2010年中考数学模拟试题及答案(6)
- 格式:doc
- 大小:431.00 KB
- 文档页数:11
2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。
20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。
二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年山东菏泽中考全真模拟数学精品试卷(6)(满分120分,时间120分钟)一、填空题:本大题共10小题,每小题2分,共20分.把答案填在题中横线上.1. 据农业部消息,截至2月2日,河南、安徽、山东、河北、山西、甘肃、陕西等主产省小麦受旱1.41亿亩,比去年同期增加1.32亿亩,这意味着全国已有接近43%的冬小麦遭受旱灾.受旱小麦1.41亿亩用科学记数法表示为 亩. 2.分解因式32x xy -=_________________.3.方程的2x 2=8x 根是 .4.一束光线从y 轴上点A (0,1)出发, 经过x 轴上点C 反射后经过点 B (3,3),则光线从A 点到B 点经过的路线长是 .5.平移二次函数322+-=x x y 的图象,使它经过原点,写出一个平移后所得图象表示的二次函数的解析式__________. 6.如图3.3-30四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、Q.则图中相似三角形(相似比为1 除外)有___________________________________.7. 双月学校把学生的期末考试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分及以上为优秀,甲、乙、丙三人的各项成绩如表所示(单位:分),则学期总评成绩为优秀的是__________.8.在课题学习时,老师布置画一个三角形ABC ,使∠A=30°,AB =10cm, ∠A 的对边可以在长为4cm 、5cm 、6cm 、11cm 四条线段中任选,这样的三角形可以画 个.9.某军事行动中,对军队部署的方位,采用钟代码的方式来表示,例如,北偏东30°方向45km 的位置,与钟面相结合,以钟面圆心为基准,指针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示,按这种表示方式,南偏东45°方向78km 的位置,可用代码表示为 .10.如图2,在矩形ABCD 中,9AB =,AD =点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=____________.二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把选出的答案的字母标号填在题后的括号内.DQC BP R A图2 图1QPADBC ER正面 A B C D11. 如图所示几何体的主视图是( )12. 下列图形中,既是轴对称图形又是中心对称图形的是( )13. ∠AOB 和一条定长线段a ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于a ,做法如下:(1)作OB 的垂线NH ,使NH=a ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平分线OP ,与NM 交于P .(4)点P 即为所求.其中(3)的依据是( ) A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .垂线段最短 14. 如图1,︒=∠=∠90B A ,7=AB ,2=AD ,3=BC ,如果边AB 上的点P 使得以P 、A 、D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似,则这样的P 点共有__________个. A.1 B.2. C.3 D.415.已知有一根长10为的铁丝,折成了一个矩形框.则这个矩形相邻两边 a 、b 之间函数的图象大至为( )16.已知如图4,⊙O 的直径为10,弦AB=8,P 是弦AB 上一个动点, 则OP 长的取值范围为( )A.OP <5B.8<OP <10C.3<OP <5D.3≤OP≤5 17.已知一元二次方程ax 2+bx+c=0(a≠0)中,下列命题是真命题的有( )个 ①若a+b+c=0,则b 2-4ac≥0;②若方程ax 2+bx+c=0两根为-1和2,则2a+c=0;③若方程ax 2+c=0有两个不相等的实根,则方程ax 2+bx+c=0必有两个不相等的实根;其中真命题有( ) A .1 B .2 C .3 D .0ABCDD C 图4 AD P BC 图118. 汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图5).则A 、B 两个村庄间的距离是( )米 A .3003 B .900 C .3002 D .300三、解答题:本大题共8小题,满分76分.解答应写出文字说明、证明过程或推演步骤. 19.(1)(6分)计算: ||1-3-sin60°+(-52)0-412.(2)(6分)先化简)(111)1(2-+÷+-x x x x 再选取一个自己喜欢的x 的值代入求值.20.(6分)求不等式组⎪⎪⎩⎪⎪⎨⎧->+≤--122314)12(23x x x x 的整数解.QBCP A45060︒30︒图521.(8分)如图6,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折180°,得△A 2B 2C 2;. (1)画出△A 1B 1C 1和△A 2B 2C 2;(2)求直线A 2A 的解析式.22.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.yx图623.(10分)受世界金融危机的影响,为促进内需,保持经济稳定增长,某市有关部门针对该市发放消费券的可行性进行调研.在该市16—65岁之间的居民中,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此举措的支持人数绘制了下面的统计图.根据上图提供的信息回答下列问题:(1)被调查的居民中,人数最多的年龄段是 岁.(2)已知被调查的400人中有83%的人对此举措表示支持,请你求出31—40岁年龄段的满意人数,并补全图b . (3)比较21—30岁和41—50岁这两个年龄段对此举措的支持率的高低(四舍五入到1%,注:某年龄段的支持率100=⨯该年龄段支持人数该年龄段被调查人数%).24. (10分)已知:如图7所示的一张矩形纸片ABCD (AD AB >),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE ,AE=10.在线段AC 上是否存在一点P ,使得2AE 2=AC·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.AED C FB O 图725.(10分)(1)如图8-1,已知△ABC ,过点A 画一条平分三角形面积的直线;(2)如图8-2,已知1l ∥2l ,点E , F 在1l 上,点G , H 在2l 上,试说明△EGO 与△FHO 面积相等。
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
2010年武邑县第二中学中考模拟考试数学试题注意事项:1. 本试卷共8页,总分120分,考试时间120分钟。
2. 答题前请将密封线左侧的项目填写清楚。
一项是符合题目要求的) 1. 17-的绝对值是 ( )A .7B .7-C .17D .71-2. 下列计算正确的是 ( )A. 22x x x +=B. 2x x x +=C. 321xy xy -=D. 220xy x y -=3. 下列几何体的正视图与众不同的是 ( )4. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于 y 轴对称,那么点 A 的对应点 A' 的坐标为 ( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2) 5. 小明和爸爸一起做投篮游戏,两人商定:小明投中13分,爸爸投中1个得1分,结果两人一共投中20人的得分恰好相等.设小明投中x 个,爸爸投中y 个,根据题意列方程组为 ( ) A .20,3.x y x y +==⎧⎨⎩B. 20,3.x y x y +==⎧⎨⎩ C. 320,.x y x y +==⎧⎨⎩ D. 320,.x y x y +==⎧⎨⎩6. 三人同行,其中两个性别相同的概率是 ( )A .1B .0C .13D .237. 小红的衣服被铁钉划了一个呈直角三角形的洞,其中三角形的两边长分别为lcm 和2cm ,若用同色圆形布将此洞全部覆盖,那么这块圆布的直径最小应等于 ( )A B C Dx15题图下午5时早上10时A. 2cmB. 3cmC. 2cm 或3cmD. 2cm 或 5 cm8. 如图,将非等腰A B C △的纸片沿D E 折叠后,使点A 落在B C 边上的点F 处.若点D 为A B 边的中点,则下列结论:① BD F △是等腰三角形;②D FE C FE ∠=∠;③D E 是A B C △的中位线,成立的有 ( )A .①②B .①③C .②③D .①②③9. 边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋 转75o ,使点B 落在抛物线y = ax 2(a < 0)的图像上. 则抛物线y = ax 2的函数解析式为 ( ) A. y=232x -B. y=-232xC. y=-22xD. y=-221x10. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,P 点在AD 边上以每秒1 cm 的速度从A 向D运动,点Q 在BC 边上,以每秒4 cm 的速度从C 点出发,在CB 间往返运动,二点同时出发,待P 点到达D 点为止,在这段时间内,线段PQ 有 次平行于AB( )A .1 B. 2 C. 3 D. 4二、填空题(本大题共8个小题,每小题3分,共24分.请把答案写在题中横线上) 11. 已知不等式3x-a ≤0的解集为x ≤5,则a 的值为 . 12. 已知22125a b a b a b -=+=+,,的值为____________.13. 