第三章(多元线性回归模型)教案资料
- 格式:ppt
- 大小:3.25 MB
- 文档页数:67
第三章 多元线性回归模型一、知识点列表二、关键词1、多元线性回归模型的代数和矩阵表示形式 关键词: 多元线性总体回归模型多元线性总体回归模型是指被解释变量y 与多个解释变量12,,,n x x x 之间具有线性关系,是解释变量的多元线性函数。
可以表达为:01122(1,2,3,,)i i i k ki iy x x x i n ββββμ=++++=多元线性回归模型相对于一元线性回归模型来说,其解释变量较多,因而计算公式比较复杂。
必要时需要借助计算机来进行。
2、多元线性回归模型的基本假设 关键词: 线性于参数总体回归模型是关于参数是线性的,因此称其为线性于参数。
关键词:完全共线性在样本中,没有一个自变量是常数,自变量之间也不存在严格(完全)的线性关系。
如果方程中有一个自变量是其他自变量的线性组合,那么我们说这个模型遇到了完全共线性问题。
关键词:零条件数学期望给定解释变量的任何值,误差的期望值为零,即:12(|,,,)0n E u x x x =。
关键词:内生解释变量和外生解释变量如果解释变量满足零条件数学期望,则称该自编为内生解释变量;反之,则为外生解释变量。
关键词:同方差对于解释变量的所有观测值,随机误差项有相同的方差,即:22()(),(1,2,3,,)i i Var u E u i n δ===关键词:无序列相关性随机误差项两两不相关。
即(,)(,)0,(,,1,2,3,,)i i i i Cov u u E u u i j i j n ==≠=关键词:最优线性无偏估计量满足以下假设条件的OLS 估计量称为最优线性无偏估计量:(1)线性与参数;(2)X 固定;(3)X 有变异;(4)不存在完全共线性;(5)零条件数学期望;(6)同方差;(7)无序列相关性。
关键词:经典正态线性回归模型如果回归模型的OLS 估计量为最优线性无偏估计量,并且随机误差项u 服从均值为零,方差为2δ的正态分布,则称该线性回归模型为经典正态线性回归模型。
第三章多元线性回归模型案例分析一、研究目的1提出问题:研究中国税收收入增长的主要原因(必须要有研究的意义,且具创新价值)2分析问题:从宏观经济看经济增长是税收增长的源泉;公共财政的需求;物价水平;税收政策(要注重经济理论的相关性和逻辑性)二、模型设定1被解释变量:为了全面反映中国税收增长的全貌,选择包括中央和地方的的“国家财政收入”中的各项税收作为被解释变量2解释变量:选择“国内生产总值GDP”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表,选择“商品零售物价指数”作为物价水平的代表,而由于财政体制的改革难以量化,且1985年后财税体制改革对税收增长影响不是很大,故暂不考虑。
3设定线性模型为:Y t= β1+β2X2t+β3 X3t+β4 X4t +u t注:X1默认为14经济理论构造成功之后,即着手收集数据资料(这要借助统计学的知识进行整理,并不是什么数据都可以直接拿来用。
首先,数据来源的权威性,即必须保证数据的准确可靠性,不能随意捏造,其次,数据的合理分类,最后是数据的合理运用)附:数据三、估计参数利用eviews3.0进行分析1建立工作文件新建工作文档:file-new-workfile,在打开的workfile range 对话框中的workfile frequency 中选择annual,start date 输入1978,end date输入2002,点击ok。
2输入数据直接在命令窗口输入“data Y X2 X3 X4 、、、”本案例中输入data Y X2 X3 X4然后是将excel中的数据复制过来,并点击name命名GROUP01。
3估计参数直接在命令窗口输入“LS Y C X2 X3 X4 、、、”。
LS是做最小二乘估计的命令,Y为被解释变量,C为截距项,X为解释变量,注意LS Y C X之间要有空格,被解释变量紧接在命令LS之后。
本案例中输入LS Y C X2 X3 X4 本题中得到下表,点击name 命名eq01。
一、邹式检验(突变点检验、稳定性检验)1.突变点检验1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表6.1。
表6.1 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据年份 t y (万辆)tx (元)年份 t y (万辆)tx (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.77 2577.4 2002968.98 7702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破4838.9元之后,城镇居民家庭购买家用汽车的能力大大提高。
现在用邹突变点检验法检验1996年是不是一个突变点。
H0:两个字样本(1985—1995年,1996—2002年)相对应的模型回归参数相等H1:备择假设是两个子样本对应的回归参数不等。
在1985—2002年样本范围内做回归。
