第3讲.一次函数与全等三角形综合(答案版)
- 格式:doc
- 大小:4.90 MB
- 文档页数:19
《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。
一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。
1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。
大类一、一次函数与几何综合班级:__________ 姓名:__________【知识点睛】1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度,uj7BM即为水平宽度,则=AMkBM,②b是截距,表示直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1∥l2;②若k1·k2=-1,则直线l1⊥l2.3.一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.MA B第1题图 第2题图 第3题图2. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_________.3. 如图,直线483y x =-+交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为4. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________. 5. 如图,已知直线l :y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线CA 的表达式为__________________.第5题图 第6题图 第7题图6. 如图,四边形ABCD 是一张矩形纸片,E 是AB 上的一点,且BE :EA =5:3,EC=BCE 沿折痕EC 向上翻折,点B 恰好落在AD 边上的点F 处.若以点A 为原点,以直线AD 为x 轴,以直线BA 为y 轴建立平面直角坐标系,则直线FC 的表达式为__________________.7. 如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点.(1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是____________8. 如图,已知正方形ABCD 的顶点A (1,1),B (3,1),直线y =2x +b 交边AB 于点E ,交边CD 于点F ,则直线y =2x +b 在y 轴上的截距b 的变化范围是____________.第9题图9. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________. 10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.大类二、一次函数之存在性问题班级:__________ 姓名:__________【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题. 【精讲精练】 1.如图,直线y =+x 轴、y 轴分别交于点A ,点B ,已知点P 是第一象限内的点,由点P ,O ,B 组成了一个含60°角的直角三角形,则点P 的坐标为_____________.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值. (2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.点C 是直线y =kx +3上与A ,B 不重合的动点.过点C 的另一直线CD 与y 轴相交于点D ,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.5. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x=+上的一个动点(点P不与点A重合).(1)在点P的运动过程中,试写出△OPC的面积S与x之间的函数关系式.?求出此时(2)当点P运动到什么位置时,△OPC的面积为278点P的坐标.(3)过P作AB的垂线与x轴、y轴分别交于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若Array存在,求出点P的坐标;若不存在,请说明理由.大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为t 秒. (1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t4.如图,直线y =+与x 轴交于点A,与直线y =交于点P .(1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.大类四、一次函数之面积问题 班级:_________ 姓名:__________【知识点睛】1. 坐标系中处理面积问题,要寻找并利用横平竖直的线, 通常有以下三种思路: ①公式法(规则图形);②割补法(分割求和、补形作差); ③转化法(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ① 割补求面积(铅垂法):12△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、 精讲精练1. 如右图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △PAB =___________.第2题图 第3题图3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________.4. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),求△ABC 的面积.5. 如图,在平面直角坐标系中,已知A (2,4),B (6,6),C (8,2),求四边形OABC 的面积.6. 如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,C (1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.7. 如图,已知直线m 的解析式为112y x =-+,与x 轴、y 轴分别交于A ,B 两点,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,且∠BAC =90°,点P 为直线x =1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.【分类一参考答案】 二、精讲精练1.232.⊥,-1 3.7(0)3-, 4.(1,3);(n ,m );1313()55--, 5.y =+ 6.4163y x =-+ 7.(1)-2≤a ≤2;(2)k ≥1或k ≤-1 8.-3≤b ≤-1 9.8:9 10.(1)y =x -4;(2)M (m +4,-m -8);(3)Q (-4,0)【分类二参考答案】 二、精讲精练1.333(4444或(或,或(,) 2.(1)B (3,0),43k =(2)A (6,4) (3)123413(120)03P P P P 或(-)或,或(,)3.(1)B (-3,6) (2)y =-x +3(3)123433(30)(22P P P P +,或或或(,) 4.1261224()(46)5555--,或(,)或,5.(1)33(4)433(4)4x x S x x ⎧--<-⎪⎪=⎨⎪+>-⎪⎩(2)1217919()2424P P --,或(,) (3)12412124()5555P P ,或(-,) 【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)(48)t S t <=⎨⎪+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)(34)t S t <=⎨⎪+-<<⎪⎩≤第21页/共21页 5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t tS t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤ 【分类四参考答案】二、精讲精练1.72 2.8 3.52 4.925.24 6.123451(0)(50)(0)(10)22P P P P --,或,或,或,7.(1)52;(2)12(13)(12)P P -,或,8.(1)10;(2)12162242()()3333M M -,或,。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
