶轮的设计。
水轮机的叶轮设计是影响其工作效率的重要因素。
叶轮的设计需要考虑到水流的速度、流量和压力等因素,以及叶轮的形状和材质等因素。
通过合理的叶轮设计,可以使水流的动能得到最大程度的转换,从而提高水轮机的工作效率。
3. 水轮机的转动。
水轮机的转动是通过叶轮受到水流的作用力而产生的。
当水流经过叶轮时,叶轮会受到水流的冲击力,从而产生转动。
这种转动会驱动水轮机的转子转动,从而产生机械能。
水轮机的转动速度和转动力矩会直接影响到其输出功率和工作效率。
4. 机械能的输出。
水轮机通过转动产生的机械能可以用于驱动发电机、水泵等设备,从而实现能量转换和利用。
通过合理设计水轮机的叶轮和转子等部件,可以使机械能的输出达到最大化,从而提高水轮机的工作效率。
总的来说,水轮机的工作原理是利用水流的动能转换为机械能的过程。
通过合理设计水轮机的叶轮和转子等部件,可以使水轮机达到最大的工作效率和输出功率。
水轮机在水利工程中具有重要的应用价值,是一种高效的水能利用装置。
水力发电机的结构和工作原理一、水力发电机的结构:1.水轮机:水轮机是水力发电机的核心部分,负责将水流的动能转换为机械能。
根据水流的流动形式,水轮机分为水轮和涡轮。
其中,水轮分为垂直轴水轮和水平轴水轮两种类型。
水轮机通常由转轮、叶片和轴组成。
转轮是水轮机最重要的部件,叶片固定在转轮上,通过转动转轮使得水受到叶片的冲击,产生反作用力推动转轮旋转。
2.发电机:发电机是将水轮机产生的机械能转变为电能的关键设备。
发电机主要由定子和转子组成。
定子是固定不动的磁铁,上面布满了线圈,称为励磁线圈。
转子是转动的部分,装有一定数量的磁铁,称为极对。
当转子旋转时,磁场会切割通过定子线圈的磁力线,根据电磁感应的原理,产生感应电动势,从而使得线圈中的电流产生变化,达到发电的目的。
3.调速装置:调速装置是使得水力发电机能够根据负荷的需求自动调节转速的装置。
常见的调速装置有调速器和调节闸门等。
调速器主要控制发电机的磁场强度,以影响转子旋转的速度。
调节闸门则用于控制水流的流量大小,从而调节水轮机的转速。
二、水力发电机的工作原理:1.水轮机的工作原理:水流经过水轮机时,受到叶片的冲击,水流的动能被转换为水轮机的机械能。
叶片上的冲击力产生反作用力推动转轮旋转。
叶片的结构和材料的选择会影响到水轮机的效率和输出功率。
2.发电机的工作原理:水轮机通过轴将机械能传递给发电机。
转动的转子会切割通过定子线圈的磁力线,产生感应电动势。
当产生的感应电动势大于定子线圈的电动势时,发电机就开始产生电能。
通过通过定子的线圈电流,电能可以被输送到电网或用于其他用途。
3.调速装置的工作原理:调速装置可以控制水轮机的转速,从而控制发电机的输出功率。
调速装置根据负荷的需求,调整发电机的磁场强度或水轮机上的闸门开度,以达到稳定的发电功率输出。
综上所述,水力发电机是一种利用水流能转换成机械能,再经由发电机转变为电能的设备。
其主要结构包括水轮机和发电机,通过水轮机将水流的动能转换为机械能,再经由发电机将机械能转变为电能。
水轮机的类型构造及工作原理水轮机是一种将水的动能转化为机械能的设备,广泛应用于发电、泵送和提水等领域。
根据其工作原理和构造特点的不同,可以将水轮机分为以下几种类型:1. 响应式水轮机(Impulse Turbine):响应式水轮机利用高速喷射的水流对叶片产生冲击力,从而驱动轮盘转动。
其构造包括水流喷嘴、喷流管道、叶片轮盘和出水管道等部分。
当水流通过喷嘴时,由于喷嘴内部构造的改变,水流速度迅速增大,导致水流的动能增加。
当喷流进入喷流管道后,受到喷流引导叶片上,水流的动能被转化为轮盘的动能,推动轮盘加速转动。
此时,水流的压力能由于水流速度的增加而降低。
最后,水流通过出水管道排出。
2. 反应式水轮机(Reaction Turbine):反应式水轮机是利用水流动能的转化和扩张来驱动叶片转动的。
它在喷水嘴和叶片间建立起一定的水力耦合关系。
反应式水轮机包括水流引导器、胶囊壳、叶片和出水管道等部分。
