轴流式水轮机的结构
- 格式:doc
- 大小:517.00 KB
- 文档页数:14
水轮机的类型构造及工作原理
水轮机是一种将水流动能转化为机械能的机器,广泛应用于水力发电、灌溉、排水等领域。
根据水轮机的构造和工作原理,可以将其分为以下几种类型:
一、依据水轮机叶轮的类型:
1. 低扬程水轮机:叶轮为平板或斜板叶轮,适用于水头较低的场合。
2. 中扬程水轮机:叶轮为斜流叶轮或混流叶轮,适用于水头较中等的场合。
3. 高扬程水轮机:叶轮为反曲叶轮或轴流叶轮,适用于水头较高的场合。
二、依据水轮机的布置方式:
1. 水平轴水轮机:水流与水轮机轴线平行,叶轮通常为轴流叶轮或混流叶轮。
2. 垂直轴水轮机:水流与水轮机轴线垂直,叶轮通常为斜流叶轮或反曲叶轮。
三、依据水轮机的进水方式:
1. 直径式水轮机:水流直接冲击叶轮,叶轮中心为进水口。
2. 斜流式水轮机:水流斜向冲击叶轮,叶轮中心为进水口。
3. 轴流式水轮机:水流沿轴线方向进入叶轮,叶轮中心为进水口。
水轮机的工作原理是利用水流的动能将叶轮带动旋转,从而将水流动能转化为机械能。
水流经过进水口进入叶轮,叶片将水流的动能转化为叶轮的旋转动能,然后通过轴传递到发电机或其他机械设备上。
水轮机的效率取决于水头、流量、叶轮类型和转速等因素,通常可达到70%以上。
总之,水轮机是一种重要的水力发电设备,其类型和工作原理的了解对于水力发电和水资源利用具有重要的意义。
冲击式:反击式:1、轴流式:轴流式水轮机转轮由转轮体、叶片、泄水锥组成,叶片数少于混流式,叶片轴线与水轮机轴线垂直。
适用于中低水头、大流量的水电站。
在同样的水头下,它的过流能力比混流式大,气蚀性能较混流式差。
根据其转轮叶片在运行之中能否转动,又可分为轴流转桨式和轴流定桨式两种。
轴流定桨式水轮机:其叶片固定在转轮体上,叶片安放角度不能在运行中改变,效率曲线较陡,适用于负荷变化小或可以用调整机组运行台数来适应负荷变化的电站。
优点:结构简单,造价较低。
缺点:在偏离设计工况时效率会急剧下降。
根据其特点,一般用于出力较小,水头较低以及水头变化幅度较小的水电站。
轴流转桨式水轮机:其转轮叶片一般由装在转轮体内的油压接力器操作,可按水头和负荷变化作相应转动,以保持活动导叶转角和叶片转角间的最优配合,从而提高平均效率,这类水轮机的最高效率有的已超过94%。
但是,这种水轮机需要一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。
轴流式水轮机转轮主要包含转轮轮叶、转轮轮毂、泄水锥三部分组成。
图1:轴流式混流式:混流式水轮机又称法兰西斯水轮机,水流从四周径向流入转轮,然后近似轴向流出转轮,转轮由上冠,下环和叶片组成。
图2:混流式转轮图3:混流式轴流式与混流式不同之处在于转轮的不同。
如图2与图3。
3、贯流式:贯流式水轮机的引水部件、转轮、排水部件都在一条轴线上,水流一贯平直通过,故称为贯流式水轮机。
贯流式水轮机应用水头范围一般在2~25m,单机出力从几千瓦到几万千瓦。
1)灯泡贯流式:灯泡贯流式水轮机组的发电机密封安装在水轮机上游侧一个灯泡型的金属壳体中,发电机水平方向安装,发动机主轴直接连接水轮机转轮。
灯泡贯流式水轮机组的水轮机部分由转轮室、导叶机构、转轮、尾水管组成;发电机轴直接连接到转轮,一同安装在钢制灯泡外壳上,发电机在灯泡壳内,转轮在灯泡尾端,发电机轴承通过轴承支持环固定在灯泡外壳上,转轮端轴承固定在灯泡尾端外壳上,发电机轴前端连接到电机滑环与转轮变桨控制的油路装置。
第二节 轴流式水轮机的结构一、概述轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。
轴流式水轮机又分为轴流定桨式和轴流转桨式两种。
轴流式水轮机用于开发较低水头,较大流量的水利资源。
它的比转速大于混流式水轮机,属于高比转速水轮机。
在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。
当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。
特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。
图2-15 轴流式水轮机1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转轮室图2-16所示是轴流转桨式水轮机的结构图。
它的工作过程和混流式水轮机基本相同。
水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。
与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。
轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。
轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。
转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。
在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。
轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。
限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。
由于轴流式水轮机的过流能力大。
单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。
知识创造未来
轴流式水轮机
轴流式水轮机是一种利用水流能量转换为机械能的设备。
它采用轴向流动的水流与转子叶片相对作用的原理,将水
流能量转化为转子轴上的转动能量。
轴流式水轮机的主要组成部分包括水轮机壳体、导流装置
和转子。
水流由导流装置引导进入水轮机壳体内,经过转
子的叶片作用后,使转子产生转动。
转子上的叶片形状和
数量可以根据需要进行设计,以适应不同的水流条件和功
率要求。
轴流式水轮机具有高转速、高效率和适应范围广等特点。
它可根据需要调整导向叶片的角度来调节输出功率,适用
于中小型水电站、水利灌溉和排水等领域。
然而,轴流式水轮机也存在一些问题,如容易因水质问题
产生堵塞、效率受水流条件限制等。
因此,在实际应用中,需要根据具体情况选择合适的水轮机类型。
1。
轴流式水轮机拆装及测量实验目标1.知识目标:认识小型轴流式水轮机的叶片、导叶、主轴、轴承的功能和作用。
2.能力目标: 能够熟练拆解、安装、调试小型轴流式水轮发电机。
轴流式水轮机拆装及测量一、轴流式水轮机的结构、主要部件的功能和作用1、结构2、主要部件的功能和作用①主轴:中间连接、传递转矩、承受机组转动部件的重量及轴向推力。
②叶片:水轮机工作时转换水流的压力能以及动能,形成旋转机械能。
③导叶:在水轮机工作时控制水的流量,并水形成一个环状的量。
④轴承:承受机组转动部分的机械不平衡力和电磁不平衡力,维持机组主轴在轴承间隙范内稳定运行。
二、主要部件绘图1、绘制的尺寸单位为毫米。
2、主要绘制叶轮和导叶的展开图,采用AutoCAD1比1的比例绘制。
导叶展开图叶轮图三、技术参数①型号:ZD760- -LM-(10- -25)型水轮永磁发电机组②相数:单相、三相③电压:交流220伏、380伏④标称功率:0.3KW,0.5KW,0.6KW,1.0KW,1.5KW,2.0KW,3.0KW,5.0KW,8.0KW⑤水头:1-5米⑥流量:0.02- 1.0立方米/秒⑦允许工作环境温度:- 10℃- +60℃⑧工作方式:连续四、拆装及测量1、拆解和组装都比较简单,拆解从外往里依次拆解,需要把部件和螺丝摆放整齐,组装过程则是从里往外,依次组装。
2.测量:利用测量工具测量主要部件的尺寸,单位为毫米。
测量结束后,记录尺寸,收拾好工具并摆放整齐。
3.注意事项:①拆装过程中要注意防止划伤和重物砸伤。
②拆解的部件要摆放整齐。
③测量过程要进行多次测量防止误差偏大。
④实训结束后要打扫卫生,工具摆放整齐。
五、工作原理轴流式水轮机的工作原理主要是利用尾水管形成真空吸管,拉吸上游的来水使其形成射流,冲射水叶旋转,从而由水流动能转换诚机械能。
六、结果讨论①拆解过程要仔细观察各组成部件:有疑问及时向指导老师咨询。
②拆解过程中有的螺丝松动,要注意重物砸伤。
轴流式水轮机的结构一、概述轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。
轴流式水轮机又分为轴流定桨式和轴流转桨式两种。
轴流式水轮机用于开发较低水头,较大流量的水利资源。
它的比转速大于混流式水轮机,属于高比转速水轮机。
在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。
当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。
特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。
图2-15 轴流式水轮机1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶图2-16所示是轴流转桨式水轮机的结构图。
它的工作过程和混流式水轮机基本相同。
水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。
与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。
轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。
轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。
转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。
在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。
轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。
限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。
由于轴流式水轮机的过流能力大。
单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。
在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。
因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。
随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。
另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。
当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比1D dhd h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。
当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。
这种情况也限制了混流式水轮机应用水头的提高。
但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。
二、转轮体轴流式水轮机的转轮体上装有全部叶片和操作机构,在安放叶片处转轮体的外形有圆柱形和球形两种。
大中型转桨式水轮机的转轮体多数采用球形,它能使转轮体与叶片内缘之间的间隙在各种转角下都保持不大于2~5mm ,达到减少漏水损失的目标。
另外环形转轮体增大了放置叶片处的轮毂直径,有利于操作机构的布置。
但是相同的轮毂直径下,球形转轮体减小了叶片区转轮的过水面积,水流的流速增加,使球形转轮体的空蚀性能比圆柱形差。
圆柱形转轮体其形状简单,同时水力条件和空蚀性能均比球形转轮体好。
但转轮体与叶片内缘之间的间隙是根据叶片在最大转角时的位置来确定的,而当转角减小时,转轮体与叶片之间的间隙显著增大,叶片在中间位置时,一般间隙达几十毫米,增加了通过间隙的漏水量,效率下降,所以圆柱形转轮体的效率低于球形转轮体。
转轮体的具体结构要根据接力器布置与操作机构的形式而定。
小型水轮机转轮,定桨式水轮机转轮一般都采用圆柱形转轮体。
转轮体一般用ZG30或ZG20MnSi 整体铸造,为了支承叶片,转轮体开有与叶片数相等的孔,并在孔中安置叶片轴。
随着工艺、材料和结构的改进,转轮体球面直径与转轮直径之比,即轮毂比1/D d d B B =逐步减少。
转轮体和叶片的安放角位置,可以按叶片法兰面上0=ϕ标记线对照。
当0°线标记与转轮体轴孔的水平线重合时,叶片安放角︒=0ϕ,与轴孔外圆的弦长1S 相对应处为max ϕ+,与2S 相对应处为max ϕ-,见图2-17所示,其中:2sin 2sinmax2max 1ϕϕ-=+=D S D S(2-5)图2-16 ZZ-LH-1130水轮机1—转轮室;2—底环;3—固定导叶;4—活动导叶;5—顶盖;6—支持盖;7—连杆;8—控制环;9—轴承支架;10—接力器;11—安全销;12—真空破坏阀;13—扶梯;14—排水泵;15—水轮机导轴承;16—冷却器;17—轴承密封;18—转轮体;19—桨叶;20—桨叶连杆;21—接力器活塞;22—泄水锥;23—主轴;24、25—操作油管图2-17 叶片安放角位置三、叶片轴流式水轮机的比转速1000~450 S n ,随着比转数的增高,转速流道的几何形状相应发生变化。
为了适应水轮机过流量的增大,同时既要保证水轮机具有良好的能量转换能力和空化性能,又要保持叶片表面的平滑不产生扭曲,轴流式转轮取消了混流式转轮的上冠和下环,叶片数目相应减少,一般为3~8片,叶片轴线位置变为水平,使得转轮流道的过流断面面积增大,提高了轴流式水轮机的单位流量和单位转速。
轴流式转轮叶片由叶片本体和枢轴两部分组成。
对于尺寸较小的水轮机,一般采用整体轴,因为这样可以减少零件数目,铸造、加工、安装的困难也不大。
但当水轮机尺寸大时,采用分开成叶片本体和枢轴两部分就比较有利。