如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=125°, 则∠DBC的度数为_________.14. 如图,早上10点小东测得某树的影长为2m ,到了下午5时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度约为_____m.AC8题图9题图10题图16题图 15. 如图,AB 为⊙O 的直径,OE ⊥AB 交⊙O 于点E ,点D 是弧BE 上的一个动点(可与B 、E 重合),若弧AD 所对的圆周角∠C 的度数为α,则α的取值范围是 . 16. 若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为_________.17. 如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH 上,除D 点外,其他顶点均在矩形EFGH 的边上.AB=50cm ,BC=40cm ,55BAE ∠=︒,则EF 的长为 cm .(参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.43)18. 希希为了美化家园、迎接奥运,她准备把自己家的一块三角形荒地种上芙蓉花和菊花,并在中间开出一条小路把两种花隔开(如图),同时也方便浇水和观赏. 小路的宽度忽略不计,且两种花的种植面积相等(即S △AED =S 四边形DCBE ). 若小路DE 和边BC 平行,边BC 的长为8米,则小路DE 的长为 米(结果精确到0.1m).三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.DBAF CEH G17题图18题图18题图东 北20. (本题满分8分)一艘渔船正以30海里/小时的速度由西向东追赶鱼群,渔船在A 处看见小岛B 在船的北偏东60°. 40分钟后,渔船行至O 处,此时看见小岛B 在船的北偏东30°.在如图所示的坐标系中,点O 为坐标原点,点A 位于x 轴上.(1)根据上面的信息,请在图中画出表示北偏东60°、北偏东30°方向的射线,并标出小岛B 的位置;(2)点A 坐标为 ,点B 坐标为 ;(3)已知以小岛B 为中心,周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能?21. (本题满分8分)为积极响应市教育局倡导的“阳光体育运动”的号召,某校九年级全体同学参加了一分钟跳绳比赛.九年级共有600名同学(其中女同学320名),从中随机抽取部分同学的成绩,绘制频数分布直方图如下:男同学一分钟跳绳成绩频数分布直方女同学一分钟跳绳成绩频数分布直方129.5109.5119.5109.5149.5139.599.5149.5139.5129.5119.599.5159.51514131211109865432170159.5151413121110986543217人数成绩成绩人数21题图(1)共抽取了 名同学的成绩.(2)若规定男同学的成绩在130次以上(含130次)为合格,女同学的成绩在120次以上(含120次)为合格.①在被抽取的成绩中,男、女同学各有多少名成绩合格; ②估计该校九年级约有多少名同学成绩合格?22. (本题满分9分)如图,菱形ABCD 的边长为6,∠BAD=60°,AC 为对角线.将A C D ∆绕点A 逆时针旋转60°得到A C D ''∆,连结D C '. (1)求证:A D C ∆≌A D C '∆.(2)求在旋转过程中线段CD 扫过图形的面积.(结果保留π).ABCDC 'D '22题图24题图 图1 图223. (本题满分10分) 家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R(k Ω)随温度t (℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加154k Ω.(1)求当10≤t ≤30时,R 和t 之间的关系式;(2)求温度在30℃时电阻R 的值;并求出t ≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 k Ω?24. (本题满分10分)把两个正方形纸片在相同的顶点A 处钉上一个钉子,然后旋转小正方形AEFG. 已知大正方形的边长为4,小正方形的边长为a (2≤a ).(以下答案可以用含a 的代数式表示)(1)把小正方形AEFG 绕A 点旋转,让点F 落在正方形ABCD 的边AD 上得图1,求B DF ∆的面积BDF S ∆;(2)把小正方形AEFG 绕A 点按逆时针方向旋转45°得图2,求图中BDF ∆的面积BDF S ∆;(3)把小正方形AEFG 绕A 点旋转任意角度,在旋转过程中,设BDF ∆的面积为BDF S ∆,试求BDF S ∆的取值范围,并说明理由.23题图25. (本题满分12分)“清新特”花卉养护服务中心是一家专门从事花卉定期养护、花卉寄养的专业纯服务型企业. 此企业信息部进行市场调查时发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间的关系式为y A =0.4x ;信息二:如果单独投资B 种产品,所获利润y B (万元)与投资金额x (万元)之间的关系如图所示:(1)请求出y B 与x 的函数表达式;(2)如果单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在什么范围?(3)如果企业同时对A ,B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?26. (本题满分12分)如图,在矩形A B C D 中,9A B =,AD =P 是边B C 上的动点(点P 不与点B 、点C 重合),过点P 作直线PQ BD ∥,交C D 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,设C P 的长度为x ,PQR △与矩形x25题图A B C D 重叠部分的面积为y .(1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形A B C D 的A B 边上? (3)求y 与x 之间的函数关系式;参考答案一、1-5 CBDDA 6-10 AABBD二、11. 15 12.±7 13. 55O14. 4 15. 45O≤α≤90O16. b>a>c 17. 63.8 18. 5.7 三、19. 原式21(1)x x x x -=⨯-11x =-.当2x =-时,原式13=-20.(1)如图所示,所作射线为AM ,ON ,它们的交点即为所求小岛B 的位置;(2)(20-,0);(,103;(3)∵小岛B 到x 轴的最短距离为10, ∴渔船继续向东追赶鱼群,没有进入危险区的可能.DQC BP RA26题图 BADC(备用图1)BADC(备用图2)21.(1)60(2)①由统计图可知,男同学有21名成绩合格,女同学有27名成绩合格. ②21272803204843030⨯+⨯= (名) ∴估计该校九年级约有484名同学成绩合格.22.(1)由旋转可知:AC AC '=,60C AC '∠=︒.在菱形ABCD 中,∠BAD=60°∴1302D A C D A B ∠=∠=︒∴D AC D AC '∠=∠.又∵,AC AC AD AD '== ∴A D C ∆≌A D C '∆. (2)连结BD 交AC 于点O ,则BD ⊥AC ,2AC AO =. 在Rt A O D ∆中,30D AO ∠=︒,6A D =,∴AO =.∴2AC AO ==∴26018360AC C S ππ'⨯⨯==扇形.∵26066360ADD S ππ'⨯⨯==扇形,∴CD 扫过图形的面积为186ππ-=12π. 23.(1)当10≤t ≤30时,t60R =(2)温度在30℃时,电阻R =2(k Ω),当t ≥30时,R =2+6-t 154)30t (154=-(3)把R=6 (k Ω),代入R 6-t 154=得,t=45(℃),所以,温度在10℃~45℃时, 电阻不超过6 k Ω.24.(1)BDF S ∆=ABD S ∆-ABF S ∆ ∵小正方形的边长为a,∴AF =a 2 ∴BDF S ∆=ABD S ∆-ABF S ∆ =4×4×21-21×4×a 2=8-2a 2(2)如图1,BDF S ∆=ABD S ∆+AGFD S 梯形-BGFS ∆24题图1=21×4×4+21×a (4+a )-21×a (4+a )= 8(3)如图2,作FH ⊥BD 于H 点,连结AF. 则 BDF S ∆=21×BD ×FH因为小正方形AEFG 绕A 点旋转任意角度,所以点F 离线段 BD 的距离是变化的,即FH 的长度是变化的.由于BD 得长度是 定值,所以当FH 取得最大值时BDF S ∆最大,当FH 取得最小值时BDF S ∆最小.所以当点F 离BD 最远时,FH 取得最大值,此时点F 、A 、H 在同一条直线上(如图3所示); 当点F 离BD 最近时,FH 取得最小值,此时点F 、A 、H 也在同一条直线上(如图4所示). 在图3中,BDF S ∆=21BD ×FH=21×= 8 + 4a 在图4中, BDF S ∆=12BD ×FH=12×a)= 8-4a∴BDF S ∆的取值范围是: 8-4a ≤BDF S ∆≤ 8+4a 25.(1)设y B =a(x-4)2+3.2 ∴16a+3.2=0解之得a=-0.2∴y B =-0.2(x-4)2+3.2 (0 ≤x ≤ 8)(2)由题意得-0.2(x-4)2+3.2=3,解之得x 1=3,x 2=5 由图像可知当3≤x ≤5时y B ≥3∴单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在3≤x ≤5范围. (3)设投资B 种产品x 万元,则投资A 种产品(10-x )万元,获得利润W 万元, 根据题意可得W=-0.2x 2+1.6x+0.4(10-x )=-0.2x 2+1.2x+4, ∴W=-0.2(x -3)2+5.8,当投资B 种产品3万元时,可以获得最大利润5.8万元,所以投资A 种产品7万元,B 种产品3万元,这样投资可以获得最大利润5.8万元. 26.(1)如图, 四边形A B C D 是矩形,A B C D A D B C ∴==,.又9A B =,AD =90C ∠=,9C D ∴=,BC =tan 3BC C D B C D∴∠==,30CDB ∴∠=.PQ BD∥,30C Q P CD B ∴∠=∠=.(2)如图1,由轴对称的性质可知,RPQ CPQ△≌△,RPQ CPQ∴∠=∠,R P C P =.DQC BPRA26题图24题图424题图3由(1)知30C Q P ∠= ,60RPQ CPQ ∴∠=∠= , 60RPB ∴∠= ,2RP BP ∴=.C P x = ,P R x ∴=,PB x =.在R P B △中,根据题意得:)x x =,解这个方程得:x =(3)当点R 在矩形A B C D 的内部或A B 边上时,0x <≤21133222C PQ S C P C Q x x x=⨯⨯== △×x 3RPQ CPQ △≌△,∴当0x <≤22y x =当R 在矩形A B C D 的外部时(如图2),33x <<, 在R t PFB △中,60RPB ∠= ,2)P F B P x ∴==,又RP C P x == ,3RF RP PF x ∴=-=-在R t E R F △中,30EFR PFB∠=∠=,6ER ∴=-. 211822ERF S ER FR x x ∴=⨯=-+△,RP Q E R F y S S =- △△,∴当x <<时,218y x =+-.综上所述,y 与x 之间的函数解析式是:22(0218x x y x x <=⎨⎪+-<<⎩≤.D Q C B P A 26题图1 D Q C B P R A 26题图2 F E。