当水流通过水流引导器时,水流被引导到胶囊壳内,形成围绕叶片旋转的水流。
水流在转动的过程中,受到叶片的作用力,导致叶片与水流之间的动量交换,从而使叶片和轮盘转动。
反应式水轮机在转动的同时,能够将水的压力能和动能同时转化为机械能。
3. 流浪式水轮机(Turbo Generator):流浪式水轮机是水轮机的一种高效型式,其叶片通常呈现湾形,能够在相对低的水头条件下工作。
流浪式水轮机的构造与反应式水轮机类似,主要包括水流引导器、胶囊壳、叶片和出水管道。
流浪式水轮机通过引导水流在叶片上形成湍流,使水流的动能转化为叶片的动能。
在水流引导器和胶囊壳之间形成的高速流动水流,能够有效驱动叶片和轮盘转动。
流浪式水轮机的工作原理类似于反应式水轮机,能够同时利用水的压力能和动能。
总的来说,水轮机的工作原理是通过水流对叶片的冲击或水流与叶片之间的相互作用来驱动叶片和轮盘转动,将水的动能转化为机械能。
水轮机的构造主要包括水流引导器、胶囊壳、叶片和出水管道等部分。
水轮机概论及工作原理水轮机是一种将水的能量转化为机械能的装置,广泛应用于水力发电和工业生产中。
水轮机的工作原理基于流体静力学原理和动力学原理,通过水流的压力和流速来驱动轮盘的转动。
水轮机的主要组成部分包括定子、转子和导水管道。
定子是需要安装在导水管道上的一种装置,用于引导水流并控制水流的压力和方向。
转子是水轮机的核心部分,由轮盘和转轴组成。
轮盘上面通常有多个叶片,可以根据水流的压力和流速来转动。
转轴将转动的动能传输给发电机或其他机械装置。
根据水轮机叶片的形状和布局方式,可以将水轮机分为多种类型,其中最常见的是水轮机和斜流水轮机。
水轮机:水轮机采用径流式布置,叶片通过水流的冲击和冲击力矩来转动轮盘。
流入水轮机的水流方向垂直于轮盘的转动轴线,水流经过叶片后冲击轮盘的另一侧。
水轮机适用于大流量、低水头的水力资源,如河流和瀑布。
斜流水轮机:斜流水轮机采用斜流式布置,水流的方向与轮盘的转动轴线呈45度角。
水流沿着叶片倾斜的方向经过水轮机,通过叶片的转动转变为轮盘的旋转动能。
斜流水轮机适用于中等流量、中等水头的水力资源,如河流和水库。
水轮机的工作过程可以概括为以下几个步骤:1.水流的引导:水轮机的定子通过导水管道将水流导向叶片区域。
定子具有特定的形状和角度,能够使水流以一定的速度和方向进入叶片。
2.水流的转向:水进入叶片区域后,受到叶片的作用发生方向的变化。
叶片的形状和布局可以改变水流的流向,并且通过冲击叶片产生冲击力矩来推动轮盘的转动。
3.转动轮盘:当水流对叶片施加冲击力矩时,叶片就会开始转动轮盘。
转动轮盘的速度取决于水流的流速和压力,以及叶片的形状和数量。
4.能量转移:转动轮盘的动能可以进一步转移到发电机或其他机械装置。
发电机将机械能转化为电能,用于供电;或者机械装置可以利用转动的动力进行生产。
总体上,水轮机利用水的能量来推动转子旋转,将水流的动能转化为机械能。
水轮机具有高效、可持续的特点,在水力资源丰富的地区广泛应用,为社会经济的发展提供了重要的能源支持。
水轮发电机结构介绍水轮机是水轮发电机的核心部件,它直接受到水流的作用,将水的动能转化为机械能。
水轮机一般由水轮叶片、转轴和轴承组成。
水经过水轮叶片时,叶片会受到水流的冲击力,从而转动水轮。
水轮的转动会带动转轴一起旋转,使得机械能得以传递到发电机上。
水轮叶片的形状和数量不同,可以分为斜梁式、斜流式、直径式等,根据不同的水流特性选择合适的水轮叶片。
发电机是水轮发电机的关键组件,它负责将转动的机械能转化为电能。
发电机一般由定子和转子组成。
定子是固定不动的部件,它包含有一组线圈,通过电流流过线圈产生磁场。
转子则是旋转的部件,它由磁铁构成,当转子旋转时,磁铁与定子的磁场发生相互作用,从而产生电流。
这个原理被称为电磁感应。
通过调整转子的速度和磁场的强度,可以控制生成的电流大小和频率,实现电能的稳定输出。
控制系统是水轮发电机的重要组成部分,它负责监测和控制水轮发电机的运行状态。