⼋年级上数学⼀次函数与三⾓形全等专练(含答案)(2套)⼋年级上数学⼀次函数与三⾓形全等专练及答案(2套)【模拟试题1】 (答题时间:80分钟)⼀、填空题1、把2x +y =1写成y 是x 的函数关系式是.2、已知直线y =kx +b 过(0,1)和(-1,0)两点,则函数关系式为.3、直线y =kx +b 的图像过第⼀、⼆、四象限,且过点(1,-3),则k +b =.4、如图,BAD ABC ,A 和B 是对应点,C 和D 是对应点,若AB =8cm ,BC =13cm ,AC =7cm ,BD =.5、如图,AB 、CD 相交于O ,AO =BO ,要判定图中的两个三⾓形全等,只需再补充⼀个条件,这个条件是,或,或,或.6、等腰三⾓形的周长为10cm ,⼀边长为3cm ,则其他两边长分别为.7、等腰三⾓形的⼀个⾓为70,则其它两个⾓分别是.8、如图,已知?ABC 中,AB =AC ,120=∠BAC ,DE 垂直平分AC 交BC 于D ,垂⾜为E ,DE =2cm ,则BC =.9、⼀次函数y =kx +b )0(≠k 的图像与直线2x +y =5平⾏,且经过点(1,-1),则此⼀次函数的解析式是.10、P (-1,2)关于x 轴的对称点坐标是;关于y 轴对称点的坐标是;关于直线x =1为对称轴的对称点坐标是;关于直线y =-2为对称轴的对称点坐标是.⼆、选择题1、点(1,m ),(2,n )在函数y =-x +1的图像上,则( ) A . m >n B . m2、等腰三⾓形的周长是24cm ,其两边的差是6cm ,则三⾓形的腰长是( ) A . 5cm B .6cm C . 10cm D .6cm 或10cm3、下列各条件中,不能判定两个直⾓三⾓形全等的是( ) A .⼀条直⾓边和⼀个锐⾓分别相等; B .两条直⾓边对应相等;C .斜边和⼀条直⾓边对应相等;D .直⾓和⼀个锐⾓对应相等;4、到三⾓形三个顶点距离相等的点是( )A .三边⾼线的交点B .三个内⾓平分线的交点C .三条中线的交点D .三边中垂线的交点5、⼀次函数y =3x +m -1的图像不经过第⼆象限,则m 的取值范围( )A . 1≤m6、某移动通讯公司推出“⼼灵通”通话收费标准为:前3分钟(不⾜3分钟按3分钟计)为0.2元;3分钟后每分钟收0.1元,则⼀次通话时间为x 分(x >3)与这次通话的费⽤y (元)之间的关系式是( )A . y =0.2+0.1xB . y =0.1xC . y =-0.1+0.1xD . y =0.5+0.1x 7、如图,在ABC ?中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DF //BC ,交AB 于点D ,交AC 于点E ,若BD +CE =9,则线段DE 的长为( )A . 6B . 7C . 8D .98、如图,有⼀块直⾓三⾓形纸⽚,将AC 边沿直线AD 折叠,使它落在斜边AB 上,已知BC =6cm ,且CD :DB =1:2,则D 到AB 的距离为( )A . 1cmB . 2cmC . 3cmD .不确定9、下列图形中,不是轴对称图形的是( ) A .钝⾓ B .正多边形 C .平⾏四边形D .等腰梯形三、解答题1、⼀根弹簧原长13厘⽶,它最多能挂的重物质量为16千克,并且每挂重1千克,就伸长0.5厘⽶.求:(1)挂重后弹簧的长度y (厘⽶)与挂重x (千克)之间的函数关系; (2)⾃变量的取值范围;2、已知⼀次函数的图像经过A (1,2),B (-1,1)两点. (1)求函数解析式并画出图像. (2)x 为何值时,y >0,y =0,y <0?(3)当-33、已知如图AB =DE ,AC =DF ,BF =EC ,求证:AC //DF ,AB //ED .4、(作图题)(1)根据下列语句画图:画锐⾓ABC ?,延长AB ⾄E ,延长AC ⾄D .画∠CBE 、∠BCD 的平分线并交于点F .(2)问度量点F 到∠A 的两边的距离,它们是否相等?(3)根据画图过程和度量的结果,结合图形写出“已知”和“求证”,并加以证明.5、已知,如图AB =AC ,DE //BC ,求证:BD =CE .6、已知如图AD 是∠BAC 的平分线,∠B =∠EAC ,EF ⊥AD 于F .求证:EF 平分∠AED .7、在ABC ?中,AD 是∠A 的平分线,且AB +BD =AC .求证:∠B =2∠C .【试题2、1+=x y3、-34、7cm5、CO =DO ∠A =∠B ∠C =∠DAC //DB6、3cm ,4cm 或3.5cm ,3.5cm .7、55554070,或,. 8、12cm9、y =-2x +1 10、(-1,-2) (1,2) (3,2) (-1,-6)⼆、选择题 1、A 2、C 3、D 4、D 5、A 6、C 7、D 8、B 9、C三、解答题1、(1)y =13+0.5x (2)160≤≤x2、(1)y =0.5x +1.5 图像略(2)x >-3时,y >0;当x =-3时,y =0;当x <-3时,y <0;(3)当-3.//,//.,,DF AC DE AB DFE ACB E B DEFABC DF AC DE AB ∴∠=∠∠=∠∴∴==4、略5、,AC AB = .C B ∠=∠∴CEBD AE AC AD AB AE AD AED ADE C AED B ADE BC DE =∴-=-∴=∴∠=∠∴∠=∠∠=∠∴,..,//6、,BAC AD ∠平分 ,CAD BAD ∠=∠∴AED EF AD EF DEAE DAE ADE EAC B EAC CAD DAE BAD B ADC ∠∴⊥=∴∠=∠∴∠=∠∠+∠=∠∠+∠=∠平分⼜ 7、证明:AB AE AC =上截取在【模拟试题2】⼀.选择题:(共30分)1.下列函数中,是正⽐例函数的是( ) A . y x =2B .12C . y x =2D . y x =-21 2.下列式⼦中正确的是( )A . 22m m m -=B . --=440x xC . ab a b 220-=D . --=-325a a a3.()()-+---+232222x x x 的值是( ) A . -+x x 23 B . -+-x x 334C . ---3342x xD . -+332x x4.若kb <0,且b k ->0,则函数y kx b =+的⼤致图像是( )5.如图,AB//DE,CD=BF,若△ABC?△EDF,还需补充的条件可以是( )A.AC=EF B.AB=DEC.∠B=∠D D.不⽤补充DC AFEB6.下列命题正确的是( )A.有两条边分别相等的两个直⾓三⾓形全等B.有⼀条边相等的两个等腰直⾓三⾓形全等C.有两条直⾓边分别相等的两个直⾓三⾓形全等D.有两边和其中⼀边上的⾼对应相等的两个三⾓形全等7.AD是△ABC的⾓平分线,⾃D向AB、AC两边作垂线,垂⾜为E、F,那么下列结论中错误的是( )A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8.如下⼏个图形是国际通⽤的交通标志,其中不是轴对称图形的是( )A B C D!9.已知⼀个等腰三⾓形的⼀边长为5,另⼀边长为7,则这个等腰三⾓形的周长为( ) A.12 B.17 C.17或19 D.1910.已知△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.EF=1,则BF=( )A.4 B.6 C.12 D.8AE⼆.填空题:(共30分)1.若函数yxx=+1,则x的⾃变量取值范围是_____________.2.直线y=kx经过点A(-5,3),则k=_____________,如果这条直线上点A的横坐标x A=4,那么它的纵坐标yA=___________.E3.如下左图,AB =CD ,AE =BF =4cm ,CE =6cm ,要使△ACE ?△BDF ,则需DF =___cm .ABC ED F4.如上右图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =DE ,则∠ACE =____.5.如图:∠B =∠E =90°,EF =AB ,AD =CF ,则CB 和ED 的位置关系是___________,数量关系是___________.F6.在△ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,DE ⊥AB 于E ,若DE =3cm ,则CD =___________,若∠B =50°,则∠EAD =_____________. 7.若△ABC 是轴对称图形,∠A =80°,则∠C =______________. 8.写出六个成轴对称图形的汉字或英⽂字母______________. 9.点P (1,2)关于直线x =-1的对称点的坐标是______________.10.等腰三⾓形⼀腰上的⾼等于这腰的⼀半,则顶⾓的度数为______________.三.解答题:(共40分) 1.先作图,再证明.(1)在给出的图形中,完成以下作图(保留作图痕迹):①作∠ACB 的平分线CD ,交AB 于点D ;②延长BC 到E ,使CE =CA,连接AE .AB C(2)求证:CD //AE . 2.如图:在等腰三⾓形ABC 中,AB =AC ,点D 在BC 上,AD =BD ,AC =DC ,求∠BAC 的度数.AB D C3.如图:在△ABC 中,AC ⊥BC ,AC =BC ,D 为AB 上⼀点,AF ⊥CD 交CD 的延长线于F ,BE ⊥CD 于E ,求证:EF =CF -AF .BFDEA C4.如图,△ACB、△ECD都是等腰直⾓三⾓形,且C在AD上,AE的延长线与BD 交于F.请你在图中找出⼀对全等三⾓形,并写出证明它们全等的过程.AEC BFD5.在三⾓形ABC中,AD平分∠BAC,交BC于D,且∠B=2∠C.求证:AB+BD=AC.AC D B6.如图:在△ABC中,AB=AC,AD是中线,BE=CF.(1)求证:△BDE?△CDF;(2)当∠B=60°时,过AB中点G,作GH//BD交AD于H,求证:GH AB=14.AG HE FB D C7.某⾼速公路收费站预计“⼗·⼀”这天将通过⼤⼩汽车1200辆次,该收费站的收费标准为:⼤车每辆次10元,⼩车每辆次5元,解答下⾯的问题:(1)写出“⼗·⼀”这天该收费站的收费⾦额y(元)与⼩车通过辆次x(辆)之间的函数关系,并指出⾃变量x的取值范围;(2)如果⼩车通过辆次占过车总辆次的65%,请你估计“⼗·⼀”这天此收费站的总收费⾦额.【试题2答案】⼀.1. A 2. D 3. B 4. B 5. B6. D 7. C8. C 9. C10. A⼆. 1. x x ≥-≠10且 2. k y A =-=-0624.., 3. 6cm 4. 90° 5.平⾏,相等 6. 3cm 7. 50°或20°,20°或80° 8.略 9.(-3,2) 10. 30°,150° 三.1.作图略 2.∠BAC =108° 3.可证:△BEC ?△CF A (AAS ) ∴CE =AF⼜∵EF =CF -CE ∴EF =CF -AF 4.△ACE ?△BCD (SAS )5.在AC 上截取AE =AB ,连接DE ,△ABD ?△AED (SAS ) ∴AE =AB ,ED =BD ,∠B =∠AED∵∠AED =∠C +∠CDE ∠B =2∠C ∴2∠C =∠C +∠CDE ∴∠C =∠CDE∴CE =DE ∴CE =BD ∵AE +CE =AC ∴AB +BD =AC6. (1)△BDE ?△CDF (SAS ) (2)∵∠B =60°,AB =AC ∴△ABC 是等边三⾓形⼜∵AD 是中线,∴∠ADB =90°,∠BAD =30° ⼜∵GH //BC ,∴∠GHA =90° ∴GH =0.5AG =0.25AB7. Y x =-+512000(0。