D BAOC 第8题2010年中考数学模拟试题(二)(新人教版)(考试时间:120分钟 满分120分)一、填空:(每小题2分,共20分) 1.计算:(-1) ×(-2) = . 2.如图,已知AB ∥CD ,则∠A = 度. 3.分解因式 x 3-xy 2= 。
4.在函数y =x 的取值范围是 。
5.截至2009年6月5日止,全球感染H1N1流感病毒有21240人,感染人数用科学计数法表示为 人.6.方程2 x 2-18=0的解是 .7.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .8.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知 AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .9.一个扇形所在圆的半径为3cm ,扇形的圆心角为120°,则扇形的面积是 cm 2. (结果保留π)10.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )二、选择题(每小题3分,共24分)11.-8的相反数是( )CDB第2题.80A第10题 ……n =1 n =2n =3A .8B .-8C .18 D .18- 12.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A.外离B. 相交C.外切D.内切13.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③14.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,9.1,6.5,7.7,则这四人中,射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁15、tan 30°的值等于( )A. 21B. 22C.23 D.33 16图1中几何体的主视图是( )17.若分式 x 2-1x +1的值为零,则x 的值是( )A .1B .0C .-1D .±118.如图,抛物线y =ax 2+bx +c 的对称轴是x = 13,小亮通过观察得出了下面四条信息:①c <0,②abc <0,③a -b +c >0,④2a -3b =0. 你认为其中正确的有( )A .1个B .2个C .3个D .4 三、解答题:(共76分)19、(本题7分)计算:112sin 602-⎛⎫- ⎪⎝⎭ACBDx第18题20、(本题7分)解方程: 0)3(2)3(2=-+-x x x21.(本题8分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作A F ⊥AE ,交CB 延长线于点F ,求证:△ADE ≌△ABF .22.(本题10分)已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π)._F _E _ C _ D _ B _A 第21题 第22题23、(本题10分)右边下面两图是根据某校初三(1)班同学的上学方式情况调查所制作的条形和扇形统计图,请你根据图中提供的信息,解答以下问题: (1) 求该班学生骑自行车的人数有(2)求该班学生人数 人.并将条形统计图补充完整; (3)若该校初三年有600名学生, 试估计该年级乘车上学的人数.24.(本题10分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 47500元,不高于48000元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?骑自行车20%乘车步行50%第23题25、(本题12分)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202B A C A B ∠==°,,求以直径AB ,弦BC 和⌒AM 围成图形的面积(结果保留π).、第25题26.(本题12分)如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标; (2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.参考答案一、1.2 2.120 3.x (x +y )(x -y )4.x≥12 5.2.124×104 6.3和-3 7.1208.4 9.3π 10.2n(n+1)二.11. A 12.C 13.B 14. C 15. D 16.D 17.A18.B19.20.X 1=3,X 2=121.证明:∵ABCD 是正方形 ∴AB AD = ︒=∠=∠=∠90DAB ABF D ∵A F ⊥AE ∴DAE EAB BAF ∠=∠-︒=∠90.在ADE ∆和ABF ∆中∵AE AD BAF DAE ABF D =∠=∠∠=∠,, ∴△ADE ≌△ABF 22.解:(1)()04A ,、()31C ,(2)图略(3)AC =⌒AA' π= 23.解:(1)8 (2)该班学生人数为40%5020=(人) 图画对(略) (3)该年级乘车上学的人数约为1806004012=⨯ 24..解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100x x -+-⨯-≤≤解得:37.540x ≤≤ x 是正整 ∴x 取38,39或40.(2)设投入成本为y 元,由题意有: 22002600(100)400260000y x x x =+-=-+4000-< ∴y 随x 的增大而减小∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 25.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线(2)S =164π+26.解:(1)抛物线21222y x x =-++与x 轴交于A B 、两点,21202x x ∴-++=.即240x -=.解之得:12x x ==∴点A B 、的坐标为(A B ) ,将0x =代入21222y x x =-++, 得C 点的坐标为(0,2)(2)6AC BC AB ===,222AB AC BC ∴=+,则90ACB ∠=°,ABC ∴△是直角三角形.(3)将2y =代入21222y x x =-++,得212222x x -++=,120x x ∴==,P ∴点坐标为.。
机密★考试结束前 衢江区2008年初中毕业生学业水平考试数 学 模 拟 试 卷(命题人:胡荣进、徐卫华、余正龙)考生须知:1. 本卷共三大题,24小题. 全卷满分为150分,考试时间为120分钟.2. 答题前,请用蓝、黑墨水的钢笔或圆珠笔将学校、姓名、准考证号分别填在密封线内相应的位置上,不要遗漏.3. 本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题. 答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题 时允许使用计算器. 参考公式:二次函数2(0)y axbx c a =++≠图象的顶点坐标是24(,)24b ac b a a--一.选择题(本题共10小题,每小题4分,共40分)请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、 多选、错选均不给分.1. 2-的相反数是 A.2-B.12-C.2D.122. 如图,梯子的各条横档互相平行,若180∠=,则2∠的度数是 A.80B.100C.120D.1503. 如果1x =是关于x 的一元二次方程220mx x m --=的一个解,那么m 的值是 A.1 B.1-C.0D.1±4. 从2008年起,清明、端午、中秋被增设为国家法定节假日. 小明打算在今年的端午节送给奶奶的礼盒如下图所示,那么这个礼盒的主视图是5. 若函数(21)y m x=-是正比例函数,且y 随着x 的增大而减小,则m 的取值范围是 A. 12m ≥B. 12m >C. 12m ≤D. 12m <6. 衢江区教育局于2008年4月16日对某校九年级学生进行了体育测试,测得该校10名男生引体向上的成绩如下(单位:次):18 20 20 21 22 23 21 20 22 21,则这10名男生引体向上成绩的中位数是 A. 19B. 20C. 20.5D. 217. “世界上最后一滴水也许将会是你的眼泪”,水资源的严重溃乏是全人类面临的共同问题. 某市为了鼓励居民节约用水,出台了新的用水收费标准,如下表:如果该市某户居民5月份用水x m 3,水费支出为y 元,则y 关于x 的函数图象大致是8.某校九(2)班数学课外活动小组用如下方法测量一座移动信号塔的高度:如图,先把一面镜子放在离信号塔(AB )20m 的点E 处,再沿直 线BE 后退到点D ,这时恰好从镜子里看到了信号塔的 塔尖A ,然后用皮尺量得DE =1m. 若观测者的目高CD=1.5m ,则该信号塔的高度约为 A.403m B.30m C.20m D.40m 9. 如图,在矩形OABC 中,点D 是BC 的中点,反比例函数(0)ky x x=>的图象经过点D ,交AB 于点E ,则 A.AE BE = B.AE BE >C.AE BE <D.无法确定AE 与BE 的大小关系10.