2014—2015学年高一数学必修一导学案:1.1集合的含义与表示
- 格式:doc
- 大小:39.00 KB
- 文档页数:5
利辛高级中学2013~2014学年度高一数学必修1导学案集合的含义与表示法主备人:刘洪涛一、教学目标1、了解集合的含义,体会元素与集合的“属于”关系;2、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3、掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.二、预习案通过预习,请你试着回答下列问题1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。
构成集合的每个对象叫做这个集合的)。
2、集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。
3、元素与集合的关系:如果a是集合A的元素,就说,记作,读作。
如果a不是集合A的元素,就说,记作,读作。
4、常用的数集及其记号:(1)自然数集:,记作。
(2)正整数集:,记作。
(3)整数集:,记作。
(4)有理数集:,记作。
(5)实数集:,记作。
三、探究案探究1:考察几组对象:①1~10以内所有的偶数;②不等式30x->的解;③8的倍数;④程230+=的所有实数根x x⑤利辛高级中学高一级全体学生;⑥周长为10 cm的三角形;⑦中国古代四大发明;⑧函数Y=x2的图像上所有的点的坐标。
试回答:各组对象分别是一些什么?有多少个对象?试给出集合与元素的定义,并举例。
探究2:①“我们班个子较高的同学”与“1,2,1”是否构成集合?②集合{1,2,3,4,5}与集合{5,4,3,2,1}是否一样?试归纳集合元素的特征:探究3:实数能用字母表示,集合又如何表示呢?请你试给集合和元素起名字。
探究4:常见的数集有哪些,又如何表示呢?探究5:数字2、8与集合{1、2、3、4、5}有什么关系?你能表示出它们之间的关系吗?探究6:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?探究7:试完成下列典例例1 用列举法表示下列集合:① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合;③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式1:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.例2 试用合适的方法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.四、检测案自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差1、 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,224 2、 给出下列关系:① 12R =;② Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个3、 直线21y x =+与y 轴的交点所组成的集合为( ).A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2- 4、 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100x x -=的所有实数根组成的集合.5、设x ∈R ,集合2{3,,2}A x x x =-.(1)求元素x 所应满足的条件;(2)若2A -∈,求实数x .6、 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .利辛高级中学高一数学备课组。
高一数学A 1.1集合导学案(一)1.1.1集合的含义与表示编者:刘玉明审核人:王建美使用时间:2014. 10.13学习目标:(1)学生初步理解集合的概念,知道常用数集的概念及其记法。
(2)学生初步了解元素与集合间“属于”、“不属于”关系的意义。
学习重点:集合的基本概念学习过程(一)新知预习(阅读课本21、集合的概念(1)一般地,我们把统称为元素,把一些叫做集合。
练习1 下列各组对象能否构成一个集合并说明理由(1)著名的数学家;(2)某校高一(2)班所有高个子的同学;(3)不超过10的非负数(4) 5 的近似值的全体练习2集合中元素的特征(1);(2);(3)。
2、集合的表示集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……3、元素与集合的关系(1)属于:如果a是集合A的元素,就说,记作。
(2)不属于:如果a不是集合A的元素,就说,记作。