在回归结果中作如下步骤(邹氏检验):1、Chow 模型稳定性检验(lrtest)用似然比作chow检验,chow检验的零假设:无结构变化,小概率发生结果变化* 估计前阶段模型* 估计后阶段模型* 整个区间上的估计结果保存为All* 用似然比检验检验结构没有发生变化的约束得到结果如下;(如何解释?)2.稳定性检验(邹氏稳定性检验)以表6.1为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。
第三章多元线性回归模型的参数估计多元线性回归模型的参数估计是指通过给定的数据样本,使用其中一种方法来计算出回归模型的参数值。
在多元线性回归模型中,我们有多个自变量与一个因变量之间的关系,因此需要估计出每个自变量的系数。
参数估计是回归模型的核心内容之一,它能够通过对样本数据的分析和处理,得到模型中的参数值,从而建立起模型与实际数据之间的映射关系。
常用的多元线性回归模型的参数估计方法有最小二乘法和最大似然估计法。
最小二乘法是一种最常用的参数估计方法。
它的基本思想是通过最小化因变量的观测值与模型预测值之间的平方误差,来确定模型参数的最佳估计值。
最小二乘法的优点是数学上简单且易于计算,但对于异常值的敏感性较强。
最大似然估计法是另一种常用的参数估计方法。
它的基本思想是找到最能使观测数据发生的概率最大的模型参数,从而得到最优的参数估计值。
最大似然估计法具有较好的统计性质,但它的计算复杂度较高,需要对似然函数进行极大化求解。
在实际应用中,我们需要根据实际情况选择合适的参数估计方法。
通常情况下,最小二乘法是首选的方法,因为它具有简单和直观的优点,适用于大多数情况。
但当样本数据存在异常值或者数据分布不符合正态分布假设时,最大似然估计法可能是更好的选择。
无论是最小二乘法还是最大似然估计法,其核心问题都是通过最优化方法找到使得模型和观测数据之间的误差最小的参数值。
这一过程需要使用数学工具和计算方法进行求解,可以使用迭代算法,如牛顿法或梯度下降法,来逐步逼近最优解。
参数估计的结果可以告诉我们每个自变量对因变量的贡献程度。
因此,一个良好的参数估计能够帮助我们更好地理解数据,预测因变量,以及识别自变量之间是否存在相互影响。
总而言之,多元线性回归模型的参数估计是通过最小化模型与观测数据之间的误差,找到最佳的模型参数值的过程。
合理选择参数估计方法,并进行有效的数学计算,能够为我们提供有关数据和模型之间的重要信息,并为进一步的分析和应用提供基础。
多元线性回归案例教案设计人教课标版(实用教案设计)一. 教案概述本教案设计旨在通过一个实际案例,介绍多元线性回归模型的基本概念和应用方法,帮助学生理解和掌握该模型的原理和实际应用能力。
二. 教学目标1. 了解多元线性回归模型的基本概念和原理;2. 掌握多元线性回归模型的参数估计方法;3. 能够运用多元线性回归模型解决实际问题;4. 培养学生分析和解决实际问题的能力。
三. 教学内容1. 多元线性回归模型的基本概念和原理- 多元线性回归模型的定义和表达方式;- 多元线性回归模型的假设;- 多元线性回归模型的矩阵表示。
2. 多元线性回归模型的参数估计方法- 最小二乘法估计参数的原理;- 多元线性回归模型的参数估计公式;- 参数估计的数值计算方法。
3. 多元线性回归模型的应用- 多元线性回归模型在实际问题中的应用;- 通过案例分析,展示多元线性回归模型的实际应用过程;- 运用多元线性回归模型解决实际问题的步骤和注意事项。
四. 教学过程本节课的教学过程包括以下几个环节:1. 复与导入 (10分钟)通过回顾简单线性回归模型的内容,引入多元线性回归模型,让学生了解多元回归模型相对于简单回归模型的优势和应用场景。
2. 知识讲解与案例分析 (30分钟)讲解多元线性回归模型的基本概念和原理,介绍最小二乘法的参数估计方法,并通过一个实际案例进行分析和讨论,让学生能够理解和运用多元线性回归模型解决实际问题。
3. 实际操作与练 (20分钟)学生分组进行练,通过给定的数据集,使用多元线性回归模型进行实际操作和参数估计,培养学生的数据分析和解决实际问题的能力。
4. 案例展示与总结 (10分钟)选取几个学生的实际操作结果进行展示和讨论,总结本节课所学的内容,并对学生的研究情况进行评价和反馈。
五. 教学评价方法1. 课堂参与度评价2. 实际操作结果评价3. 知识掌握情况评价4. 问题解决能力评价六. 教学资源1. 教材《统计学》人教课标版2. 多元线性回归模型案例数据集3. 教师讲义和案例分析PPT七. 教学反思本节课注重理论与实践相结合,通过案例分析让学生深入理解和应用多元线性回归模型。
金融计量学课程教案
附录:教学基本内容
第三章经典单方程计量经济学模型:多元线性回归模型
第一节多元线性回归模型及古典假定
1.主要内容:多元线性回归模型概念、多元线性回归模型的矩阵形式及多元线性回归模型的古典假定
2.基本概念和知识点:多元线性回归模型概念,多元线性回归模型的基本假定。
3.问题与应用(能力要求):掌握多元线性回归模型的几个基本假定。
第二节多元线性回归模型的估计
1.主要内容:多元线性回归模型的参数估计
2.基本概念和知识点:多元线性回归模型参数估计的普通最小二乘法,参数估计的最大似然法,矩估计方法,参数估计量的性质,样本容量问题,多元线性回归模型的参数估计实例。
3. 问题与应用(能力要求):掌握多元OLS的参数估计方法。