如图,把正ABC ∆的外接圆对折,使点A 与劣弧 BC的中点 M 重合,若5BC =,则折痕在ABC ∆内的部分DE 的长为用心思考,细心答题,相信你是最棒的!……………………………… 密……………………………… 封 ……………………………… 线 …………………………………………(第2题)( m 3) 5 ( m 3)5( m 3)5( m 3)5A. B.C.D.(第8题)yx(第9题)C.103D.52二.填空题(本题共6小题,每小题5分,共30分) 11.函数y =自变量x 的取值范围是 .12.分解因式:328a a -= .13.观察下列数表可知,该数表中第2008行与2008列的交叉点上的数为.第1列第2列第3列… 第n 列… 第1行 11 1213 … 1n … 第2行 212223… 2n (3)31 32 33 … 3n…… … … … ………14.请写出一个图象开口向上、且经过第四象限,形状与函数22y x =-的图象相同的二次函数:.15.如图,把一块含300角的三角尺与一副量角器叠合在一 起(三角尺的斜边恰好与量角器的直径完全重合),过 点C 作射线CE 交量角器的圆弧于点E ,当CE 绕点C 旋转时,通过点E 处的读数可得出ACE ∠的大小(A 点为0). 若四边形ACBE 为矩形,则点E 处的读数 是 度.16.如图,四边形OABC 是平行四边形,点A 坐标为 (8,0),点B 坐标为(10,. 动点P 沿O—A —B —C —O 运动,若PBC ∆为直角三角形,则点P 的坐标为___ ___ ____. 三.解答题(本题共8小题,共80分. 请务必写出解答过程) 17.(本题8分)计算:1011)2cos 452-⎛⎫++- ⎪⎝⎭.18.(本题8分)如图,在△ABC 中,BD 、CE 分别是AC 、AB 上的高线,BD 、CE 相交于点O ,在不添加任何辅助线和字母的条 件下,请你添加一个条件,使AB =AC ,并完成证明过程. (1)我添加的条件是: ;(2)证明:19.(本题8分)如图,马路边的路灯AB 高为8米,在灯光下,福娃贝贝在点D 处的影长DE =1米;当贝贝沿BD 方向走2米到达点G 时.(1)请画出贝贝到达点G 时在地面上的投影GH ;(2)若贝贝的身高为1.6米,则他的投影GH 的长为多少米?………………………… 密 ………………………………… 封 …………………………………线 ……………………………………………xy(第16题)(第15题)(第18题)(第19题)20.(本题8分)如图,在正方形网格内有一个图形T . (1)请将网格中的某一个小正方形涂成阴影(所涂小正方形与构成图形T 的小正方形至少有一条边重 合),使整个阴影图形是一个轴对称图形; (2)小明按第(1)小题的要求,任意涂了一个小正方形,求小明得到的阴影图形恰好是轴对称图形 的概率.21. (本题10分)为了创建“省教育强镇”,峡川镇中心学校准备添置A 、B 、C 、D 四种图书,小亮同学通过调查全校师生对各种图书的爱好情况,绘制了两幅不完整的统计图表(如下图).请你根据图表中的信息,解答下列三个问题:(1)填充频数分布表,并补全频数分布直方图;(2)若学校计划采购四种图书共5000册,请你计算四种图书各应采购多少册? (3)针对小亮的调查结果,请你帮助小亮给学校提出一条合理化的建议.22.(本题12分)阅读下面材料,并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n 边形各边都相切的圆叫做正n 边形的内切圆. 设正n (3n ≥)边形的面积为S正n 边形,其内切圆半径为r ,试探索正n 边形的面积S 正n 边形与它的内切圆半径r 之间的关系. 如图①,当3n =时,设AB 切⊙O 于点C ,连结OC ,OA ,OB. ∴ 30OAC OBC ∠=∠=,∴O A O B =,∴2A B A C =,1602AOC AOB ∠=∠= . 在Rt AOC ∆中,∵ tan ACAOC OC∠=, ∴ tan tan 60ACOC AOCr =⋅∠=⋅, ∴ 2tan 60tan 60AOB S AC OC r r r ∆=⋅=⋅⋅=⋅, ∴ 233tan 60AOB S S r ∆==⋅正三角形.(1)如图②,当4n =时,仿照上面的方法可求得:4AOB S S ∆==正四边形 ; (2)如图③,当5n =时,仿照上面的方法和过程求S 正五边形; (3)根据以上探索过程,请直接写出:S 正n 边形= .…………………………… 密 ………………………………… 封 ………………………………… 线 ……………………………………………(第20题)频数分布表图书种类频数(人)频数分布直方图图②图③图①23.(本题12分)衢州东方商厦专销某品牌的计算器,已知每只计算器的进价是l2元,售价是20元.为了促销, 商厦决定:凡是一次性购买10只以上(不含10只)的顾客,每多买1只计算器,其购买的每只计算器的售价就降低O.10元(假设顾客购买了18只计算器,则每只计算器售价为:20-0.10×(18-10)=19.20元,顾客应付的购货款为:18×19.20=345.60元),但最低售价为16元/只. (1)求顾客至少一次性购买多少只计算器,才能以最低价购买?(2)设顾客一次性购买x (1050x <≤)只计算器时,东方商厦可获利润y (元),试求y 与x 之间的函数关系式及商厦的最大利润;(3)有一天,一位顾客一次性购买了46只计算器,另一位顾客一次性购买了50只计算器,结果商厦发现卖50只反而比卖46只赚的钱少. 为了使每次获利随着销量的增大而增大,在其他促销条件不变的情况下,商厦应将最低价16元/只至少提高到多少?为什么?24.(本题14分)如图,在直角坐标系中,AOB ∆为直角三角形,90ABO ∠= ,点A 在x 轴的负半轴上,点B 坐标为(-1,2). 将AOB ∆绕点O 顺时针旋转90得A OB ''∆.(1)求点A '的坐标;(2)将AOB ∆以每秒1个单位的速度沿着x 轴向右平移,问:几秒钟后,点B 移动到直线''B A 上?; (3)在第(2)小题的移动过程中,设移动x 秒后,AOB ∆与A OB ''∆的重叠部分的面积为y ,试求y 关于x 的函数关系式.…………………………… 密 ………………………………… 封 ………………………………… 线 ………………………………………………(第24题)xy衢江区2008年初中毕业生学业水平考试数学模拟试卷参考答案及评分标准一.选择题(本题共10小题,每小题4分,共40分)二.填空题(本题共6小题,每小题5分,共30分)11. 2x≥- 12. 2(2)(2)a a a+-13.20082008(或填1) 14. 答案例举:221y x=-(答案不唯一)15. 60 16. (2,0)或(4,0),(8,0)(第16题注:写出一个得2分,写出二个得4分,写出3个得5分)三.解答题(本题共8小题,共80分)17. 解:原式1222=+-⨯……… 4分(每个1分)3=……… 8分18. 解:(1)BD CE=(答案不唯一);……… 3分(2)略. ……… 8分19. 解:(1)图略;……… 3分(2)由题意得,ABE CDE Rt∠=∠=∠,AEB CED∠=∠∴ABE∆∽CDE∆∴AB BECD DE=,即81.61BE=,解得5BE=(米)……… 5分而211EG DG DE=-=-=(米)∴516BG BE EG=+=+=(米)……… 6分∵ABH FGH Rt∠=∠=∠,AHB FHG∠=∠∴ABH∆∽FGH∆∴AB BH BG GHFG GH GH+==,即861.6GHGH+=,解得 1.5GH=(米).答:如果贝贝的身高为1.6米,则他在地面上的投影GH的长为1.5米. … 8分20. 解:(1)如图所示(只要涂出其中的一种即可);……… 4分(2)49P=. ……… 8分21. 解:(1)频数分布表与频数分布直方图如图所示:……… 5分(2)由第(1)小题可知:全校师生对A、B、C、D四种图书喜爱的频率分别为:0.25,0.20,0.15,0.40∴ A类图书应采购:50000.251250⨯=(册);B类图书应采购:50000.201000⨯=(册);C类图书应采购:50000.15750⨯=(册);D类图书应采购:50000.402000⨯=(册);……… 9分(3)答案例举:学校应多采购D类图书(答案不唯一). ……… 10分频数分布表22. 解:(1)24tan 45r ⋅(或填24r ); ……… 3分(2)如图,当5n =时,设AB 切⊙O 于点C ,连结OA 、OB 、OC . 则 360725AOB ∠==, ∴ 1362AOC AOB ∠=∠= . ……… 4分 在Rt AOC ∆中, ∵ tan ACAOC OC∠=, ∴ tan tan36AC OC AOC r =⋅∠=⋅, ……… 6分 ∴ 2tan 36tan 36AOB S AC OC r r r ∆=⋅=⋅⋅=⋅, ……… 7分∴ 255tan 36AOB S S r ∆==⋅ 正五边形. ……… 9分(3)2180tan nr n⋅. ……… 12分23. 解:(1)设顾客购买x 只计算器时,恰好可以按最低价付款. 根据题意,得200.1(10)16x --= ……… 2分 解这个方程,得 50x =答:顾客至少一次性购买50只计算器,才能以最低价购买. ……… 4分 (2)由题意,得 []200.1(10)12y x x x =---,即 220.190.1(45)202.5y x x x =-+=--+. ……… 6分 ∵ 这里0.10a =-<,且45x =(只)符合自变量的取值范围,∴ 当45x =(只),202.5y =最大值(元). ……… 8分 答:y 与x 间的函数关系式为:20.19y x x =-+;商厦的最大利润是202.5元. (3)由第(2)小题可知,当45x =(只),202.5y =最大值(元),且当4550x ≤≤时,y 随着x 的增大而减少. ……… 9分 此时,售价为:200.1(4510)16.5-⨯-=(元), ……… 11分 ∴ 当最低售价提高到16.5元时,y 会随着x 的增大而增大. ……… 12分24. 解:(1)如图①,过点B 作BC x ⊥轴于点C .∵ 点B 的坐标为(-1,2),∴ OC=1,BC=2. ……… 1分∵ BC x ⊥轴, ∴ BCA OCB Rt ∠=∠=∠, ∴ 90A ABC ∠+∠=.又∵ 90ABC OBC ABO ∠+∠=∠=, ∴ A OBC ∠=∠, ∴ △OBC ∽△BAC , ……… 2分∴OC BC BC AC =, 即 122AC=, ∴ 4AC =. ∴ 145OA OA OC AC '==+=+=, ……… 3分∴ 点A '的坐标为(0,5). ……… 4分 (2)∵ 点B 的坐标为(-1,2), ∴点B '的坐标为(2,1). ……… 5分设直线A B ''的解析式为y kx b =+,把点A '与点B '的坐标值分别代入,得215k b b +=⎧⎨=⎩,解这个方程组,得25k b =-⎧⎨=⎩.∴ 直线A B ''的解析式为25y x =-+. ……… 6分 当2y =时,有252x -+=,解得32x = ……… 7分 ∴ 点B 平移的距离为:35122+=, 即经过2.5秒后,点B 平移到直线A B ''上. ……… 8分(3)(略解)如图②,当01x <≤时,245y x =; ……… 10分 如图③,当512x <≤时, 29552024y x x =-+-; ……… 12分如图④,当552x <<时,211152024y x x =--+. ……… 14分图 ①图 ② 图 ③ 图 ④。