要注意“∈”的方向,不能把a∈A颠倒过来写.练习3(1)给出下面四个关系:2∈R, 0.7∉Q, 0 ∈{0}, 0∉N,其中正确的个数有( )个A.4 B.3 C.2 D.1(2)下面有四个命题:①若-a ∈Ν,则a ∉Ν②若a∈Ν,b ∈Ν,则a+b的最小值是2③集合N中最小元素是1④x2+4=4x的解集可表示为{2,2}.其中正确命题的个数是( ) A.0 B.1 C.2 D.4、常用数集及其表示方法(1)非负整数集(自然数集):记作;(2)正整数集:记作;(3)整数集:记作;(4)有理数集:记作;(5)实数集:记作;(二)课堂小结本节课学习了以下内容:1.集合的有关概念;2.集合元素的性质;3.集合的表示4集合与元素的关系及记法5常用数集的定义及记法;。
1.1.1集合的含义与表示一.学习目标:l.知识与技能(1)通过三张图片,了解集合的含义,理解元素与集合之间的属于关系;(2)掌握集合中元素的三要素:确定性.互异性.无序性;(3)熟练应用常用数集及其专用记号;会用集合语言表示有关数学对象.二. 学习重点、难点:重点:集合的含义与表示方法.难点:集合的三要素:确定性、互异性、无序性.三.自学指导:(一)创设情景,揭示课题1.教师首先提出问题:通过PPT 图片,启发引导学生找到三张图片的共同特征,并引导学生举出一些集合的例子。
通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.2.用6分钟时间预习教材P2~P5,完成下列内容:(1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。
(2)、集合元素的三要素(三特征): 、 、 ;若两个集合相等,那么必须有: 。
(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ;若a 不是集合A 的元素,则记作:a A 。
(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ;实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。
四.教学过程:(一)、问题导学:检查自学指导内容,并分组探讨一下问题:a.如何判断所给对象是否组成集合?b.集合中元素的特征性质有哪些?如何判断两个集合是相等的? 判断集合A={-2,2}与集合2{|40}B x R x =∈-=一样吗?c.试着总结集合的表示方法有哪些?并试比较各自的特点和适用的对象。
(二).自学检测:完成以下练习:1.下面给出的四类对象中,能组成集合的是( )A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体2.用符号∈或∉填空:(1)0 *N ;(2;(3)23 Q ;(4)π Q 。
学生班级 姓名 小组号 评价数学必修一 1.1.2集合间的基本关系【学习目标】1.理解集合间包含与相等的含义,并能掌握子集、真子集、空集的概念;2.能识别给定集合的子集,准确用符号表示集合间的基本关系。
3. 能用Venn 图表示集合的关系。
【重点和难点】教学重点:子集、真子集的概念及它们的区别与联系。
教学难点:1.空集的概念及空集与其他集合的关系;2.包含关系与属于关系的区别。
【使用说明及学法指导】1. P 6~7 先预习课本,然后开始做导学案。
2. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处。
预习案一.知识梳理1.子集的含义:一般地,对于两个集合A,B 如果集合A 中 元素 集合B 中的元素,我们就说这两个集合有 关系,称 ,记作 (或 ),读作 (或 );注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2.集合A 与集合B 满足 ,则称这两个集合相等,即构成这两个集合的元素是 。
3.如果集合A 是集合B 的子集,并且 我们就说集合A 是集合B 的真子集,记作: 或 读作:4.空集: 记作 ,注:空集是任何集合的 ,空集是任何非空集合的 任何一个集合是它本身的子集。
5.如果B A ⊆,C B ⊆,那么A C 。
二.问题导学1.你能用符号表达子集,真子集,集合相等的含义吗?2.数学语言中的“包含”和生活语言中的“包含”有区别吗?3.通过类比实数间的关系联想集合间的关系。