控制系统一般由传感器、调速装置和自动化控制装置等构成。
传感器用于测量和监测水流的流量、压力等参数,以及发电机的转速、温度等状态。
调速装置用于控制水轮的转速,保持其在合理的范围内,使得发电机输出的电能稳定。
自动化控制装置可根据传感器的反馈信号,对水轮和发电机进行智能化控制,实现自动化运行。
此外,水轮发电机还需要配备水泵、调节阀和润滑系统等辅助设备。
水泵用于将水引导到水轮发电机,提供水流能量。
调节阀用于调节水流的压力和流量,优化水轮发电机的工作效率。
润滑系统则是对水轮发电机的轴承和机械部件进行润滑,降低摩擦损耗,延长使用寿命。
总之,水轮发电机是一种通过水流驱动的发电装置,由水轮机、发电机和控制系统等组成。
它利用水的动能转化为机械能,再将机械能转化为电能。
水轮发电机在水力发电中起到至关重要的作用,它可以通过合理的设计和控制,实现高效稳定的电能输出。
随着技术的发展,水轮发电机的结构和性能还将进一步优化和改进,为可持续发展提供更多清洁能源。
水轮机原理及构造1、概述混流式水轮机工作原理:水流经压力钢管在开启蝶阀后进入蜗壳形成封闭的环流〔形成环流是为了使水流作用转轮时,使转轮各方向受力均匀,到达机组稳定运行的目的〕,在导叶开启后,水流径向进入转轮又轴向流出转轮〔所以称之为混流式水轮机〕,在这个过程中由水流和水轮机的相互作用,水流能量传给水轮机,水轮机开始旋转作功。
水轮机带动直流励磁的同步发电机转子旋转后,根据电磁感应原理〔问题〕,在三相定子绕阻中便感应出交流电势,带上外负荷后便输出电流。
注:电磁感应闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
①产生感应电流的必要条件是:a、电路要闭合;b、闭合电路中一部分导体做切割磁感线运动,缺一不可;假设是闭合电路的一部分导体,但不做切割磁感线运动则无感应电流,假设导体做切割磁感线运动但电路不闭合,导体上仍无感应电流则导体两端有感应电压。
②感应电流的方向跟磁场方向和导体切割磁感线运动方向有关三者互相垂直,改变磁场方向或改变导体切割磁感线方向都会改变感应电流的方向。
③在电磁感应现象中机械能转化为电能。
应用:发电机是根据电磁感应原理制成的,它使人们大规模获得电能成为现实。
①交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。
②交流电的周期与频率周期和频率是用来表示交流电特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,所以单位是“秒”;频率是指每秒钟内线圈转动的周数,它的单位是“赫”。
我国使用的交流电周期为0.02秒,频率是50赫,其意义是发电机线圈转一周用时0.02秒,即1秒内线圈转50周,因为线圈每转一周电流方向改变两次,所以,频率为50赫的交流电在1秒钟内方向改变100次。
2、水轮机的主要类型:水轮机基本类型有:还击式冲击式还击式:混流式〔HL〕、东风:HLA722C-LJ-192HL混流式水轮机设计序号为A722C为L立轴J金属蜗壳192转轮直径为192cm轴流式〔ZL〕:轴流转桨式〔ZZ〕轴流定桨式〔ZD〕、斜流式〔XL〕、贯流式〔GL〕:贯流转桨式〔GZ〕贯流定桨式〔GD〕特点:将位能〔势能〕、动能转换为压能,进行工作;转轮完全淹没在密闭的水体中。
水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。
早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。
现代水轮机则大多数安装在水电站内,用来驱动发电机发电。
在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。
作完功的水则通过尾水管道排向下游。
水头越高、流量越大,水轮机的输出功率也就越大。
水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。
冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。
冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。
斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。
早期的冲击式水轮机的水流在冲击叶片时,动能损失很大,效率不高。
1889年,美国工程师佩尔顿发明了水斗式水轮机,它有流线型的收缩喷嘴,能把水流能量高效率地转变为高速射流的动能。
理论分析证明,当水斗节圆处的圆周速度约为射流速度的一半时,效率最高。
这种水轮机在负荷发生变化时,转轮的进水速度方向不变,加之这类水轮机都用于高水头电站,水头变化相对较小,速度变化不大,因而效率受负荷变化的影响较小,效率曲线比较平缓,最高效率超过91%。
20世纪80年代初,世界上单机功率最大的水斗式水轮机装于挪威的悉·西马电站,其单机容量为315兆瓦,水头885米,转速为300转/分,于1980年投入运行。
水头最高的水斗式水轮机装于奥地利的赖瑟克山电站,其单机功率为22.8兆瓦,转速750转/分,水头达1763.5米,1959年投入运行。
反击式水轮机可分为混流式、轴流式、斜流式和贯流式。
在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。
水轮机水轮机+ 发电机:水轮发电机组功能:发电水泵+ 电动机:水泵抽水机组功能:输水水泵+ 水轮机:抽水蓄能机组。
功能:抽水蓄能水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。
第一节水轮机的工作参数水轮发电机组装置原理图定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。
由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。
一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。
142米1. 毛水头(nominal productive head)H M=E U-E D=Z U - Z D2. 反击式水轮机的工作水头毛水头 - 水头损失=净水头H G =E A - E B =H M - h I -A3. 冲击式水轮机的水头H G =Z U - Z Z - h I-A其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。
4. 特征水头(characteristic head)表示水轮机的运行范围和运行工况的几个典型水头。
最大工作水头: H max =Z 正-Z 下min -h I-A最小工作水头: H min =Z 死-Z 下max -h I-A设计水头(计算水头) H r :水轮机发额定出力时的最小水头。
平均水头: H av =Z 上av -Z 下av二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。
单机12.2m 3/sQ 随H 、N 的变化:H 、N 一定时, Q 也一定;当H =H r 、N =N 额时,Q 为最大。
在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r三、出力 (output and):水轮机主轴输出的机械效率。
N(KW):指水轮机轴传给发电机轴的功率。
水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。
其公式为:QH QH N w 8.9==γγ指水体容重(即单位容积水所具有的重力,比重):水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3)(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==•=⨯⨯=γ水轮机的输出功率:ηηQH N N w 8.9==四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。
