发光二极管的伏安特曲线
- 格式:docx
- 大小:11.58 KB
- 文档页数:2
测量小灯泡的伏安特性曲线一、基本原理与操作二、数据处理(1)在坐标纸上以U为横轴,以I为纵轴,建立坐标系。
(2)在坐标纸上描出各组数据所对应的点。
(3)将描出的点用平滑的曲线连接起来,就得到小电珠的伏安特性曲线。
三、注意事项1.电流表外接法:本实验中被测小电珠灯丝的电阻值较小,因此测量电路必须采用电流表外接法。
2.滑动变阻器应采用分压式连接3.保护元件安全:为保护元件不被烧毁,开关闭合前变阻器滑片应位于图中的a端(左端)。
加在小电珠两端的电压不要超过其额定电压。
四、误差分析1.由于电压表不是理想电表,内阻并非无穷大,对电路的影响会带来误差,电流表外接,由于电压表的分流,使测得的电流值大于真实值。
2.测量时读数带来误差。
3.在坐标纸上描点、作图带来误差。
题型示例:1、小明同学想研究一段铅笔芯的伏安特性,并设想加在铅笔芯两端的电压从0开始逐渐增大,他连接了如图(甲)所示的实验电路.小亮同学认为小明的电路并不完善,他在该电路上增加了一条导线,得到了小明的认同.(1)请你用笔画线在图(甲)中加上这条导线.(2)对小亮完善后的电路,在闭合开关前,滑动变阻器的滑片应先置于(选填“最左端”或“最右端”).(4)由(3)中图线可知:随着温度的升高,铅笔芯的电阻率(选填“增大”“减小”或“不变”).2、小华和小明在“描绘小灯泡伏安特性曲线”的实验中,将实验数据记录在下表中:A.滑动变阻器(阻值范围0~10 Ω、额定电流3 A)B.滑动变阻器(阻值范围0~2 000 Ω、额定电流1 A)实验中选择的滑动变阻器是________。
(填写字母序号)(2)在图甲中用笔画线代替导线,将实验电路连接完整。
(3)开关闭合前,滑动变阻器的滑片应滑至最________(选填“左”或“右”)端。
(4)利用表中数据,在图乙中画出小灯泡的UI图线。
(5)他们在UI图象上找到小灯泡工作电压为2.0 V时的坐标点,计算此状态的电阻值时,小明提出用图象上该点曲线斜率表示小灯泡的阻值;小华提出该点与坐标原点连线的斜率表示小灯泡的阻值。
LED参数与特性LED(发光二极管)是利用化合物材料制成pn结的光电器件。
它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。
1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。
LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。
如图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。
(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。
V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。
(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。
当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。
由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。
1.2 C-V特性鉴于LED的芯片有9³9mil (250³250um),10³10mil,11³11mil (280³280um),12³12mil(300³300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。
C-V特性呈二次函数关系(如图2)。
由1MHZ交流信号用C-V特性测试仪测得。
1.3 最大允许功耗PF m当流过LED的电流为IF、管压降为UF则功率消耗为P=UF³IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。
多种方法研究二极管的伏安特性曲线作者:粟春渔罗光丽鲁晓娟张宝丽来源:《无线互联科技》2014年第07期摘要:介绍了多种用于测量二极管伏安特性的方法,我们利用四种方法分别测量同一个二极管的电流电压值,并得出实验数据。
用实验数据画出对应各个方法测得的二极管的伏安特性曲线,最后通过对四种方法测得的伏安特性曲线图做出相应的分析给出测量最为精准的方法。
关键词:二极管;伏安特性曲线;伏安法;等效法对各种元器件的伏安特性进行测量时,我们常用的是伏安法。
二极管伏安特性的测量是大学基础物理实验之一,因此大学物理实验要求每一个物理、电子类的学生必须熟练掌握各种精确测量二极管伏安特性的方法。
我们知道,二极管是非线性元件,即当加在二极管两端的电压增加到某一值后,如果继续增大电压,那么二极管的电阻就会从无穷大变到几十欧姆或甚至更小。
当对这种伏安特性变化范围极大的元器件进行测量时,我们应该选择种哪方法测量才能较为精准的测出其伏安特性呢?本文给出了常见的四种测量二极管伏安特性的方法,并利用这四种方法测出了同一个二极管的伏安特性曲线,帮助读者理解二极管正向导通伏安特性变化情况。
1常见的四种测量二极管的伏安特性曲线的方法1.1 伏安法的内接法[1]和外接法[2]利用伏安法的电流表内接法和电流表外接法对二极管的伏安特性进行测量时,我们分别对这两种方法的实验电路图分析可知,当利用这两种实验电路对二极管的电流电压进行测量时都会存在误差,误差主要来源是由于电表内阻的接入而引起的。
在实验中,通过对外接法实验电路图的分析还可以知道,当电流表电压表的测量值分别为I,U时,由于电压表内阻的分流作用,使得实际流经二极管RD的电流I'要小于I,且存在以下关系:⑴式中的RV表示电压表的内阻。
同样对内接法实验电路分析可知,当电流电压表的测量示数分别为I,U时,由于电流表内阻的分压作用使得二极管两边的实际电压U'<U,且存在如下关系:⑵式中的RV表示电流表的内阻。
实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。
【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。
击穿电压等)。