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 . 12. 67 . 13. 2π14. 50 ,40 15. y=31x-4或y=-31x-3 16. 2548 , n2543⎪⎭⎫ ⎝⎛⨯三. 解答题(8小题共66分) 17. (本题满分6分) 解:(1)223. …………………………………………2分 (2)n a = 214-n . …………………………………………4分 (3)∵71=4×18-1 ,∴271=21184-⨯, ∴271为数列当中第18个数. …………………………………………6分 18. (本题满分6分) 解:① 2532,1±=x (利用公式法解决) ②512,1±=x (利用开平方法) ③3,021==x x (利用因式分解法) ④512,1±=x (利用配方法或者公式法等) (说明:没有说明具体解题思路,只有答案得3分) 19. (本题满分6分)解:在Rt △ADC 中,∠DAC=45°,CD=15 m ,∴AD=CD=15 m , …………………………………………2分在Rt △NDC 中,∠DNC=30°,CD=15 m ,∴DN=315 m , ……………………………………………4分∴AN=DN-DA=315-15=)13(15- m.≈11m答:所求AN 之间的距离约为11 m. ………………………………………6分 20. (本题满分8分)解: (1)31.6%; ……………………………………………2分(2)补全统计图; ……………………………………………6分 (说明:①补全“上网”给2分;②补全“健身游戏”给2分.)(3)答案不惟一,如:适当减少看电视的时间,多做运动,有益健康.(合理即给分)……………………………………………8分21. (本题满分8分)解: (1)5; ……………………2分(2)如图:……………………6分 (3)32(a 2+b 2) ………………8分22.(本题满分10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. …………………………1分∵∠D =30°,∴∠COD =60°. …………………2分 ∵OA=OC ,∴∠A=∠ACO=30°. ………………4分 ⑵ ∵CF ⊥直径AB , CF =34,∴CE=5分 ∴在Rt △OCE 中,OE =2,OC =4. ……………………6分∴2BOC 60483603S ππ⨯扇形==,EOC122S ⨯⨯=……………………8分∴EOCBOC S S Sπ阴影扇形8=-=-3……………………………………………10分 23.(本题满分10分)解:(1)由图象知:当x =10时,y =10;当x =15时,y =5.设y =kx+b ,根据题意得:⎩⎨⎧=+=+5151010b k b k ,解得⎩⎨⎧=-=201b k ,∴y =-x +20. ……………………………………………2分 (2)当y =4时,得x =16,即A 零售价为16元. ………………………………3分 设这次批发A 种文具a 件,则B 文具是(100-a )件,由题意,得⎩⎨⎧≥-+≤-+296)100(241000)100(812a a a a ,解得48≤a ≤50 ……………………………………………5分 ∴有三种进货方案,分别是①进A 种48件,B 种52件;②进A 种49件,B 种51件;③进A 种50件,B 种50件. ……………………………………………8分 (3)W =(x -12)(-x +20)+(x -10)(-x +22),整理,得W =-2x 2+64x -460.当x =-b2a =16,W 有最大值,即每天销售的利润最大. …………………………10分24. (本题满分12分)解:(1)由已知得:C (0,-3),A (-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y ……………………………2分 (2)存在,F 点的坐标为(2,-3)易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) ………………………………………………4分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r (r>0)则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. ……………………8分(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………12分。
2010年中考模拟题数 学 试 卷(六)(本文来源未知,如有雷同,马上删除!!)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题4分,共40分)(本文来源未知,如有雷同,马上删除!!) 1.估算272-的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间2.把多项式2288x x -+分解因式,结果正确的是( )(本文来源未知,如有雷同,马上删除!!) A .()224x -B .()224x -C .()222x -D .()222x +3.若m +n =3,则222426m mn n ++-的值为( )(本文来源未知,如有雷同,马上删除!!) A.12B.6C.3 D.04.二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩5. 如图所示的几何体的主视图是( )6.下列运算中,正确的是( )A.x+x=2xB. 2x -x=1C.(x 3)3=x 6D. x 8÷x 2=x 4A .B .C .D .7.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 ( ) A .27B .5C .47D .228.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A .2DE=3MN ,B .3DE=2MN ,C . 3∠A=2∠FD .2∠A=3∠F9.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是()A .点AB .点BC .点CD .点D10.如图, A D 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为 A D 上任意一点,若AC=5,则四边形ACBP 周长的最大值是()A . 15B . 20C .15+52D .15+55二、填空题(共5小题,每题4分,满分20分.请将答案填入答题卡的相应位置)(本文来源未知,如有雷同,马上删除!!) 11.分解因式:22x x -= 12.请写出一个比5小的整数13. a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”)(本文来源未知,如有雷同,马上删除!!).14. 如图4所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°,则C ∠= 度.EDCNMHGF BACBADPA B CD MNPP 1 M 1N 1 A BCD1(图4)(本15.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)(本文来源未知,如有雷同,马上删除!!)图象上五个整数点(横、纵坐标均为整数)(本文来源未知,如有雷同,马上删除!!),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分)(本文来源未知,如有雷同,马上删除!!),则这五个橄榄形的面积总和是 (用含π的代数式表示)(本文来源未知,如有雷同,马上删除!!)三、解答题(满分90分.请将答案填入答题卡的相应位置)(本文来源未知,如有雷同,马上删除!!)16.(每小题7分,共14分)(本文来源未知,如有雷同,马上删除!!) (1)(本文来源未知,如有雷同,马上删除!!)解不等式:5x –12≤2(4x -3)(2)(本文来源未知,如有雷同,马上删除!!)先化简,再求值。