FB第一讲《全等三角形的性质和判定》1、知识点回顾:(1) 、全等三角形的性质:全等三角形的对应边相等,对应角相等;周长和面积相等;平移、旋转、对称前后的图形相等(2) 、全等三角形判定定理:SSS:两三角形三条边对应相等,那么这两个三角形全等SAS:如果两个三角形的两边及其这两边的夹角对应相等,那么这两个三角形全等 ASA:如果两个三角形的两个角及其夹边对应相等,那么这两个三角形全等 AAS:如果两个三角形的两个角及其一个角对应边对应相等,那么这两个三角形全等 HL :如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个三角形全等2、经典随堂测回顾复习【测 1】 如图,△ABC ≌△DEF ,∠A=35°,∠B=55°,求∠DFE 的度数.【测 2】 如图, AC ∥ DE , BC ∥ EF , AC = DE .求证: AF = BD .EADC3、复习题1.如图,两个三角形为全等三角形,则∠α的度数是()A.72° B.60° C.58° D.50°2.如图,在△ABC 中,D、E 分别是AC、AB 上的点,在△ADE≌△BDE≌△BDC,则∠A 的度数是()A.15° B.20° C.25° D.30°3.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF 的度数.4.如图,A、D、E 三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD 满足什么条件时,BD∥CE?5.如图所示,△ABD≌△ACD,∠BAC=90°.(1)求∠B;(2)判断AD 与BC 的位置关系,并说明理由.第二讲《全等三角形的经典模型》1、知识点回顾:(1)、平移型全等模型:一个三角形经过平移所得另外一个三角形,则这两个三角形全等(2)、对称型全等模型:一个三角形经过一条对称轴翻折所得另外一个三角形,则这两个三角形全等(3)、旋转型全等模型:一个三角形经过一点旋转所得另外一个三角形,则这两个三角形全等(4)、全等三角形添加辅助线的基本作图方法:A、连接****B、延长**到**,使****=****C、延长***交****的延长线于**D、在***上,截取***=***,连接***E、过点*,作**的平行线,与***交于点*F、过点*,作**的垂线,垂足为点*2、经典随堂测回顾复习【测 1】(1)如图⑴,若AB =CD ,A、E、F、C 在一条直线上,AE =CF ,过E、F 分别作DE ⊥AC ,BF ⊥AC .求证:BD 平分EF .⑵ 若将△DEC 的边EC 沿AC 方向移动到图⑵的位置时,其他条件不变,上述结论是否成立?请说明理由.【测 2】如图,AB =AE ,∠ABC =∠AED ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD ;3、复习题1.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为()A.2 B.3 C.5 D.2.52.如图,△AOC≌△BOD,点A 与点B 是对应点,那么下列结论中错误的是()A.∠A=∠BB.AO=BO C.AB=CD D.AC=BD3.如图,已知△ABC≌△ADC,∠BAD=120°,∠ACD=25°,求∠B 的大小.4.如图,已知△ABC≌△DBE,点D 在AC 上,BC 与DE 交于点P,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE 的度数;(2)求△DCP 与△BPE 的周长和.5.如图,AB、CD 相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0 的度数和BD 的长度.第三讲《倍长中线和截长补短》1、知识点回顾:(1)、倍长中线:遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”(2)、截长法:在某条线段上截取一条线段与特定线段相等,构造全等三角形,多用于解决线段的和差、倍分等类的题目(3)、倍长法:将某条线段延长与特定线段相等,构造全等三角形,多用于解决线段的和差、倍分等类的题目注:截长补短是添加辅助线的一种重要思想,往往会与“旋转”和“轴对称”结合2、经典随堂测回顾复习【测1】在△ABC 中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是什么?【测 2】如图,△ABC 中,∠BAC = 120︒,AD ⊥BC 于 D ,且AB +BD =DC ,求∠C 的度数.3、复习题1.已知:如图,ABCD 是正方形,∠FAD=∠FAE.求证:BE+DF=AE.2.△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)3.如图所示,∠BAC=∠DAE=90°,M 是BE 的中点,AB=AC,AD=AE,求证:AM⊥CD.第四讲《垂直平分线与角平线》1、知识点回顾(1)垂直平分线的性质:垂直平分线上一点到线段两端点的距离相等垂直平分线的判定:到线段两端点距离相等的点在这条线段的垂直平分线上(2)角平分线的性质:①如果一条射线是一个角的平分线,那么它把这个角分成的两个相等的角②角平分线上的点到角两边的距离相等2、经典随堂测回顾复习【测 1】在△ABC 中,E 为BC 边的中点,DE ⊥BC 于E 点,交AC 于D 点,求证:AB AC .ABE C【测 2】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F,PA=PC.求证:∠PCB+∠BAP=180°.3、复习题1.如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3D2.如图,在Rt△ABC 中,∠C=90°,AD 是△ABC 的角平分线,若CD=4,AC=12,AB=15,则△ABC 的面积为()A.48 B.50 C.54 D.603.已知:如图,四边形ABCD 中,对角线AC,BD 相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD 平分∠ABC;(2)若∠DAC=45°,OA=1,求OC 的长.4.如图,在Rt△ABC 中,∠ABC=90°,CD 平分∠ACB 交AB 于点D,DE⊥AC 于点E,BF∥DE 交CD 于点F.求证:DE=BF.5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD 的长度及∠B 的度数.第五讲《全等三角形综合》1、知识点回顾(1)、全等三角形的性质:全等三角形的对应边相等,对应角相等;周长和面积相等;平移、旋转、对称前后的图形相等(2)、全等三角形判定定理:SSS:两三角形三条边对应相等,那么这两个三角形全等SAS:如果两个三角形的两边及其这两边的夹角对应相等,那么这两个三角形全等 ASA:如果两个三角形的两个角及其夹边对应相等,那么这两个三角形全等 AAS:如果两个三角形的两个角及其一个角对应边对应相等,那么这两个三角形全等 HL :如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个三角形全等 2、经典随堂测回顾复习【测 1】如图: BE ⊥ AC ,CF ⊥ AB , BM = AC ,CN = AB .求证:(1) AM = AN ;(2)AM ⊥ AN .【测 2】已知,如图,在四边形 ABCD 中, AC 平分∠BAD , CE ⊥ AB 于 E ,并且 AE = 1 ( AB +AD ) ,2求证: ∠B +∠D = 180︒ .3、复习题1.如图所示,要测量河两岸相对的两点A、B 的距离,在AB 的垂线BF 上取两点C、D,使BC=CD,过D 作BF 的垂线DE,与AC 的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1= ,△ABC≌,若测得DE 的长为25 米,则河宽AB 长为.2.如图1,以△ABC 的边AB、AC 为边分别向外作等腰直角△ABD 和等腰直角△ACE,连接CD、BE、DE。
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
一. 本周教学内容:一次函数、全等三角形、轴对称的复习【典型例题】(一)一次函数 例1:马戏团演出场地的外围围墙是若干块长为5m ,宽为2.5m 的长方形帆布缝制而成的,两块帆布缝合的公共部分是0.1m ,围成的围墙高2.5m 。
(1)若先用6块帆布缝制成宽为2.5m 的条形,求其长度;(2)若用x 块帆布缝制成密封的圆形围墙,求圆形场地的周长y 与所用帆布的块数x 之间的函数关系式;(3)要是围成的圆形场地的半径为10m ,至少需要买几块这样的帆布缝制围墙。
解:(1)6块帆布缝制成条形后,有五块公共部分,所以6块帆布缝制后的总长度为: m 5.291.0556=⨯-⨯(2)x 块帆布缝制成密封的圆形围墙后有x 块公共部分。
设圆形围墙的周长为ymx y x x x y 9.4,9.41.05=∴=-=∴(3)要围成半径10m 的圆形场地,则x 9.4102=⨯π82.129.48.629.420≈≈=∴πx 块 答:需要买这样的帆布13块。
例2:已知等腰三角形周长为20cm ,求:(1)它的底边y 和腰长x 的函数关系式; (2)出自变量的取值范围; (3)画出函数图像。