ηη=N /N w ,一般η=80%~95%水轮机的损失:1、容积损失:进入水轮机的流量Q ,有部分会从水轮机固定部分与转动部分的缝隙及其他缝隙中漏失而造成损失;2、水力损失:作用于水轮机的工作水头H 中,在水流进出水轮机的过流部件时为克服沿程摩擦局部阻力而消耗一部分能量;3、机械损失:在能量转换过程中,水轮机还必须克服主轴轴承的摩擦,及其他部分与固定部分之间的摩擦,造成出力损失。
五、(工作力矩和)转速:水轮机每分钟的转动周数。
n=3000/p(p 为磁极对数)。
600转水轮机的出力可以用旋转机械运动公式来表达QH n M M N ηπϖ8.9602=== 式中 M ——主轴力矩;ω——水轮机旋转角速度,n ——转速,n =3000/p ; p ——发电机磁极对。
数额定转速n :正常情况下机组的转速保持为固定转速,该转速称为额定转速,并与发电机的同步转速相等。
第二节 水轮机的主要类型及其构造一、主要类型(一)、反击式水轮机 (reaction water turbine) :利用水流的压力能转化为机械能定义:利用水流的势能和动能做功的水轮机特征:转轮的叶片为空间扭曲面,流过转轮的水流是连续的,而且在同一时间内,所有转轮叶片之间的流道都有水流通过,水流充满转轮室。
原理:水流通过转轮叶片时,水流流速的大小、方向均发生变化,因此动量也发生了改变,水流产生反作用力,作用与每个转轮叶片,使转轮产生旋转力矩,从而做功。
1. 混流式(HL )混流式水轮机特征:水流流经转轮叶片时,从径向流入,而从轴向流出。
适用范围:H=30-450m , 最高水头已接近700m,单机容量:几万kW-几十万kW。
特点:适用范围广,结构简单,运行稳定,效率高,适用高水头小流量电站。
三峡水电站即采用了这种水轮机,单机容量70万kW。
是世界上单机容量最大的机组。
2. 轴流式特征:水流沿转轮轴向流入,轴向流出,水流方向始终平行于主轴。
适用:大流量、低水头。
一般水头在50m以下。
分类:(1) 轴流定浆式(ZD):叶片不能随工况的变化而转动。
高效率区较小,适用于水头变化不大的小型电站。
(2) 轴流转浆式(ZZ):叶片能随工况的变化而转动,进行双重调节(导叶开度、叶片角度)。
适用于大型水电站。
轴流转浆式水轮机转轮3. 斜流式(XL)水流经过转轮时是斜向的。
转轮叶片随工况变化而转动,高效率区广。
4. 贯流式:用于水头较低特征:水轮机的主轴装置成水平或倾斜。
不设蜗壳,水流直贯转轮。
水流由管道进口到尾水管出口都是轴向的。
适用:H<20m,小型河床电站。
贯流式机组分类:(1) 全贯流式:发电机转子安装在水轮机转轮外缘,其密封困难,现在较少使用。
贯流定浆式(GD)贯流转桨式(GZ)(2) 半贯流式:灯泡贯流式(P):发电机组安装在密闭的灯泡体内,使用较广泛,机组结构紧凑,流道形状平直,水力效率高。
轴伸式贯流机组(Z):发电机安装在外面,水轮机轴伸出到尾水管外面。
竖井式贯流机组(S):发电机安装在竖井内。
(二)、冲击式水轮机(Inpulse water tubine)定义:利用水流的动能来做功的水轮机特征:由喷管和转轮组成。
水流以自由水流的形式(P=P a)冲击转轮,利用水流动能(V的方向、大小改变)产生旋转力矩使转轮转动。
在同一时刻内,水流只冲击着转轮的一部分,而不是全部。
不适宜调峰运行(讨论:为什么?)。
适用:水头高,流量小,多用于400m以上,最高接近2000m。
单喷嘴冲击式水轮机运行中分类:水斗式(切击式)CJ(QJ): 特点是由喷嘴出来的射流沿圆周切线方向冲击转轮上的水斗作功。
目前,水斗式水轮机是冲击式水轮机中应用最广泛的一种机型。
斜击、双击水轮机构造简单,效率低,用于小型电站。