2010年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个‧‧是符合题意的.1.2-的倒数是 A .12- B .12C .2-D .22.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星 — 500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”. 将12 480用科学记数法表示应为 A .312.4810⨯ B .50.124810⨯ C .41.24810⨯ D .31.24810⨯ 3.如图,在△ABC 中,点D E 、分别在边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于AB AC 、A. 3B. 4C. 6D. 8 4.若菱形两条对角线的长分别为6和8,则这个菱形的周长为A .20B .16C .12D .105.从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A .15B .310C .13 D .126.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为A .2(1)4y x =++B .2(1)4y x =-+C .2(1)2y x =++D .2(1)2y x =-+ 7.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲,x乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是 A .x x =甲乙,22S S>乙甲B .x x =甲乙,22S S<乙甲 C.x x >甲乙,22S S >乙甲D .x x <甲乙,22S S<乙甲8.美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个‧‧‧‧符合上述要求,那么这个示意图是A BC D 二、填空题(本题共16分,每小题4分)9.若二次根式21x -有意义,则x 的取值范围是 . 10.分解因式:34m m -= .11.如图,AB 为⊙O 的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE = .12.右图为手的示意图,在各个手指间标记字母 A ,B ,C ,D.请你按图中箭头所指方向(即 A →B →C →D →C→B →A →B →C → … 的方式)从 A 开始数连续的正整数 1,2,3,4,…,当数到 12 时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:101201043tan 603-⎛⎫-+--︒ ⎪⎝⎭.14.解分式方程 312422x x x -=--.15.已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =. 求证:ACE DBF ∠=∠.16.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.17.列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18.如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B .(1) 求A ,B 两点的坐标;(2) 过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求△ABP 的面积.四、解答题(本题共20分,每小题5分)19.已知:如图,在梯形ABCD 中,AD ∥BC ,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是⊙O 的切线;(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.21.根据北京市统计局公布的2006—2009年空气质量的相关数据,绘制统计图如下: 2006—2009年北京全年市区空气质量达到二级和好于二级的天数统计图由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是 年,增加了 天;(2) 表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表城 市北京上海天津昆明 杭州广州南京成都沈阳西宁百分比91% 84% 100% 89% 95% 86% 86% 90% 77%(3) 根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市 数量在这十个城市中所占的百分比为 %;请你补全右边的 扇形统计图.22.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,8AD =cm ,6AB =cm . 现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种 方式不停地运动,即当P 点碰到BC 边,沿与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前‧‧‧与边相碰几次,P 点第一次与D 点重‧合时‧‧所经过的路径的总长是多少.小贝的思考是这样开始的 : 如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =. 请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前‧‧‧与边相碰 次;P 点从A 点出发到第一次与D 点重合时‧‧‧所经过的路径的总长是 cm ; (2) 进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上. 若P 点第一次与B 点重合前‧‧‧与边相碰7次,则:A B A D 的值为 .2009年十个城市空气质量达到 二级和好于二级的天数占全年天数百分比分组统计图图1图2五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知反比例函数ky x=的图象经过点(31)A -,. (1) 试确定此反比例函数的解析式;(2) 点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3) 已知点(36)P m m +, 也在此反比例函数的图象上(其中 0m <),过P 点作x 轴的垂线,交x 轴于点M . 若线段PM 上存在一点Q ,使得△OQM 的面积是12,设Q 点的纵坐标为n ,求2239n n -+的值.24.在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点(2,)B n 在这条抛物线上.(1) 求B 点的坐标;(2) 点P 在线段 OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线 OB 交于点E ,延长PE 到点D ,使得ED PE =,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形 PCD 的顶点 C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM QF =,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到 t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25.问题:已知△ABC 中,2B A C A C B ∠=∠,点D 是△ABC 内的一点,且AD CD =,BD BA =.探究DBC∠与ABC ∠度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当90BAC ∠=︒时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为 ;当推出15DAC ∠=︒时,可进一步可推出DBC ∠的度数为 ;可得到DBC ∠与ABC ∠度数的比值为 .(2) 当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2010年北京市高级中等学校招生考试数学试卷答案一、选择题 1.A , 2.C , 3.D , 4.A , 5.B , 6.D , 7.B , 8.B , 二、填空题 9. x ≥21, 10. m (m +2)(m -2), 11. 2, 12. B 、603、6n +3; 三、解答题13. 解:原式=3-1+43-3=2+33。
北京市2010年高级中等学校招生考试一、选择题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1.−2的倒数是( )A. −B.C. −2D. 22.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星—500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”.将12480用科学记数法表示应为( )A. 12.48×103B. 0.1248×105C. 1.248×104D. 1.248×1033.如图,在△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD∶AB=3∶4,AE=6,则AC等于( )A. 3B. 4C. 6D. 84.若菱形两条对角线的长分别为6和8,则这个菱形的周长为( )A. 20B. 16C. 12D. 105.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是( )A. B. C. D.6.将二次函数y=x 2−2x+3化为y=(x−ℎ)2+k的形式,结果为( )A. y=(x+1)2+4B. y=(x−1)2+4C. y=(x+1)2+2D. y=(x−1)2+27.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183设两队队员身高的平均数依次为 甲, 乙,身高的方差依次为,,则下列关系中完全正确的是( )A. 甲= 乙,>B. 甲= 乙,<C. 甲> 乙,>D. 甲< 乙,<8.美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是( )A. B.C. D.二、填空题(本大题共5小题,共21.0分)9.若二次根式有意义,则x的取值范围是________.10.分解因式:m 3−4m=________.11.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE= ________.12.下图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→⋯的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是_________(用含n的代数式表示).13.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着与AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着与BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动……如图1所示.问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A 1B 1CD.由轴对称的知识,发现P 2P 3=P 2E,P 1A=P 1E.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰________次;P点从A点出发到第一次与D点重合时所经过的路径的总长是________cm;(2)进一步探究:改变矩形ABCD中AD,AB的长,且满足AD>AB.动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB∶AD的值为________.三、计算题(本大题共2小题,共10.0分)14.计算:.15.解分式方程四、解答题(本大题共10小题,共57.0分。