解:(1)y =20-2x ;⎪⎩⎪⎨⎧>>>.2,0,0)2(y x y x ⎪⎩⎪⎨⎧->>->∴.2202,0220,0x x x x ⎪⎩⎪⎨⎧><>∴.5,10,0x x x ;105<<∴x(3)当x =5时,y =10;当x =10时,y =0连结A (5,10)、B (10,0)则线段AB (A 、B 两点除外)就是所求函数图像,如图。
例3:(1)在某一电路中,若电压保持不变,电流强度I 与电阻R 成反比例关系。
当电阻R =10欧姆时,电流强度I =4安培,则I 关于R 的函数关系式是( )A. I =40R (R>0)B. )0(401>=R R I C. )0(40>=R RID. )0(401>=R RI(2)生物学指出:生物系统中,每输入一个营养级的能量,大约只有10% 的能量能够流动到下一个营养级。
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
一次函数与几何图形综合专题讲座思想方法小结 : 1函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.2数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 :1常数k ,b 对直线y =kx +bk ≠0位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b =0时,即-k b=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限. 2直线y =kx +bk ≠0与直线y =kxk ≠0的位置关系. 直线y =kx +bk ≠0平行于直线y =kxk ≠0当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . 3直线b 1=k 1x +b 1与直线y 2=k 2x +b 2k 1≠0 ,k 2≠0的位置关系.①k 1≠k 2⇔y 1与y 2相交; ②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点0,b 1或0,b 2;③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.例题精讲:1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB(1) 求AC(2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC于Q ,试探究BP 与PQ 的数量关系,并证明你的结论;(3) 在2的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①MQ +AC /PM 的值不变;②MQ -AC /PM 的值不变,期中只有一个正确结论,请选择并加以证明;2.本题满分12分如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、xxB 两点;1当OA =OB 时,试确定直线L 的解析式;2在1的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长;3当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③;问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由;考点:一次函数综合题;直角三角形全等的判定. 专题:代数几何综合题.分析:1是求直线解析式的运用,会把点的坐标转化为线段的长度;2由OA =OB 得到启发,证明∴△AMO ≌△ONB ,用对应线段相等求长度; 3通过两次全等,寻找相等线段,并进行转化,求PB 的长.解答:解:1∵直线L :y =mx +5m ,∴A -5,0,B 0,5m ,由OA =OB 得5m =5,m =1,第2题图①第2题图②第2题图③CBAl 2l 1xyE ,过点C作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF 3△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值;在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值;6分考点:轴对称的性质;全等三角形的判定与性质.分析:1根据题意先求直线l1与x轴、y轴的交点A、B的坐标,再根据轴对称的性质求直线l2的上点C的坐标,用待定系数法求直线l2的解析式;2根据题意结合轴对称的性质,先证明△BEA≌△AFC,再根据全等三角形的性质,结合图形证明BE+CF=EF;3首先过Q点作QH⊥y轴于H,证明△QCH≌△PBO,然后根据全等三角形的性质和△QHM≌△POM,从而得HM=OM,根据线段的和差进行计算OM的值.解答:解:1∵直线l1与x轴、y轴分别交于A、B两点,∴A-3,0,B0,3,∵直线l2与直线l1关于x轴对称,∴C0,-3∴直线l2的解析式为:y=-x-3;2如图1.答:BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=BC,∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;3①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBOAAS,∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM∴OM =BC -OB +CM =BC -CH +CM =BC -OM ∴OM =21BC =3. 点评:轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.如图,在平面直角坐标系中,Aa ,0,B 0,b ,且a 、b 满足.1求直线AB 的解析式;2若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; 3过A 点的直线交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线交AP 于点M ,试证明的值为定值.考点:一次函数综合题;二次根式的性质与化简;一次函数图象上点的坐标特征;待定系数法求正比例函数解析式;全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:1求出a 、b 的值得到A 、B 的坐标,设直线AB 的解析式是y =kx +b ,代入得到方程组,求出即可;2当BM ⊥BA ,且BM =BA 时,过M 作MN ⊥Y 轴于N ,证△BMN ≌△ABOAAS ,求出M 的坐标即可;②当AM ⊥BA ,且AM =BA 时,过M 作MN ⊥X 轴于N ,同法求出M 的坐标;③当AM ⊥BM ,且AM =BM 时,过M 作MN ⊥X 轴于N ,MH ⊥Y 轴于H ,证△BHM ≌△AMN ,求出M 的坐标即可.3设NM 与x 轴的交点为H ,分别过M 、H 作x 轴的垂线垂足为G ,HD 交MP 于D 点,求出H 、G 的坐标,证△AMG ≌△ADH ,△AMG ≌△ADH ≌△DPC ≌△NPC ,推出PN =PD =AD =AM 代入即可求出答案.解答:解:1要使b =有意义,必须a -22=0,4-b =0, ∴a =2,b =4, ∴A 2,0,B 0,4,设直线AB 的解析式是y =kx +b , 代入得:0=2k +b ,4=b , 解得:k =-2,b =4,∴函数解析式为:y =-2x +4, 答:直线AB 的解析式是y =-2x +4. 2如图2,分三种情况:①如图1当BM ⊥BA ,且BM =BA 时,过M 作MN ⊥Y 轴于N , △BMN ≌△ABOAAS ,MN =OB =4,BN =OA =2,∴ON =2+4=6, ∴M 的坐标为4,6 , 代入y =mx 得:m =23, ②如图2当AM ⊥BA ,且AM =BA 时,过M 作MN ⊥X 轴于N ,△BOA ≌△ANMAAS ,同理求出M 的坐标为6,2,m =31,③当AM ⊥BM ,且AM =BM 时,过M 作MN ⊥X 轴于N ,MH ⊥Y 轴于H ,则△BHM ≌△AMN , ∴MN =MH ,设Mx ,x 代入y =mx 得:x =mx ,2∴m =1, 答:m 的值是23或31或1. 3解:如图3,结论2是正确的且定值为2,设NM 与x 轴的交点为H ,分别过M 、H 作x 轴的垂线垂足为G ,HD 交MP 于D 点, 由y =2k x -2k与x 轴交于H 点, ∴H 1,0, 由y =2k x -2k与y =kx -2k 交于M 点, ∴M 3,K , 而A 2,0,∴A 为HG 的中点, ∴△AMG ≌△ADHASA ,又因为N 点的横坐标为-1,且在y =2k x -2k上, ∴可得N 的纵坐标为-K ,同理P 的纵坐标为-2K , ∴ND 平行于x 轴且N 、D 的横坐标分别为-1、1 ∴N 与D 关于y 轴对称,∵△AMG ≌△ADH ≌△DPC ≌△NPC , ∴PN =PD =AD =AM , ∴AMPN-PM =2.点评:本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.5.如图,直线AB :y =-x -b 分别与x 、y 轴交于A 6,0、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1;1求直线BC 的解析式:2直线EF :y =kx -kk ≠0交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD 若存在,求出k 的值;若不存在,说明理由3如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y轴于点K ,当P 点运动时,K 点的位置是否发现变化 若不变,请求出它的坐标;如果变化,请说明理由;考点:一次函数综合题;一次函数的定义;正比例函数的图象;待定系数法求一次函数解析式.专题:计算题.分析:代入点的坐标求出解析式y =3x +6,利用坐标相等求出k 的值,用三角形全等的相等关系求出点的坐标.