【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。
仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。
图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。
2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。
3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V电压挡。
24、 在接线的过程中,注意不要将各个元件的正负向接反。
5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。
6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。
如果观测到反向电流有突变趋势,应该立即减小电压。
图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。
非线性元件伏安特性测量一.实验目的1、学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方?法,选用配套的实验仪器,测绘出它们的伏安特性曲线。
2、学习从实验曲线获取有关信息的方法。
二.实验原理1.检波和整流二极管检波二极管和整流二极管都工作在1、4 象限.第1 象限区又称为正向工作区.当所加的电压较低时,流通的电流很小,继续增加电压时,电流急剧上升.这个转折点对应的电压称为二极管的开启电压,它与所用的半导体材料的禁带宽度有关.在常温下,一般为0.2~0.7V.第4 象限区又称为反向工作区,其特点是加一个相当高的电压时,电流会突然增大,导致损坏,这种现象称为击穿.检波二极管和整流二极管工作范围不能超过击穿区.检波二极管的PN 结是针形接触,其特点是工作电流小,工作频率范围的宽,但反向耐压低.整流二极管的PN 结是面形接触,其特点是工作电流大,工作频率低,反向耐压可达上千压.它们的共同特点是要求反向工作时流过的电流越小越好.2.稳压二极管稳压二极管工作在第4 象限.而且工作在击穿区.其特点是反向工作电压加到一定值时,电流突然增大,在此基础上再加大电压时,电流的变化非常剧烈,这时稳压二极管承受的功率急剧增大,若不加限流措施,PN 结极易烧毁.3.发光二极管发光二极管由半导体发光材料制成,工作在第1 象限.要发的光的波长与材料的禁带宽度E 对应.根据量子力学原理E = eV = hυ可知,对于可见光,开启电压V约在2~3V.当加在发光二极管两端的电压小于开启电压时,发光二极管不会发光,也没有电流流过.电压一旦超过开启电压,电流急剧上升,二极管处于导通状态并发光,此时电流与电压呈线性关系,直线与电压坐标的交点可以认为是开启电压.三.实验步骤1.普通二极管正向伏安特性:测量电路见图1,二极管两端电压V ≤3 V.电压表内接。
2.稳压二极管.测量稳压二极管的反向伏安特性曲线.测量电路见图2, 稳压二极管的最大反向电流小于30 mA,工作电压约为5 V左右.电压表外接。
非线性元件伏安特性实验非线性元件伏安特性的测量【目的要求】1(掌握非线性元件伏安特性的测量方法、基本电路。
2(掌握二极管、稳压二极管、发光二极管的基本特性。
准确测量其正向导通阈值电压。
3(画出以上三种元件的伏安特性曲线。
【实验仪器】非线性元件伏安特性实验仪。
仪器由直流稳压电源、数字电压表、数字电流表、多圈可变电阻器、普通二极管、稳压二极管、发光二极管、钨丝灯泡等组成。
【实验原理】1.伏安特性给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件电学特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
有些元件伏安特性除了与电压、电流有关,还与某一物理量的变化呈规律性变化,例如温度、光照度、磁场强度等,这就是各种物理量的传感元件,本实验不研究此类变化。
根据欧姆定律,电阻R、电压U、电流I,有如下关系:(1) R,UI由电压表和电流表的示值U和I计算可得到待测元件Rx的阻值。
但非线性元件的R是一个变量,因此分析它的阻值必须指出其工作电压(或电流)。
非线性元件的电阻有两种方法表示,一种称为静态电阻(或称为直流电阻),用RD表示;另一种称为动态电阻用rD表示,它等于工作点附近的电压改变量与电流改变量之比。
动态电阻可通过伏安曲线求出,如图1所示,图中Q点的静态电阻RD=UQ/IQ,动态电阻rD=dUQ/dIQ图1动态电阻表示图测量伏安特性时,受电压表、电流表内阻接入影响会引入一定的系统误差,由于数字式电压表内阻很高、数字式电流表内阻很小,在测量低、中值电阻时引入系统误差较小,本实验将其忽略不计。
2.半导体二极管半导体二极管是一种常用的非线性元件,由P型、N型半导体材料制成PN结,经欧姆接触引出电极,封装而成。
红外物理特性及应用实验波长X 围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。
对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。
对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。
【实验目的】1、 了解红外通信的原理及基本特性。
2、 了解部分材料的红外特性。
3、 了解红外发射管的伏安特性,电光转换特性。
4、 了解红外发射管的角度特性。
5、 了解红外接收管的伏安特性。
【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。
红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。
红外传输的介质可以是光纤或空间,本实验采用空间传输。
2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。
材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。