2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。
∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。
2010年中考数学模拟试题卷(满分:120分 考试时间:100分钟)一、选择题(共10道小题,每小题3分,共30分) 1、2-的倒数是( ) A .12B .12-C .2D .2-2、下列各式计算正确的是( )A .a 3+a 2=a 6B .(-a 2)3=-a 5C .a 2·a 4=a 8D .a 4÷a 3=a3、以1,1x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩4、如图,把一种量角器放置在BAC ∠上面,请你根据量角器上的等分刻度判断BAC ∠的度数是( )A .15︒ B .20︒ C .30︒ D .45︒5、下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13 B .12 C .34 D .236、如图,数轴上点P 表示的数可能是( )AB.C . 3.2- D.7、一天,小王和爸爸去登山,已知山底到山顶的路程为300米,小王先走了一段路程,爸爸才开始出发,图中两条线段表示小王和爸爸离开山脚登山的路程S(米)与登山所用时间t(分钟)的关系(从爸爸开始登山时计时)根据图像,下列说法错误..的是( ) A .爸爸登山时,小王已走了50米B .爸爸走了5分钟时,小王仍在爸爸的前面 C .小王比爸爸晚到山顶 D .爸爸前10分钟登山的速度比小王慢,10分钟后登山的速度比小王快 8、已知:如图,△ABC 的面积为12,将△ABC 沿BC 方向移到△A ’B ’C ’的位置,使B ’与C 重合,连结AC ’交A ’C 于D ,则△C ’DC 的面积为( ) 10 B .8 C .6 D .4 9、已知,抛物线y=ax 2+bx+c 的部分图像如图,则下列说法 ①对称轴是直线x =1;②当-1<x <3时,y <0;第8题第4题第5题P第6题③a+b+c =-4;④方程ax 2+bx+c+5=0无实数根其中正确的有( )A .1个 B .2个 C .3个 D .4个10、在一平直河岸l 同侧有A 、B 两村庄,A 、B 到l 的距离AM 、BN 分别是3km ,2km ,且MN 为3km ,现计划在河岸上建一抽水站P ,用输水管向两个村庄A 、B 供水,则水管长度最少为( )km (精确到0.1km)A .4.8 B .5.2 C .5.8 D .6.2 二、填空题(共4道小题,每小题4分,共16分)11、2010年上海世界博览会即将举行,各项准备工作即将完成,其中中国馆计划投资1095600000元,将1095600000保留两个有效数字的近似数应为_________________.12、某一十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为________. 13、如图是圆锥的主视图(单位cm),则其表面积为_________cm 2. 14、某商店老板将一件进价为800元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是_______元.15、如图,正方形ABCD 的面积为1,M 是AB 的中点,连接AC 、DM ,则图中阴影部分的面积是 .16、如图,平面直角坐标系中,A(4,2)、B(3,0)将△ABC 绕OA 中点C逆时针旋转90°得到△A ’B ’O ’ 则A ’的坐标为_________. 三、解答题(共8道小题)17、(本题6分)()11cos 4533-⎛⎫+-- ⎪⎝⎭.18、(本题6分)先化简,再求值:xx x x x --÷---22)113(,其中x 是方程02=+x x 的解.19、(本题6分)已知:如图,在O 中,弦AB CD 、交于点E ,AD CB =. 求证:AE CE =.20、(本题8分)请阅读下列材料:我们规定一种运算:a b ad bc c d=-,例如:2325341012245=⨯-⨯=-=-. 按照这种运算的规定,请解答下列问题:l第10题第11题第16题第15题Dx(1)直接写出1220.5-- 的计算结果; (2)当x 取何值时,0.5012x xx-=;(3)若0.517830.51x y x y--==--,直接写出x 和y 的值.21、(本题8分)如图,在一旗杆AB 上系一活动旗帜C ,在某一时刻,旗杆的影子落在平地BD 和一坡度为1∶3的斜坡DF 上,拉动旗帜使其影子正好落在斜坡顶点D 处,若测得旗高BC =4m ,影长BD =8m ,影长DE =6m ,(假设旗杆AB 与地面垂直,B 、D 、G 三点共线,AB 、BG 、DF 在同一平面内)。
年北京市高级中等学校招生考试2010 数学试卷准考证号姓名学校分钟。
120分。
考试时间120道小题,满分25页,共五道大题,6本试卷共1. 考在试卷和答题卡上准确填写学校名称、姓名和准考证号。
2. 生试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3. 须其它试题用黑色字迹签字笔作答。
铅笔作答,B2作图题用选择题、在答题卡上,4. 知考试结束,将本试卷、答题卡和草稿纸一并交回。
5. ) 分4分,每小题32本题共( 一、选择题下面各题均有四个选项,其中只有一个是符合题意的 11 。
的倒数是22正式启动。
包括中国500”-火星“ 日,人类首次模拟火星载人航天飞行试验3月6年2. 2010 志愿用科学记数法12480。
将”火星之旅“ 小时的12480名志愿者踏上了为期6者王跃在内的表示应为。
,4:=3AB:AD,若BC//DE边上,AC、AB分E、D中,点ABC如图,在△3. 。
(D) 8 (C) 6 (B) 4 (A) 3 等于AC,则=6AE (B) 16 (A) 20 ,则这个菱形的周长为8和6若菱形两条对角线的长分别为4. (C) 12 。
(D) 10 这十个数中随机取出一个数,取出10、9、8、7、6、5、4、3、2、1从5. 1113的倍数的概率是3的数是。
(D) ) C( (B) (A) 的形式,结果为化为将二次函数。
如下表所示:)cm单位:(名同学分成甲、乙两队进行篮球比赛,它们的身高7. 10 5队员4 队员3 队员2 队员1 队员 175 172 175 176 177 甲队 183 174 173 175 170 乙对22SxSx,则下列关系中完,,身高的方差依次为,设两队队员身高的平均数依次为乙乙甲甲全正222222SxSxSxSxSxSx (D) >,>(C) <,=(B) >,=(A) 确的是乙乙乙乙乙乙甲甲甲甲甲甲xx ,<乙甲22S S。
r hO r hOrhOrhO (A)(B)(C )(D )2010年浙江省嘉兴市中考数学模拟试题及答案一、选择题(每题3分,共36分.每小题有四个选项,其中只有一个选项是正确1、 最低温度高A、5˚C B、9˚C C、-2˚C D、-9˚C 2、下列各式的计算结果是a 6的是A .23)(a - B.33a a + C.212a a ÷ D.a 2· a 3 3、若点P (1-m ,m )在第二象限,则下列关系式正确的是A .0<m <1B .m >0C .m >1D .m <04、学校商店销售一种练习本所获的总利润y(元)与销售单价x(元)之间的函数关系式为y =-2(x -2)2+48,则下列叙述正确的是A 、当x =2时,利润有最大值48元B 、当x =-2时,利润有最大值48元C 、当x =2时,利润有最小值48元D 、当x =-2时,利润有最小值48元 5、下列有关概率的叙述,正确的是 ( ) (A)投掷一枚图钉,针尖朝上、朝下的概率一样(B)投掷一枚均匀硬币,正面朝上的概率是21(C)统一发票有“中奖”与“不中奖”二种情形,所以中奖概率是21(D)投掷一枚均匀骰子,每一种点数出现的概率都是61,所以每投六次,必会出现一次“1点”6、相信同学们都玩过万花筒,如上图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以点A 为旋转中心A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到7、如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =30°,则∠CAD 等于 (A )30° (B )40° (C )50° (D )60°8、已知菱形的边长为6,一个内角为600, 则菱形较短的对角线长是 A 、33 B 、36 C 、3 D 、69、已知圆柱的侧面积是10πcm 2,若圆柱底面半径为r (cm ),高线长为h (cm ),则h 关于r 的函数的图象大致是10、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛.A 、平均数B 、众数C 、中位数D 、最高分数11、一张桌子上摆放着若干个碟子,从三个方向上看在眼里,三种视图如下图所示,则这张桌子上共有碟子为B 、8个C 、12个D 、17个12、红星中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有多少人?A .13个B .12个C .11个D .10个 二、填空题 (每题4分,共24分.) 13、一粒纽扣式电池能够污染60..万.升水,我市每年报废的纽扣式电池约400000粒,如果废旧电池不回收,我县一年报废的纽扣式电池所污染的水约有 升(用科学记数法表示).14、在抛掷两枚普通的正方体骰子的实验中,列举一个不可能事件:_______________________________________________________________.15、如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 _____cm(保留π)。