解答:解:1由已知:0=-6-b ,∴b =-6,∴AB :y =-x +6. ∴B 0,6 ∴OB =6∵OB :OC =3:1,OC =3OB=2, ∴C -2,0设BC 的解析式是Y =ax +c ,代入得;6=0•a +c , 0=-2a +c , 解得:a =3, c =6, ∴BC :y =3x +6.直线BC 的解析式是:y =3x +6;2过E 、F 分别作EM ⊥x 轴,FN ⊥x 轴,则∠EMD =∠FND =90°. ∵S △EBD =S △FBD , ∴DE =DF . 又∵∠NDF =∠EDM , ∴△NFD ≌△EDM , ∴FN =ME .联立y =kx -k , y =-x +6 得y E =1k 5k, 联立y =kx -k ,y =3x +6得y F =3-k 9k. ∵FN =-y F ,ME =y E , ∴1k 5k =3-k 9k-. ∵k ≠0,∴5k -3=-9k +1, ∴k =73; 3不变化K 0,-6. 过Q 作QH ⊥x 轴于H , ∵△BPQ 是等腰直角三角形, ∴∠BPQ =90°,PB =PQ , ∵∠BOA =∠QHA =90°, ∴∠BPO =∠PQH , ∴△BOP ≌△HPQ , ∴PH =BO ,OP =QH , ∴PH +PO =BO +QH , 即OA +AH =BO +QH , 又OA =OB , ∴AH =QH ,∴△AHQ 是等腰直角三角形, ∴∠QAH =45°, ∴∠OAK =45°,∴△AOK 为等腰直角三角形, ∴OK =OA =6, ∴K 0,-6.点评:此题是一个综合运用的题,关键是正确求解析式和灵活运用解析式去解.6. 如图,直线AB 交X 轴负半轴于Bm ,0,交Y 轴负半轴于A 0,m ,OC ⊥AB 于C -2,-2; (1)求m 的值;-4m 2CG OG GB ,,45OAOB GOB G =∴===∴∆∆∆∴︒=∠∴∆∴=都是等腰直角三角形为等腰直角三角形的垂线,垂足为作过OCB CGO CGB CBO AOB (2)直线AD 交OC 于D ,交X 轴于E ,过B 作BF ⊥AD于F ,若OD =OE ,求AEBF 的值; 21BF 2BF BH BF AE BF 2BH BF BH AE BH ASA AOE BOH 90AOE BOH AO BO EAO HBO AOE BOH )(BF ASA AFH AFB )(AF AF 90AFH AFB AFH AFB FEBADC )(OED FEB ODEOED ODOE FAH HBO ===∴=+==∴∆≅∆∴⎪⎩⎪⎨⎧︒=∠=∠=∠=∠∆∆=∴∆≅∆∴⎪⎩⎪⎨⎧∠=∠=︒=∠=∠∆∆∠=∠∴∠=∠∴∠=∠∴∠=∠∠=∠∠=∠∴=∠=∠BFHF FAH BAF FAHCAD CADHBO ODE ADC 等)(全等三角形对应边相)((已知)(已证)中,和在全等三角形对应边相等)(已证(公共边)中和在对顶角相等,(同角的余角相等)(3)如图,P 为x 轴上B 点左侧任一点,以AP 为边作等腰直角△APM ,其中PA =PM ,直线MB 交y 轴于Q ,当P 在x 轴上运动时,线段OQ 长是否发生变化 若不变,求其值;若变化,说明理由;7.在平面直角坐标系中,一次函数y=ax+b的图像过点B-1,,与x轴交于点A4,0,与y轴交于点C,与直线y=kx交于点P,且PO=PA1求a+b的值;2求k 的值;3D 为PC 上一点,DF ⊥x 轴于点F ,交OP 于点E ,若DE=2EF ,求D 点坐标. 考点:一次函数与二元一次方程组.专题:计算题;数形结合;待定系数法.分析:1根据题意知,一次函数y =ax +b 的图象过点B -1, 25和点A 4,0,把A 、B 代入求值即可; 2设Px ,y ,根据PO =PA ,列出方程,并与y =kx 组成方程组,解方程组;3设点Dx ,- 21x +2,因为点E 在直线y = 21x 上,所以Ex ,21x ,Fx ,0,再根据等量关系DE =2EF 列方程求解.解答:解:1根据题意得:25=-a +b 0=4a +b解方程组得:a =21, b =2 ∴a +b =-21+2=23,即a +b =23; 2设Px ,y ,则点P 即在一次函数y =ax +b 上,又在直线y =kx 上,由1得:一次函数y =ax +b 的解析式是y =-21x +2, 又∵PO =PA ,∴x 2+y 2=4-x 2+y 2 y =kxy =2x +2, 解方程组得:x =2,y =1,k =21, ∴k 的值是21;3设点Dx ,-21x +2,则Ex ,21x ,Fx ,0, ∵DE =2EF ,∴-21x +2-21x =2×21x , 解得:x =1,则-21x +2=-21×1+2=23, ∴D 1,23. 点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.8. 在直角坐标系中,B 、A 分别在x ,y 轴上,B 的坐标为3,0,∠ABO =30°,AC 平分∠OAB 交x 轴于C ;(1)求C 的坐标;解:∵∠AOB =90° ∠ABO =30°∴∠OAB =30°又 ∵ AC 是∠OAB 的角平分线∴∠OAC =∠CAB =30°∵OB =3∴OA =3OC =1 即 C 1,0(2)若D 为AB 中点,∠EDF =60°,证明:CE +CF =OC证明:取CB 中点H ,连CD ,DH∵ AO =3 CO =1 ∴AC =2又∵D ,H 分别是AB ,CD 中点∴DH =AC 21 AB =23 ∵ DB =21AB =3 BC =2 ∠ABC =30° ∴ BC =2 CD =2 ∠CDB =60°CD =1=DH∵ ∠EOF =∠EDC +∠CDF =60 ° ∠CDB =∠CDF +∠FDH =60°∴∠EDC =∠FDH∵AC =BC =2∴CD ⊥AB ADC =90°∵∠CBA =30°∴∠ECD =60°∵HD =HB =1∴∠DHF =60°在△DCE 和 △DHF 中∠EDC =∠FDH∠DCE =∠DHFDC =DH∴△DCE ≌ △DHFAAS∴CE =HF∴CH =CF +FH =CF +CE =1 OC =1∴CH =OC∴OC =CE +CF(3)若D 为AB 上一点,以D 作△DEC ,使DC =DE ,∠EDC =120°,连BE ,试问∠EBC 的度数是否发生变化;若不变,请求值;解:不变 ∠EBC =60°设DB 与CE 交与点GDC =DE ∠EDC =120°∴∠DEC =∠DCE =30°在△DGC 和△ DCB 中∠CDG =∠BDC∠DCG =∠DBC =30∴△DGC ∽ △DCB∴DG DC =DCDB DC =DE∴DG DE =DE DB 在EDG 和BDE 中DG DE =DEDB ∠EDG =∠BDE∴△EDG ∽ △BDE∴∠DEG =∠DBE =30°∴∠EBD =∠DBE +∠DBC =60°9、如图,直线AB 交x 轴正半轴于点Aa ,0,交y 轴正半轴于点B 0, b ,且a 、b 满足4 a + |4-b |=01求A 、B 两点的坐标;2D 为OA 的中点,连接BD ,过点O 作OE ⊥BD 于F ,交AB 于E ,求证∠BDO =∠EDA ;3如图,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt △PBM ,其中PB =PM ,直线MA 交y轴于点Q ,当点P 在x 轴上运动时,线段OQ的长是否发生变化 若不变,求其值;若变化,求线段OQ 的取值范围. 考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:算术平方根.专题:证明题;探究型.分析:①首先根据已知条件和非负数的性质得到关于a 、b 的方程,解方程组即可求出a ,b 的值,也就能写出A ,B 的坐标; A BO D EFyxA B O MP Qx y②作出∠AOB 的平分线,通过证△BOG ≌△OAE 得到其对应角相等解决问题;③过M 作x 轴的垂线,通过证明△PBO ≌△MPN 得出MN =AN ,转化到等腰直角三角形中去就很好解决了.解答:解:①∵4 a +|4-b |=0∴a =4,b =4,∴A 4,0,B 0,4;2作∠AOB 的角平分线,交BD 于G ,∴∠BOG =∠OAE =45°,OB =OA ,∠OBG =∠AOE =90°-∠BOF ,∴△BOG ≌△OAE ,∴OG =AE .∵∠GOD =∠A =45°,OD =AD ,∴△GOD ≌△EDA .∴∠GDO =∠ADE .3过M 作MN ⊥x 轴,垂足为N .∵∠BPM =90°,∴∠BPO +∠MPN =90°.∵∠AOB =∠MNP =90°,∴∠BPO =∠PMN ,∠PBO =∠MPN .∵BP =MP ,∴△PBO ≌△MPN ,MN =OP ,PN =AO =BO ,OP =OA +AP =PN +AP =AN ,∴MN =AN ,∠MAN =45°.∵∠BAO =45°,∴∠BAO +∠OAQ =90°∴△BAQ 是等腰直角三角形.∴OB =OQ =4.∴无论P 点怎么动OQ 的长不变.点评:1考查的是根式和绝对值的性质. 2考查的是全等三角形的判定和性质.3本题灵活考查的是全等三角形的判定与性质,还有特殊三角形的性质.10、如图,平面直角坐标系中,点A 、B 分别在x 、y 轴上,点B 的坐标为0,1,∠BAO =30°.1求AB 的长度;2以AB 为一边作等边△ABE ,作OA 的垂直平分线MN 交AB 的垂线AD 于点D .求证:BD =OE .D E N M BO x y AD EB O xy F A3在2的条件下,连结DE 交AB 于F .求证:F 为DE 的中点. 考点:全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质;含30度角的直角三角形.专题:计算题;证明题.分析:1直接运用直角三角形30°角的性质即可.2连接OD ,易证△ADO 为等边三角形,再证△ABD ≌△AEO 即可.3作EH ⊥AB 于H ,先证△ABO ≌△AEH ,得AO =EH ,再证△AFD ≌△EFH 即可.