三.预习自测1.下列关系表达正确的是( )A.{2,3}}8|{<⊆x xB. ∅∈0C. ∅=}0{D. }3,2{}2{∈2.用适当的符号填空:(1){0} }0|{2=+x x x (2) ∅ }01|{2=+∈x R x (3){0,2} }02|{2=-x x x (4){平行四边形} {正方形} (5) },3|{N k k x x ∈= },6|{N z z x x ∈=(5). 写出N ,Z ,Q ,R 的包含关系,并用venn 图表示出来?3.请写出集合{a,b}的所有子集,并指出真子集有多少个?四.我的疑问:探究案一.合作探究探究1.你能用适当的符号填空吗?}1{ }2,1{,1 }}2{},1{{,}1{ }}2{},1{{,∅ }}2{,{∅探究2. 已知集合A={x|0<x<3},集合B={x|m<x<4-m},且A B ⊆,则实数m 满足的条件是什么?探究3.分别写出集合{2,3},{a ,b ,c}的所有子集,猜想集合{a,b,c,d}的所有子集的个数是多少? 对于含n 个元素的集合{}n a a a ,,21 ,你能得出什么结论吗?所有子集的个数是 ,所有真子集的个数是 ,非空真子集个数是二.课堂训练与检测1.用适当的符号填空:已知集合A=}332|{x x x <-,B=}2|{≥x x ,则有:-3 A ,B A ,{2} B; ∅ A2. (1),则若任意B x A x ∈⇒∈ A B ,(2)若A ≠Φ,则∅ A ,(3)若A B ⊆,B A ⊆,则A B , (4 )若A B ⊆,,则存在B x A x ∉⇒∈ A B.3. 已知集合A={1,3,a},集合B=}1,1{2+-a a ,A B ⊆,求a 的值。
高一数学必修1 编号:SX--01--0011.1.1《集合的含义与表示》导学案撰稿:姚九伟审核:数学组时间:2013年8月29日姓名: 班级: 组别: 组名: 【学习目标】1、正确理解集合的含义及集合中元素的三性2、能熟练的运用集合的概念及性质判定集合3、能熟练的运用自然语言法、列举法、描述法表示集合【重点难点】重点:集合的含义难点:1、集合中元素的三性即确定性、互异性、无序性及其应用2、集合表示法【知识链接】生活中,人们往往习惯于将某些性质相同的事物进行归类,并给它一个总称。
如桃子、苹果、梨等,总称为水果;桌子、椅子、床等,总称为家具。
数学里,人们把一些事物放在一起考虑时,就说他们组成了一个集合。
这些基本的事物就叫这个集合的元素。
【学习过程】阅读课本第2页到第3页的内容,尝试回答以下问题:知识点一集合的定义问题1、通过你对第2页内容的学习,请你用自己的语言描述集合和元素。
(相信你能做到)问题2、集合中元素的三性即确定性、互异性、无序性。
请结合元素的性质,回答下列问题(1)你认为“孟津一高的高个子”能够组成集合吗?为什么?(2)集合常用符号{ }表示。
你认为{a,a,b,c}能够组成一个集合吗?为什么?那么{a,b,c}呢?(3)你认为{a,b,c}和{c,b,a}是同一个集合吗?请回答两个集合相等的条件?问题3、集合中的元素与集合是什么关系?用什么符号表示?问题4、你能熟练写出数学中的一些常用的数集及其记法吗?同学之间比一比看谁写得快。
阅读课本第3页到第4页前面的内容,尝试回答以下问题:知识点二 列举法问题1、教材第2页中的例子是用自然语言法表示集合的。
请你说说怎样用列举法表示集合?问题2、{0}是表示集合中什么都没有吗?0与{0}是什么关系?问题3、{2 , 3}与{(2,3)}是同一个集合吗?为什么?问题4、已知2x ∈{0,1,x },求实数x 的值。
并总结一下处理集合问题时,最后的结论应注意什么?阅读课本第4页到第5页的内容,尝试回答以下问题:知识点三 描述法问题1、怎样用描述法表示集合?具体的方法是什么?问题2、自然语言法:“文字叙述”形式,列举法:“{a,b,c,…}”形式,用描述法表示集合时,关键在于确定竖线前的代表元素及代表元素所满足的数学条件,其形式为:“{()}A x I P x =∈”,请根据前面的特点总结各自的适用对象?小资料:{})(|x P R x ∈可以写成{})(|x P x ,即当R x ∈时,可省略不写。
第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。
1.1.1集合的含义与表示(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:x+=的解;(5)(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)全班成绩好的学生;(9)平面直角坐标系内所有第三象限的点4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用“∈”或“∉”符号填空:(1)8 N;(2)0 N;(3)-3 Z;(4)2Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
例2.已知集合P的元素为1,m,m2-3m-1, 若3∈P且-1∉P,求实数m的值。
(一).集合的表示方法(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。