2010年中考模拟题数 学 试 卷(六)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题4分,共40分) 1272的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间2.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +3.若m +n =3,则222426m mn n ++-的值为( ) A.12B.6C.3D.04.二元一次方程组2,x y x y +=⎧⎨-=⎩的解是()A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩5. 如图所示的几何体的主视图是()6.下列运算中,正确的是( )A.x+x=2xB. 2x -x=1C.(x 3)3=x 6D. x 8÷x 2=x 47.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 ( ) A .7B .5C .7D .22A .B .C .D .图58.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A .2DE=3MN ,B .3DE=2MN ,C . 3∠A=2∠FD .2∠A=3∠F9.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是()A .点AB .点BC .点CD .点D10.如图, AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是()A . 15B . 20C .15+52D .15+55二、填空题(共5小题,每题4分,满分20分.请将答案填入答题卡的相应位置) 11.分解因式:22x x -= 125小的整数13. a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).14. 如图4所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°,则C ∠= 度.15.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),DCMHGF BAB CD PP 1 11ABCD1(图4)则这五个橄榄形的面积总和是 (用含π的代数式表示)三、解答题(满分90分.请将答案填入答题卡的相应位置) 16.(每小题7分,共14分) (1)解不等式:5x –12≤2(4x -3)(2)先化简,再求值。
其中3=x ,2=y222)11(yxy x xy x y +--17.(每小题8分,共16分)(1)计算:8-(3-1)0+|-1|.(2)整理一批图书,如果由一个人单独做要花60小时。
现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。
假设每个人的工作效率相同,那么先安排整理的人员有多少人?18.(满分10分)在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点. 求证:CE ⊥BE .19.(满分12分)以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以上统计图可知,九年级(1)班共有学生 人; (2)图7-1中a 的值是 ;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间 (填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了 人。
AC B DE20.(满分12分)如图8,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上, 请按要求完成下列各题:(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 。
(4) 若E 为BC 中点,则tan ∠CAE 的值是图8如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.2010年中考模拟题(六) 数学试题参考答案及评分标准一、选择题(每小题4分,共40分)1.C 2.C 3.A ; 4.C 5.D ;6.A 7.A 8.B 9.B 10.C二、填空题(每小题4分,共20分)11.x (x -2);12.答案不唯一,小于或等于2的整数均可,如:2,1等;13.=; 14.40;15.13π-26三、解答题16. (1)(本题满分7分)解:5x –12≤8x -6. ································································ 3分3x -≤6. ···················································· 5分 x ≥-2 . ······················································· 7分(2)解:原式=2)(y x xyxy y x -⋅- =y x -1……………………………………………………4分将3=x ,2=y 代入,则原式=23231+=-……………………………………7分17.(101)111+-=+=……………………8分(2)解:设先安排整理的人员有x 人,依题意得,2(15)16060x x ++= ……………………4分解得, x =10.答:先安排整理的人员有10人.……………………8分18.证明: 过点C 作CF ⊥AB ,垂足为F .……………… 1分∵ 在梯形ABCD 中,AB ∥CD ,∠A=90°, ∴ ∠D =∠A =∠CFA =90°. ∴四边形AFCD 是矩形.AD=CF, BF=AB-AF=1.……………………………… 3分 在Rt △BCF 中, CF 2=BC 2-BF 2=8,∴ CF=22∴ AD=CF=22……………………………………………………………… 5分 ∵ E 是AD 中点, ∴ DE=AE=122.…………………………………… 6分 在Rt △ABE 和 Rt △DEC 中, EB 2=AE 2+AB 2=6, EC 2= DE 2+CD 2=3, EB 2+ EC 2=9=BC 2.∴ ∠CEB =90°.………………………………………………………9分 ∴ EB ⊥EC .………………………… 10分(其他不同证法,参照以上标准评分)19.(每小题各3分,共12分)(1)50 (2)3 (3)普遍增加了 (4)1520.(每小题3分,共12分)(1)如图 (2)5(3)∠CAD ,55(或∠ADC ,552) (4)2121.解:(1)点 M ·················································································· 1分 (2)经过t 秒时,NB t =,2OM t = 则3CN t =-,42AM t =-∵BCA ∠=MAQ ∠=45∴ 3QN CN t ==- ∴ 1 PQ t =+ ························································ 2分 ∴11(42)(1)22AMQ S AM PQ t t ==-+△ 22t t =-++ ······························································································ 3分 ∴2219224S t t t ⎛⎫=-++=--+ ⎪⎝⎭·································································· 5分∵02t ≤≤∴当12t =时,S 的值最大. ························································ 6分 (3)存在. ··························································································· 7分 设经过t 秒时,NB =t ,OM=2t 则3CN t =-,42AM t =-∴BCA ∠=MAQ ∠=45 ···································································· 8分 ①若90AQM ∠=,则PQ 是等腰Rt △MQA 底边MA 上的高 ∴PQ 是底边MA 的中线 ∴12PQ AP MA == ∴11(42)2t t +=- ∴12t =∴点M 的坐标为(1,0) ······································································ 10分②若90QMA ∠=,此时QM 与QP 重合 ∴QM QP MA ==∴142t t +=- ∴1t =∴点M 的坐标为(2,0) ······································································ 12分22.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ 2分11由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· 3分 ∴111263622ABC C S AB y ==⨯⨯=△·.·················································· 4分 (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· 5分 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· 6分 ∴8448OE EF =-==,. ································································ 8分(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++. ·························································· 14分(图3)(图1)(图2)。