解答:1解:∵在Rt △ABO 中,∠BAO =30°,∴AB =2BO =2;2证明:连接OD ,∵△ABE 为等边三角形,∴AB =AE ,∠EAB =60°,∵∠BAO =30°,作OA 的垂直平分线MN 交AB 的垂线AD 于点D ,∴∠DAO =60°.∴∠EAO =∠NAB又∵DO =DA ,∴△ADO 为等边三角形.∴DA =AO .在△ABD 与△AEO 中,∵AB =AE ,∠EAO =∠NAB ,DA =AO∴△ABD ≌△AEO .∴BD =OE .3证明:作EH ⊥AB 于H .∵AE =BE ,∴AH =21AB ,∵BO =21AB ,∴AH =BO ,在Rt △AEH 与Rt △BAO 中,AH =BO ,AE =AB∴Rt △AEH ≌Rt △BAO ,∴EH =AO =AD .又∵∠EHF =∠DAF =90°,在△HFE 与△AFD 中,∠EHF =∠DAF ,∠EFH =∠DFA ,EH =AD∴△HFE ≌△AFD ,∴EF =DF .∴F 为DE 的中点.点评:本题主要考查全等三角形与等边三角形的巧妙结合,来证明角相等和线段相等.11.如图,直线y =3x +1分别与坐标轴交于A 、B 两点,在y 轴的负半轴上截取OC =OB .(1)求直线AC 的解析式;解:∵ 直线y =31x +1分别与坐标轴交于A 、B 两点∴ 可得点A 坐标为-3,0,点B 坐标为0,1∵ OC =OB∴ 可得点C 坐标为0,-1设直线AC 的解析式为y =kx +b将A -3,0,C 0,-1代入解析式-3k +b =0且b =-1可得k =-31,b =-1 ∴ 直线AC 的解析式为y =31x -1 (2)在x 轴上取一点D -1,0,过点D 做AB 的垂线,垂足为E ,交AC 于点F ,交y 轴于点G ,求F 点的坐标;解:∵ GE ⊥AB∴k k 1EG AB ⋅=- ∴ 131k ==3GE --设直线GE 的解析式为'y=-3x+b将点D 坐标-1,0代入,得'y=-3b 0⨯(-1)+= ∴ 'b 3=-∴ 直线GE 的解析式为y =-3x -3联立y =31x -1与y =-3x -3,可求出34x =-, 将其代入方程可得y =34-,∴ F 点的坐标为34-,34-(3)过点B 作AC 的平行线BM ,过点O 作直线y =kxk >0,分别交直线AC 、BM 于点H 、I ,试求ABBI AH +的值; 解:过点O 作AC 的平行线ON 交AB 于点N∵BM //AC ∴OIOB OH OC =∵OB =OC∴OI =OH∴O 为IH 的中点∵BM //AC∴=NBOI NA OH∵ OI =OH∴ NB =NA∴ N 为AB 中点∴ ON 是四边形ABIH 的中位线∴ AH +BI =2ON∵ N 是AB 的中点,∆AOB 是直角三角形∴ AB =2ON 直接三角形斜边的中线等于斜边的一半∴ AH +BI =AB∴ABBI AH +=1 12.如图,直线AB :y =-x -b 分别与x 、y 轴交于A 6,0、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC =3:1.(1)求直线BC 的解析式;解:1因为直线AB :y =-x -b 过点A 6,0.带入解析式 就可以得到 b =-6即直线AB :y =-x +6∵B 为直线AB 与y 轴的交点∴点 B 0,6∵OB :OC =3:1∴OC =2 点 C -2,0已知直线上的两点 B 、C ;设直线的解析式为y =kx +m带入B 、C 的坐标;可以算出k =3 ,m =6所以BC 的解析式为:y =3x +6(2)直线EF :y =kx -kk ≠0交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD 若存在,求出k 的值;若不存在,说明理由2 假设 存在满足题中条件的k 值因为直线EF : y =kx -kk ≠0交x 轴于点D ;所以D 点坐标为1,0在图中标出点D ,且过点D 做一直线,相交与直线AB ,BC 分别与点E ,F 然后观察△EBD 和△FBD则 S △EBD = 21DE ×h S △FBD =21DF ×h 两个三角形的高其实是一样的要使这两个三角形面积相等,只要满足DE =DF 就可以了∵点E 在直线AB 上,∴设点E 的坐标为p ,-p +6∵点F 在直线BC 上,∴设点F 的坐标为q ,3q +6而上面我们已经得到点D 的坐标为1,0点E 、F 又关于点D 对称,所以我们就可以得到两个等式,即:p +q /2=1-p +6+3q +6/2=0这样就可以求得:p =29,q =-25 点E 的坐标即为29,23,点F 的坐标即为-25,-23 把点E 代入直线EF 的解析式,得到k =73 所以存在k ,且k =73 (3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y 轴于点K ,当P 点运动时,K 点的位置是否发生变化 若不变,请求出它的坐标;如果变化,请说明理由;3 K 点的位置不发生变化理由:首先假设直线QA 的解析式为y =ax +b ,点P 的坐标为p ,0过点Q 作直线QH 垂直于x 轴,交点为H这样图中就可以形成两个三角形,分别是△BOP 和△PHQ ,且两个三角形都是直角三角形;∵△BPQ 为等腰直角三角形,直角顶点为P∴BP =PQ ,∠BPO +∠QPH =180º—90º=90º又∵在直角三角形中,∴∠QPH +∠PQH =90º∴根据上面两个等式,我们可以得到∠BPO =∠PQH且PB=QP所以在△BOP和△PHQ中∠BOP=∠PHQ∠BPO=∠PQHPB=QP∴△BOP≌△PHQAAS∴OP=HQ=p OB=HP=6 全等三角形的对应边相等∴点Q的坐标为p+6,p然后将点A和点Q的坐标代入直线QA的解析式:y=ax+b中,得到:a=1,b=-6也就是说a,b为固定值,并不随点Pp,0的改变而改变这样直线QA:y=x-6的延长线交于Y轴的K点也不会随点P的变化而变化了;求得点K的坐标为0,-6实战练习:1.已知,如图,直线AB:y=-x+8与x轴、y轴分别相交于点B、A,过点B作直线AB的垂线交y轴于点D.(1)求直线BD的解析式;(2)若点C是x轴负半轴上的任意一点,过点C作AC的垂线与BD相交于点E,请你判断:线段AC与CE的大小关系并证明你的判断;(3)若点G为第二象限内任一点,连结EG,过点A作AF⊥FG于F,连结CF,当点C在x轴的负半轴上运动时,∠CFE的度数是否发生变化若不变,请求出∠CFE的度数;若变化,请求出其变化范围.2.直线y=x+2与x、y轴交于A、B两点,C为AB的中点.(1)求C的坐标;(2)如图,M为x轴正半轴上一点,N为OB上一点,若BN+OM=MN,求∠NCM的度数;(3)P为过B点的直线上一点,PD⊥x轴于D,PD=PB,E为直线BP上一点,F为y轴负半轴上一点,且DE=DF,试探究BF-BE的值的情况.3.如图,一次函数y=ax-b与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于B0,-4且OA=AB,△OAB的面积为6.(1)求两函数的解析式;(2)若M2,0,直线BM与AO交于P,求P点的坐标;(3)在x轴上是否存在一点E,使S△ABE=5,若存在,求E点的坐标;若不存在,请说明理由;。
1初二春季·第3讲·尖子班·教师版函数6级 一次函数的应用函数7级 一次函数与全等三角形综合函数8级反比例函数的基本性质春季班 第十一讲春季班 第二讲梦游记漫画释义满分晋级阶梯3一次函数与 全等三角形综合2初二春季·第3讲·尖子班·教师版题型切片(两个)对应题目题型目标一次函数与全等三角形的综合 例1,例2,例3,例4,练习1,练习2,练习3; 一次函数与面积综合例5,例6,练习4,练习5.本讲内容主要分为两个题型,题型一主要是一次函数与全等三角形几个经典模型的综合,在这类题目上,解题方法无外乎以下几种:⑴数形结合,利用三角形的三边关系求解;⑵由函数到图形得全等,边角关系求解;⑶由图形,或函数关系得到所探究题目的隐藏条件,再充分运用所学几何知识得解(一般这种探究题是比较活的,对运用考察较强);⑷以结论证条件,以条件猜结论.题型二的面积问题重点应落在铅垂线法求解三角形面积,这种方法与平面直角坐标系有天然的联系,在一次函数部分考查方式较灵活,也较多,需熟练掌握.本讲的最后一道例题是2013年西城的期末考试题,考查了一次函数的图象和性质,与等腰三角形作法的结合,根据直线位置分类讨论求解图形面积,综合性较强,难度中上,不失为全面题型切片编写思路知识互联网3初二春季·第3讲·尖子班·教师版考查和总结一次函数部分的一道好题.几种全等模型的回顾:AB CE FAB CDEF AB CEABCDEFEDCBA图1 图2 图3 图4 图5图1、图2为“两垂直”全等模型,图1中将ABC △绕点C 逆时针旋转90°得到DEC △,此时可得结论:ACD BCE △△,均为等腰直角三角形;DE AB ⊥.图2中ABC DBE △≌△图3、图4为“三垂直”全等模型,其中ABC △为等腰直角三角形,AE EC BF CF ⊥⊥,,E C F ,,三点共线,则有ACE CBF △≌△,图3中EF AE BF =+,图4中EF AE BF =-图5中,AB AC =,延长AB 到F 使得BF EC =,则有结论ED DF =,若ED DF =,则有BF EC =【引例】 平面直角坐标系内有两点()40A ,和()04B ,,点P 在直线AB 上运动.⑴ 若P 点横坐标为2P x =-,求以直线OP 为图象的函数解析式(直接写出结论);⑵ 若点P 在第四象限,作BM ⊥直线OP 于M ,AN ⊥直线OP 于N ,求证:MN BM AN =+; ⑶ 若点P 在第一象限,仍作直线OP 的垂线段BM 、AN ,试探究线段MN 、BM 、AN 所满足的数量关系式,直接写出结论,并画图说明.