普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。
实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。
【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。
击穿电压等)。
【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。
仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。
图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。
2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。
3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V电压挡。
4、 在接线的过程中,注意不要将各个元件的正负向接反。
5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。
6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。
如果观测到反向电流有突变趋势,应该立即减小电压。
图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。
LED知识介绍LED的电学指标1、 LED的电流-电压特性图图1所示为LED工作的电流-电压(I-V)特性图。
发光二极管具有与一般半导体三极管相似的输入伏安特性曲线。
我们分别对图中所示的各段进行说明。
图1 LED工作的电流-电压特性图OA段:正向死区VA为开启LED发光的电压。
红色(黄色)LED的开启电压一般为0.2~0.25V,绿色(蓝色)LED的开启电压一般为0.3~0.35V。
AB段:工作区在这一区段,一般是随着电压增加电流也跟着增加,发光亮度也跟着增大。
但在这个区段内要特别注意,如果不加任何保护,当正向电压增加到一定值后,那么发光二极管的正向电压会减小,而正向电流会加大。
如果没有保护电路,会因电流增大而烧坏发光二极管。
OC段:反向死区发光二极管加反向电压是不发光的(不工作),但有反向电流。
这个反向电流通常很小,一般在几μA之内。
在1990~1995年,反向电流定为10μA,1995~2000年为5μA;目前一般是在3μA以下,但基本上是0μA。
CD段:反向击穿区发光二极管的反向电压一般不要超过10V,最大不得超过15V。
超过这个电压,就会出现反向击穿,导致LED报废。
2、 LED的电学指标对于LED器件,一般常用的电学指标有以下几项:·正向电压 VF:LED正向电流在20mA时的正向电压。
·正向电流 IF:对于小功率LED,目前全世界一致定为20mA,这是小功率LED的正常工作电流。
但目前出现了大功率LED的芯片,所以IF就要根据芯片的规格来确定正向工作电流。
·反向漏电流IR:按LED以前的常规规定,指反向电压在5V时的反向漏电流。
如上面所说,随着发光二极管性能的提高,反向漏电流会越来越小,但大功率LED芯片尚未明确规定。
·工作时的耗散功率PD:即正向电流乘以正向电压。
3、 LED的极限参数对于LED器件,一般常用的极限参数有以下几项:·最大允许耗散功率Pmax=IFH×VFH:一般按环境温度为25℃时的额定功率。
发光二极管的伏安特曲线
发光二极管(LED)是一种半导体器件,其伏安特(V-I)曲线是描述其电流与电压之间关系的曲线。
由于LED的特殊结构和材料,它的V-I曲线具有许多独特的特征。
本文将介绍发光二极管的V-I曲线、其特点以及如何使用它。
1. 发光二极管的基本结构和原理
一个标准的LED由一个n型半导体和一个p型半导体组成。
其中n型半导体中的电子和p型半导体中的空穴在结界面处相遇并结合成激子(复合电子或复合空穴)。
这种复合释放出能量,一部分通过声子散射转化为热能,另一部分则以光子形式辐射出来,从而实现发光。
电流在LED中的流动通过注入电子和空穴实现,n型半导体中自由电子的密度比p型半导体中的空穴密度高,当在两个半导体之间加上外电压时,电子和空穴将被注入LED中,并在结界面处发生复合。
在LED正向偏压下,大量的电子与空穴在结界面内相遇,形成复合激子,并进一步形成光子并导致LED的发光。
LED的V-I曲线具有许多独特的特征。
下面是一些可能与LED V-I曲线有关的特点:
(1)具有正向启动电压
在LED正向偏置时,必须达到一定的电压才能促使电子和空穴结合,并产生光子。
这个电压被称为LED的正向启动电压。
通常,正向启动电压在1.8V到3.0V之间,并且取决于LED的颜色和材料。
(2)电流的线性响应
一般情况下,LED的V-I曲线是近似于线性的。
这意味着,LED的电流响应近似于输入电压或电流,因此可以将LED视为一个具有线性响应的电阻。
(3)具有温度依赖性
LED的发光效率和正向启动电压通常随温度升高而下降。
这是因为随着温度升高,复合激子和电子空穴的散射强烈程度增加,从而减少能够发射出光子的数量。
(4)有反向电导
当电压增加到LED负向偏置时,反向电流是非常小的,通常在几毫安以下。
但是,当反向偏压接近LED的破坏电压时,反向电流会急剧增加,这可能会导致LED破坏。
3. 使用发光二极管的V-I曲线
LED的V-I曲线是非常有用的,可用于设计和控制电路中的LED。
下面是一些使用LED 的V-I曲线时的重要注意事项:
为了确保LED在正常工作范围内,必须知道其正向启动电压。
硅基LED的典型正向启动电压在1.8V至2.0V之间,但对于其他类型的LED,这个范围可能会有所不同。
(2)计算限流电阻
由于LED具有线性响应,因此必须在其电路中包含适当的限流电阻,以确保LED不会过载。
限流电阻的大小将取决于所使用的LED和工作电流。
(3)考虑温度因素
在设计LED电路时,必须考虑LED的温度依赖性。
可以使用热沉或其他散热技术来控制LED温度,从而提高其效率和寿命。
(4)避免过度反向偏压
LED具有非常小的反向电导,因此应该避免过度反向偏压,以防止LED破坏。