这是因为(1)分成叶片本体和枢轴两部分,每一部分的重量和尺寸都减少了,对于铸造,加工和安装都带来方便。
(2)因为叶片易受空蚀损坏,分开的结构可单独地拆卸某个叶片进行检修。
(3)分开的结构有可能对两个部件采用不同的材料,例如叶片本体采用不锈钢,而枢轴采用优质铸钢。
但是分开结构对转轮的强度是有所削弱的,因为为了布置叶片,枢轴和转臂的连接螺钉,分件式叶片法兰和枢轴法兰的外径都要比整体时大(见图2-18),这一缺点对于高水头的转轮可能就是致命的,因为水头高,叶片数目就多,转轮上相邻叶片轴孔之间的宽度本来就很小,如果采用分开式结构,转轮体就无法满足要求。
图2-18 叶片枢轴结构(a叶片与枢轴整体;)(b叶片与枢轴用螺栓连接)1—叶片;2—枢轴轴流式转轮的叶片一方面承受其正背面水压差所形成的弯曲力矩,另一方面承受水流作用的扭转力矩,同时还要承受离心力作用。
受力最大位置在叶片根部,叶片的断面是外缘薄,逐渐增厚,根部断面最厚。
叶片根部有一法兰,这是为了叶片与转轮体的配合。
叶片本体末端是枢轴,枢轴上套有转臂。
这样,把枢轴插在转轮体内,通过转臂,连上叶片操作机构就可以转动叶片了。
叶片的材质要求与混流式相同,目前多采用ZG30或ZG20MnSi铸钢,并根据电站运行条件,在叶片正面铺焊耐磨材料,背面铺焊抗空蚀材料。
许多电站运行实践表明,铺焊不如堆焊效果好。
有的机组采用不锈钢整铸叶片效果更理想。
四、叶片操作机构和接力器叶片操作机构由接力器、活塞杆、曲柄连杆机构等零件构成,安装在转轮体内,用来变更叶片的转角,使其与导叶开度相适应,从而保证水轮机运行在效率较高的区域,叶片操作机构是由调速器进行自动控制的,其叶片操作机构示意图见图2-19。
图2-19 叶片操作机构示意图1—1— 1—叶片;2—桨叶转轴;3、4—轴承;5—转臂;6—连杆;7—操作架;8—接力器活塞;9—活塞杆根据接力器布置方式不同,叶片操作机构的形式很多,目前应用比较普遍的型式有带操作架传动的直连杆机构,带操作架的斜连杆机构和不带操作架的直连杆机构。
采用一个操作架来实现几个叶片同时转动的机构称为操作架式叶片转动机构。
当叶片转角在中间位置时,转臂水平,连杆垂直的称带操作架直连杆机构。
转轮接力器的布置方式很多,通常把接力器布置在转轮体叶片中心线上部,也有把接力器布置在叶片下部泄水锥的空腔内。
如图2-20所示是目前采用比较普遍的结构,接力器布置在叶片中心线上部,活塞和活塞杆的连接方式有两种。
如图2-20的Ⅰ和Ⅱ。
Ⅰ为不带操作架的结构,Ⅱ为带操作架的结构。
控制转轮接力器活塞作往复运动的压力油通过操作油管输入,操作油管由不同管径的无缝钢管组成,并安装在主轴内。
操作油管上部与受油器相连,从油压装置输送来的压力油和回油都通过受油器进入和流出操作油管。
图2-20 转轮接力器结构五、叶片密封装置由于转桨式水轮机在运行中需要转动叶片以适应不同的工况,当叶片操作机构工作时,一些转动部件与其支持面间需要进行润滑,因此在转轮体内是充满油的。
转轮体内的油是具有一定压力的压力油,这是因为一部分主轴中心孔的油,最后排入受油器,而受油器布置在发电机的顶上,所以转轮体内的油有相当于发电机的顶部至转轮体这段油柱高度的压力,另外由于转轮旋转,油的离心力使油产生一定的压力。
在另一方面,转轮体外是高压水流,为了防止水流进入转轮体内部和防止转轮体内部的油向外渗漏,在叶片与转轮体的接触处必须安装密封装置。
从电站的运行实践看,转桨式水轮机转轮叶片密封结构性能的好坏对保证机组正常运行关系很大。
密封的型式很多,如图2-21所示是目前国内水轮机厂采用较普遍的“λ”型转轮叶片密封结构。
通过试验和运行表明,它具有良好的密封性能、结构紧凑、制造和装拆方便。
近年来有的机组采用V型橡胶环双向密封,结构简单,安装方便,更换密封不需要拆卸叶片,优点较多。
图2-21 “λ”型转轮叶片密封1—1— 1—螺钉;2—压盖;3—“λ”密封圈;4—顶起环;5—弹簧;6—叶片枢轴7—限位螺钉;8—转轮体六、泄水锥泄水锥的外形尺寸由模型试验确定。
中小型机组的泄水锥大多采用ZG30铸造,图2-22是泄水锥与转轮体的连结结构。
图2-22所示的结构中,泄水锥上部周围开有带筋的槽口,用螺钉把合,除加保险垫圈外,装配后螺幅还应和锥体点焊,防止机组在运行中泄水锥脱落。
图2-22 泄水锥连接结构1—转轮体;2—螺钉;3—保险垫圈;4—护盖;5—泻水锥七、转轮室图2-23所示为转轮室结构图,转轮室的上端与底环相连,下端与尾水管里衬相连。
转轮室的形状要求与转轮叶片的外缘相吻合,以保证在任何叶片角度时叶片和转轮室之间都有最小的间隙。
在水电站运行中,发现转轮室臂受到强烈的振动,可能造成可卸段的破坏,有时整个可卸段被拉脱。
因此转加强转轮室的刚度和改善转轮室与混凝土的结合,是应该重视的一个问题。
图2-23 转轮室结构在叶片出口处的转轮室内表面上,常出现严重的间隙空蚀和磨损现象,需要采取抗磨抗空蚀的措施。