(实验中学单元测试)例题精讲思路导航题型一:一次函数与全等三角形综合4初二春季·第3讲·尖子班·教师版【解析】 ⑴ 设直线AB 函数解析式为y kx b =+04144k b k b b =+=-⎧⎧⇒⎨⎨==⎩⎩4y x =-+ 当x 为2-时,6y =,∴P 的坐标为()26-, ∵直线OP 过原点,∴解析式为3y x =-⑵ 如图1,由题意可证Rt Rt BMO ONA △≌△ ∴BM ON =,AN MO =,∴MN BM AN =+⑶ 如图2,证明Rt Rt BMO ONA △≌△ 可得结论MN BM AN =-M NPy x OBA图2xy OA BPM N N MP BAO y x图1 图2【例1】 如图,已知在平面直角坐标系xOy 中,点()04A ,,点B C ,在x 轴上,作BE AC ⊥,垂足为E (点E 在线段AC 上,且点E 与点A 不重合),直线BE 与y 轴交于点D ,若BD AC =. ⑴ 求点B 的坐标;⑵ 设OC 长为m ,BOD △的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.【解析】 ⑴ 如图,由BOD AOC △≌△可知4BO AO ==∴B 点坐标为()40-,⑵ 由⑴可知DO OC m ==,∴142S m =⨯⋅,2S m =,m 的取值范围是04m <<典题精练(0,4)Oy xE DC BA5初二春季·第3讲·尖子班·教师版【例2】 已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为()40A ,,()04B -,,P 为y 轴上B 点下方一点,()0PB m m =>,以AP 为边作等腰直角三角形APM ,其中PM PA =,点M 落在第四象限.⑴ 求直线AB 的解析式;⑵ 用m 的代数式表示点M 的坐标;⑶ 若直线MB 与x 轴交于点Q ,判断点Q 的坐标是否随m 的变化而变化,写出你的结论并说明理由.(西城期末) 【解析】 ⑴ 4y x =-⑵ 作MC y ⊥轴,交y 轴于C ,9090AP PM MPC APO OAP APO PMC PMC MPC APO =⎫⎪∠=︒-∠=∠⇒⎬⎪∠=︒-∠=∠⎭△≌△ 由此可知()48M m m +--, ⑶ 由⑵中的全等可知4MC m =+,4BC m =+,∴MC BC = 45CBM ∠=︒,可得QO OB =()4,0Q - ∴Q 点坐标不随m 的变化而变化.【点评】 此题最关键一步是如何利用线段长表示点坐标,学生极易在此犯错!要记住线段长为正,而点坐标要根据其所在象限判断正负.【例3】 如图1,直线1:33l y x =+与x 轴交于B 点,与直线2l 交于y 轴上一点A ,且2l 与x 轴的交点为()10C ,.⑴ 求证:ABC ACB ∠=∠⑵ 如图2,过x 轴上一点()30D -,,作DE AC ⊥于E ,DE 交y 轴于F 点,交AB 于G 点,求G 点的坐标; ⑶ 如图3,将ABC △沿x 轴向左平移,AC 边与y 轴交于点P (P 不同于A 和C 两点),过P 点作一直线与AB 的延长线交于Q 点,与x 轴交于点M ,且CP =BQ .在ABC △平移的过程中,线段OM 的长度是否发生变化?若不变,请求出它的长度.若变化,确定其变化范围.6初二春季·第3讲·尖子班·教师版图3图2图1【解析】 ⑴ 由题意得()10B -,,BO OC =,又∵AO BC ⊥ ∴AB AC ABC ACB =∠=∠,⑵ 由题意得ABO DFO △≌△,∴1OF BO ==,∴()01F ,∴DE 解析式为113y x =+由11333y x y x ⎧=+⎪⎨⎪=+⎩ 解得3434x y ⎧=-⎪⎪⎨⎪=⎪⎩ ∴3344G ⎛⎫- ⎪⎝⎭, ⑶ 不变,1OM =如图过P 作PN AB ∥交BC 于N ,可知PN PC BQ ==, 从而PNM QBM △≌△, ∴BM NM =,又NO CO =∴112OM BC ==【例4】 如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足()220a -.⑴求直线AB 的解析式;⑵若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; ⑶过A 点的直线y =kx -2k 交y 轴于负半轴于P ,N 点的横坐标为1-,过N 点的直线22k k y x =-交AP 于点M ,试证明PM PNAM -的值为定值. 【解析】 ⑴y =24x -+7初二春季·第3讲·尖子班·教师版⑵易证阴影部分三角形全等,得到M (3,3) 故而m =1⑶过N 点做直线垂直于y 轴,交PM 于G 点,另直线NM 与坐标轴交点分别为O 、I (如图所示),连接IG 并做MF ⊥x 轴于F ,易知N 、G 两点横坐标分别为1-和1,将其分别代入MN 、MP 的解析式中,求得两点坐标为N (1-,k -)G (1,k -),易证△NHP ≌△GHP , ∴NP =GP 易求I (1,0), ∴IG ⊥x 轴易证△IGA ≌△FMA , ∴MA =AG ∴2PM PN MGAM AM-==解决平面直角坐标系中的图形面积问题通常可采用的方法有: 1. 公式法:三角形、特殊四边形等面积公式;2. 割补法:通过“割补”转化为易求图形面积的和或差;3. 容斥法;4. 等积变换法:①平行线法:构造同底等高;②直角三角形:=ab ch ; 思路导航题型二:一次函数与面积综合h 2h 1P CB A OxyyMO BA I H GA MN PyxO8初二春季·第3讲·尖子班·教师版5. 铅垂线法:如右图所示()1212ABC S AP h h =⋅+△,AP 称为铅垂高, 12h h +称为水平宽. 必要时需分类讨论.【例5】 已知:平面直角坐标系xOy 中,直线()0y kx b k =+≠与直线()0y mx m =≠交于点()24A -,.⑴求直线()0y mx m =≠的解析式;⑵若直线()0y kx b k =+≠与另一条直线2y x =交于点B ,且点B 的横坐标为4-,求ABO △的面积.(西城期末试题)【解析】 ⑴∵点(24)A -,在直线(0)y mx m ==/上,∴42m =-,2m =-∴2y x =-⑵ 解法一:作AM y ⊥轴于M ,BN y ⊥轴于N (如上图) ∵点B 在直线y =2x 上,且点B 的横坐标为4-. ∴点B 的坐标为B (4-,8-) ∵1()2ABNM S AM BN MN =+⋅梯形1(24)(48)362=⨯+⨯+= 1124422AOM S AM MO =⋅=⨯⨯=△ 11481622BON S BN NO =⋅=⨯⨯=△ ∴ABO AOM BON ABNM S S S S =--△△△梯形3641616=--=解法二:设直线(0)y kx b k =+=/与x 轴交于点C (如下图). ∵点B 在直线y =2x 上,且点B 的横坐标为4-.∴点B 的坐标为(4-,8-)∵直线()0y kx b k =+≠经过点A (2-,4)和点B (4-,8-),典题精练y =kx+by =2x y =mxyOABMN C ABOxyy =mxy =2xy =kx+b9初二春季·第3讲·尖子班·教师版∴4284k b k b =-+⎧⎨-=-+⎩,616k b =⎧⎨=⎩∴616y x =+令y =0.可得83x =-∴点C 的坐标为803C ⎛⎫- ⎪⎝⎭,∴181848162323ABO AOC BOC S S S =+=⨯⨯+⨯⨯=△△△.【教师备选】如图所示,直线OP 经过点P (4,43),过x 轴上的点1、3、5、7、9、11······分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为1S 、2S 、3S ······n S ,则n S 关于n 的函数关系式是________.【解析】()843n S n =-⨯.【例6】 已知:一次函数132y x =+的图象与正比例函数y =kx 的图象相交于点A (a ,1). ⑴求a 的值及正比例函数y =kx 的解析式; ⑵点P 在坐标轴上(不与点O 重合),若P A =OA ,直接写出P 点的坐标;⑶直线x =m 与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积记为S ,求S 关于m 的函数关系式(写出自变量的取值范围).(2013西城期末)【解析】 ⑴∵一次函数132y x =+的图象与正比例函数y =kx 的图象相交于点A (a ,1), ∴1312a += ∴a =﹣4,即A (﹣4,1). ∴﹣4k =1 解得14k =-.∴正比例函数的解析式为14y x =-;⑵如图1,P 1(﹣8,0)或P 2(0,2);真题赏析1191357Pxy10初二春季·第3讲·尖子班·教师版⑶依题意,得点B 的坐标为(m ,132m +),点C 的坐标为(m ,14m -).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 以下分两种情况: ①当m <﹣4时, 11342BC m m ⎛⎫=--+ ⎪⎝⎭=334m --.AH =4m --.则S △ABC =12BC ∙AH ()133424m m ⎛⎫=---- ⎪⎝⎭∴S=23368m m ++;②当m >4-时,11333244BC m m m ⎛⎫=++=+ ⎪⎝⎭.AH =m +4. 则S △ABC =12BC∙AH =12(334m +)(4+m ) ∴S=23368m m ++;综上所述,()23S 3648m m m =++≠-.【教师备选】已知四条直线3y mx =-,1y =-,y =3,x =1所围成的四边形的面积为12,求m的值.11初二春季·第3讲·尖子班·教师版【解析】 ∵3y mx =-,1y =-,x =1交于ABCDEF∴A (6m ,3),B (2m ,-1),C (1,-1),D (1,3),E (6m ,3),F (2m,-1) ① ()2ABCD CD BC AD S +=2621112mm ⎛⎫=-+- ⎪⎝⎭= ∴m =-2② ()2CFED CD ED CF S +=6221112mm ⎛⎫=-+- ⎪⎝⎭= ∴m =1综上说述,2m =-或m=1.-3y =3x12初二春季·第3讲·尖子班·教师版训练1. 如图,AOB △为正三角形,点B 的坐标为()20,,过点()20C -,作直线l 交AO 于D ,交AB 于E ,且ADE △与DCO △的面积相等,求直线l 的解析式.【解析】 由ADE △与DCO △的面积相等可知,AOB BCE S S =△△.