水斗式水轮机斜击式(XJ):由喷嘴出来的射流沿圆周斜向冲击转轮上的水斗。
斜击式水轮机转轮双击式(SJ):水流两次冲击转轮。
双击式水轮机转轮水轮机总分类图二、水轮机的型号及标称直径HL D2-LJ-11301、型号说明根据我国“水轮机型号编制规则”规定,水轮机的型号由三部分组成,每一部分用短横线“—”隔开。
第一部分由汉语拼音字母与阿拉伯数字组成,其中拼音字母表示水轮机型式,阿拉伯数字表示转轮型号,入型谱的转轮的型号为比转速数值(比转速:保持水轮机形状与运行工况相似,改变其尺寸大小,在单位水头下发出单位出力所具有的水轮机转速),未入型谱的转轮的型号为各单位自己的编号,旧型号为模型转轮的编号;可逆式水轮机在水轮机型式后加“N”表示。
第二部分由两个汉语拼音字母组成,分别表示水轮机主轴布置形式和引水室的特征;第三部分为水轮机转轮的标称直径以及其它必要的数据。
水轮机型号中常见的代表符号如表所示。
对于冲击式水轮机,上述第三部分应表示为:转轮标称直径(cm)/每个转轮上的喷嘴数×射流直径(cm)。
比转速:保持水轮机形状与运行工况相似,改变其尺寸大小,在单位水头下发出单位出力所具有的水轮机转动的速度 (即:几何相似的水轮机,当工作水头为1m ,输出功率为1kW 且机械效率为100%时水轮机自身的转速。
) 。
比转数可以作为机器分类、系列化和相似设计的依据。
比转数小反映机器的流量小,全压(或扬程、水头)高;反之,比转数大则机器的流量大,全压(或扬程、水头)低。
前者适合离心式,后者适合轴流式,混流式(斜流式)介于两者之间,所以可用比转数大小划分机器类型。
在设计机器时先按给定的参数计算比转数,再根据比转数大小决定机器类型。
比转数大小也反映叶轮的形状。
[比转数与叶轮形状的关系]为不同类型泵的比转数与叶轮形状的关系。
比转数越大叶轮外径就越小,而宽度越大。
反之,比转数越小,则叶轮外径越大,宽度越小。
在一定流量和全压(或扬程、水头)下,比转数与机器转速成正比。
提高转速可减小叶轮外径,增加宽度;而降低转速,则须增加叶轮外径,减小宽度。
型号第三部分的说明对反击式水轮机:表示转轮的标称直径水斗式或斜击式水轮机,其表示方法为:1d D 射流直径嘴数作用在每个转轮上的喷转轮标称直径 对双击式水轮机,其表示方法为:LD 1转轮轴向长度转轮标称直径2、水轮机的型号举例HL D2-LJ-1130:混流式(东方电机第二代转轮)立式金属蜗壳,转轮直径1130cm 。
(1) HL240 —— LJ —— 410混流式水轮机,型号240(比转速),立轴,金属蜗壳,转轮直径为410cm (2) ZZ440 ——LH —— 430轴流转浆式水轮机,型号440,立轴,混凝土蜗壳,转轮直径430cm (3) 2CJ30——W —— 120/2×10转轮型号为20,水斗式水轮机,卧轴,一根轴上装设两个转轮,转轮直径为120cm, 每个转轮两个喷嘴,设计射流直径为10cm 。
(4) GZ440—WP —750表示贯流转浆式水轮机,转轮型号440,卧轴,灯泡式机组,转轮标称直径750cm 。
(5) SJ40—W —50/40:表示双击式水轮机,转轮型号40,卧轴布置,转轮标称直径50cm ,转轮轴向长度40cm 。
(6) XLN —LJ —300:表示斜流可逆式水泵水轮机,转轮型号200,立轴布置,金属蜗壳,转轮标称直径300cm 。
3、各种水轮机转轮标称直径D 1HL :转轮叶片进口边上最大直径ZL 、XL :转轮叶片轴心线相交处的转轮室直径 CJ :转轮与射流中心线相切处节圆直径4、转轮标称直径系列反击式水轮机转轮标称直径系列(cm)253035(40)42506071(80)84 100120140160180200225250275300 330380410450500550600650700750 8008509009501000第三节水轮机的基本构造反击式水轮机的主要组成部件:(1)进水(引水)部件引水室—蜗壳:将水流均匀、旋转,以最小水头损失送入转轮。
(2) 导水机构(导叶及控制设备):控制工况。