∵(20)C -,,设直线l 的解析式为y kx b =+,∴20k b -+=, ∴2b k =∴直线l 的解析式为:2y kx k =+又AB 的解析式为:323y x =-+,故点E 的坐标满足下式: 2433(2)3y kx kk y y x k =+⎧⎪⇒=⎨=--+⎪⎩, 故143134232273BCE AOB k S S k k =⨯⨯==⨯⨯⇒=+△△故直线l 的解析式为:3(2)7y x =+. 训练2. 在平面直角坐标系xOy 中,直线y x m =-+经过点()2,0A ,交y 轴于点B .点D 为x 轴上一点,且1ADB S =△.⑴ 求m 的值;⑵ 求线段OD 的长;⑶ 当点E 在直线AB 上(点E 与点B 不重合),且BDO EDA ∠=∠,求点E 的坐标.(备用图)(海淀期末试题) 【解析】 ⑴ ∵直线y x m =-+经过点()2,0A , 思维拓展训练(选讲)y xl ED C O BA13初二春季·第3讲·尖子班·教师版∴02m =-+. ∴2m =.⑵ ∵直线2y x =-+交y 轴于点B , ∴点B 的坐标为()0,2. ∴2OB =. ∵112ADB S AD OB =⋅=△, ∴1AD =.∵点A 的坐标为()2,0, ∴点D 的坐标为()1,0或()3,0. ∴1OD =或3OD =.⑶ ①当点D 的坐标为()1,0时,如图所示.取点()'0,2B -,连接'B D 并延长,交直线BA 于点E .∵'OB OB =,'AO BB ⊥于O , ∴OD 为'BB 的垂直平分线. ∴'DB DB =. ∴12∠=∠. 又∵23∠=∠, ∴13∠=∠.设直线'B D 的解析式为()20y kx k =-≠. ∵直线'B D 经过点()1,0D , ∴02k =-.14初二春季·第3讲·尖子班·教师版∴2k =.∴直线'B D 的解析式为22y x =-. 解方程组2,22,y x y x =-+⎧⎨=-⎩得 4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩∴点E 的坐标为42,33⎛⎫⎪⎝⎭.②当点D 的坐标为()3,0时,如图所示. 取点()'0,2B -,连接'B D ,交直线BA 于点E . 同①的方法,可得12∠=∠,直线'B D 的解析式 为223y x =-. 解方程组22,32,y x y x ⎧=-⎪⎨⎪=-+⎩得12,52.5x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点E 的坐标为122,55⎛⎫- ⎪⎝⎭.综上所述,点E 的坐标为42,33⎛⎫ ⎪⎝⎭或122,55⎛⎫- ⎪⎝⎭.训练3. 已知:直线1l :1y kx k =+-与直线2l :(1)y k x k =++(k 是正整数)及x 轴围成的三角形的面积为k S .⑴ 求证:无论k 取何值,直线1l 与2l 的交点均为定点; ⑵ 求1232008S S S S ++++的值.(西城期末试题)【解析】 ⑴ 联立12l l ,的解析式,求得交点坐标为()11--,,∴交点为定点.⑵ 设直线12l l ,分别与x 轴交于A ,B 两点,则1001k k A B k k --⎛⎫⎛⎫⎪ ⎪+⎝⎭⎝⎭,,,,∴()1111k k AB k k k k --=-=++ ∴ ()11121k S k k =+××15初二春季·第3讲·尖子班·教师版123200*********21223200820092009S S S S ⎛⎫++++=++⋅⋅⋅+=⎪⎝⎭×××训练4. 如图,在直角坐标系中,点A 的坐标为()10,,点B 在y 轴正半轴上,且AOB △是等腰直角三角形,点C 与点A 关于y 轴对称,过点C 的一条直线绕点C 旋转,交y 轴于点D ,交直线AB 于点()P x y ,,且点P 在第二象限内. ⑴ 求B 点坐标及直线AB 的解析式;⑵ 设BPD △的面积为S ,试用x 表示BPD △的面积S .(朝阳期末试题)【解析】 ⑴ ∵AOB △是等腰直角三角形且()10A ,,∴()01B ,∴过点()10A ,、()01B ,的直线的解析式为1y x =-+ ⑵ ∵点C 与点A 关于y 轴对称,∴()10C -, 又点P 在直线AB 上,则()1P x x -+, 设过P 、C 两点的直线的解析式为y kx b =+ ∵()10C -,在直线y kx b =+上, ∴0k b -+=. ∴k b =,y bx b =+ ∵点()1P x x -+,在直线y bx b =+上, ∴1bx b x +=-+,解得b =11x x -++. ∴点D 的坐标为101x x -+⎛⎫ ⎪+⎝⎭,∵点P 在第二象限内,∴0x <①当10x -<<时,如图.12P S BD x =⋅⋅=1(1)()2b x -⋅-11(1)()21x x x -+=-⋅-+12()21xx x -=⋅⋅-+21x x =+ ②当1x <-时,如图.12P S BD x =⋅⋅=1(1)()2b x -⋅-11(1)()21x x x -+=-⋅-+21x x =-+ 综上所述, 22(10),1(1).1x x x S x x x ⎧-<<⎪⎪+=⎨⎪-<-⎪+⎩16初二春季·第3讲·尖子班·教师版题型一 一次函数与全等三角形综合 巩固练习【练习1】如图,已知在平面直角坐标系xOy 中,点()04A ,,点B C ,在x 轴上,C 点坐标为()0m ,.作BE AC ⊥,垂足为E (点 E 在线段AC 上,且点E 与点A 不重合),直线BE 与y 轴 交于点D ,BD AC =.第一象限内有一点P ,坐标为()4m m +,,连接PA ,DC ,求证:PAC BDC ∠=∠.【解析】 如图,连接PC ,过A 作AH PC ⊥于H ,可知PH AH m ==45PAH APH ∠=∠=°由BOD AOC △≌△可知BDO ACO ∠=∠又∵AH OC ∥,∴ACO HAC ∠=∠,∴BDO HAC ∠=∠又由OD OC =可得45ODC ∠=°,∴ODC PAH ∠=∠ ∴BDC PAC ∠=∠【练习2】如图,在平面直角坐标系xOy 中,点A 、B 的坐标分别为()10-,、()40,,点D 在y轴上 AD BC ∥,点E 在CD 上,且满足AE 、BE 分别平分DAB ∠、CBA ∠. ⑴ 请你判断此时线段CE 与DE 是否相等,并证明你的结论;⑵ 已知60DAB ∠=°,直接写出线段BC 的长.-15142O ED CBA y x D'EDCB A542-11【解析】 ⑴ 相等,证明如下如上右图,在AB 上取点D ',使AD AD '=,连接D E ', 可证ADE AD E '△≌△,∴DE D E '=复习巩固HP (m,m+4)AB C DExy O (0,4)P (m,m+4)(0,4)AO y xE DC B17初二春季·第3讲·尖子班·教师版由AD BC ∥,AE 、BE 平分DAB ∠与ABC ∠ 可得90AEB ∠=° 从而可知D EB CEB '∠=∠由此,CEB D EB '△≌△,∴EC ED '= ∴DE EC =⑵ ∵60DAB ∠=°,∴30ADO ∠=°,∴22AD AO ==由⑵可知,2AD AD '==∴523BC BD '==-=.【练习3】如图,已知直线OA 的解析式为y=x ,直线AC 垂直x 轴于点C ,点C 的坐标为()20,, 直线OA 关于直线AC 的对称直线为AB 交x 轴于点B .⑴ 写出点A 及点B 的坐标;⑵ 如图,直线AD 交x 轴于点D ,且ADB △的面积为1,求点D 的坐标;⑶ 若点D 为⑵中所求,作OE AD ⊥于点E ,交AC 于点H ,作BF AD ⊥于点F ,求证:OE AF =,并直接写出点H 的坐标.【解析】 ⑴ ()22A ,,()40B ,⑵ ∵AC BD ⊥于点C ,2AC =,1ADBS =△,∴112122ADB S BD AC BD =⋅=⨯=△. ∴1BD =∴413OD OB BD =-=-= ∴()30D ,⑶ 由直线OA 的解析式为y x =,可知OC AC =.又90ACO ∠=°, ∴45OAC AOC ∠=∠=°.∵直线OA 关于直线AC 的对称直线为AB , ∴45BAC OAC ∠=∠=°,OA BA =. ∴90OAB ∠=°. ∴90BAF OAE ∠=-∠°. 在AOE △中,90OEA ∠=°, ∴90AOE OAE ∠=-∠°. ∴BAF AOE ∠=∠在AOE △与BAF △中, 90AOE BAF OEA AFB OA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩° ∴AOE BAF △≌△ ∴OE AF =又由OCH ACD △≌△可求得()21H ,18初二春季·第3讲·尖子班·教师版题型二 一次函数与面积的综合 巩固练习【练习4】⑴如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-、1、2,分别过这些点作x 轴与y 轴的垂线,则图 中阴影部分的面积和是( ).A .1B .3C .3(1)m -D .3(2)2m -⑵ 如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC , CD 运动至点D 停止.设点P 运动的路程为x ,ABP △的面积 为y ,如果y 关于x 的函数图象如图2所示,则BCD △的面 积是( ). A .3 B .4C .5D .6【解析】 ⑴ B ⑵ A , 由图2可知23BC CD ==,.【练习5】直线23y x =+与x 轴交于点A ,与y 轴交于点B .若在x 轴上有一点Q ,并且满足:8:3BAQ AOB S S =△△,求Q 点坐标. 【解析】 1393224AOB S =⨯⨯=△,∴98643BAQ S =⨯=△∵3BO =,∴4AQ =,又∵32A x =-∴35422Q x =-+=或311422Q x =--=-∴Q 坐标为502⎛⎫ ⎪⎝⎭,或1102⎛⎫- ⎪⎝⎭,图1AB D 图2x第十六种品格:感恩包拯辞官侍母包公即包拯(公元999-1062年),字希仁,庐州合肥(今安徽合肥市)人,父亲包仪,曾任朝散大夫,死后追赠刑部侍郎。