2010年中考数学试卷
- 格式:pdf
- 大小:160.39 KB
- 文档页数:6
内江市二O 一O 年高中阶段教育学校招生考试及初中毕业会考数学试卷本试卷分会考卷和加试卷两部分,会考卷1至6页,满分100分;加试卷7至10页,满分60分.全卷满分160分,120分钟完卷.注意事项:1.答题前,考生务必将密封线内的内容填写清楚,将自己的姓名、准考证号、考试科目等涂写在机读卡上.2.答第Ⅰ卷时,每小题选出答案后,用铅笔把机读卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其它答案.3.只参加毕业会考的考生只需做会考卷,要参加加升学考试的考生须完成会考卷和加试卷两部分.4.考试结束后,将本试卷和机读卡一并收回.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.12010-的倒数是A .2010- B. 2010 C. 12010D. 12010-2.截止2010年4月20日23时35分,央视“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2 175 000 000元,用科学记数法表示捐款数应为A .102.17510⨯元 B. 92.17510⨯元 C. 821.7510⨯元 D. 7217.510⨯元 3.下列图形是正方体的表面展开图的是4.下列事件中为必然事件的是 A .早晨的太阳一定从东方升起 B.打开数学课本时刚好翻到第60页 C从一定高度落下的图钉,落地后钉尖朝上. D.今年14岁的小云一定是初中学生ABCD5.将一副三角板如图放置,使点A 在D E 上,B C D E ∥,则A F C ∠的度数为A.45°B. 50°C. 60°D. 75° 6.函数1x y x+=中,自变量x 的取值范围是A.1x -≥B. 1x >-C. 1x -≥且0x ≠D. 1x >-且0x ≠ 7.方程()12x x -=的解是A .1x =- B. 2x =- C. 1212x x ==-, D.1212x x =-=,8.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x 元,根据题意,下面所列的方程正确的是A .50%80%240x ⨯=· B.()150%80%240x +⨯=·C.24050%80%x ⨯⨯=D. ()150%24080%x+=⨯· 9.学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚B C 剪下A B C △,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下A B C △时,应使A B C ∠的度数为A.126°B. 108°C. 100°D. 90°10.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为 A .14B.13C.12D.3411.如图,反比例函数()0ky x x=>的图象经过矩形O A B C 对角线的交点M ,分别与A B B C 、相交于点.D E 、若四边形O D B E 的面积为6,则k 的值为 A .1 B. 2 C. 3 D. 4① ② ③④12.如图,梯形A B C D 中,A D B C ∥,点E 在B C 上,AE BE =,点F 是C D 的中点,且 A F A B ⊥,若 2.746A D A F A B ===,,,则C E 的长为 A .22 B. 231- C. 2.5 D. 2.3内江市二O 一O 年高中阶段教育学校招生考试及初中毕业会考试卷数学第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2.答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接填在题中横线上.)13.在一次演讲比赛中,某选手的得分情况如下:87、91、91、93、87、89、96、97,这组数据的中位数是_________. 14.化简:2111x x x x x+++=--_________.15.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.16.如图,圆内接四边形A B C D 是由四个全等的等腰梯形组成,A D 是O ⊙的直径,则B E C ∠为___________度.三、解答题(本大题共5小题,共44分)17.(7分)已知()112cos 451201012.3a b c d π-⎛⎫==+=-=-⎪⎝⎭,°,,(1)请化简这四个数;(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.18.(9分)如图,A C D △和B C E △都是等腰直角三角形,90A C D B C E A E ∠=∠=°,交C D 于点F B D ,分别交C E A E 、于点.G H 、试猜测线段AE 和BD 的数量和位置关系,并说明理由.19.(9分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为______度;(2)本次一共调查了_________名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.20.(9分)为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B C、,在点B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得B C长为200米.请你求出该河段的宽度(结果保留根号).21. (10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?内江市二O一O年高中阶段教育学校招生考试及初中毕业会考试卷数学加试卷(共60分)题号 一二总分 总分人 56 7 得分注意事项:加试卷共4页,请将答案直接写在试卷上.一、选择题(本大题共4小题,每小题6分,共24分.请将最简答案直接填写在题中横线上.) 1.已知2510m m --=,则22125m m m-+=___________.2.下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有___________个,图3中以格点为顶点的等腰直角三角形共有___________个,图4中以格点为顶点的等腰直角三角形共有___________个.3.已知非负数a b c ,,满足条件75a b c a +=-=,,设S a b c =++的最大值为m ,最小值为n ,则m n -的值为___________. 4.如图,在A B C △中,A B A C =,点E F 、分别在AB 和A C 上,C E 与BF 相交于点D ,若A E C F D =,为BF 的中点,A E A F :的值为___________.二、解答题(本大题共3个小题,每小题12分,共36分.解答题必须写出必要的文字说明、证明过程或推演步骤.) 5.(12分)阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点()()1122P x y Q x y ,、,的对称中心的坐标为1212.22x x y y ++⎛⎫⎪⎝⎭,观察应用:(1)如图,在平面直角坐标系中,若点()()120123P P -、,的对称中心是点A ,则点A 的坐标为_________;(2)另取两点()()1.62.110.B C --,、,有一电子青蛙从点1P 处开始依次关于点A B C 、、 作循环对称跳动,即第一次跳到点1P 关于点A 的对称点2P 处,接着跳到点2P 关于点B 的对 称点3P 处,第三次再跳到点3P 关于点C 的对称点4P 处,第四次再跳到点4P 关于点A 的对称点5P处,…则点38P P 、的坐标分别为_________、_________. 拓展延伸:(3)求出点2012P 的坐标,并直接写出在x 轴上与点2012P 、点C 构成等腰三角形的点的坐标.6.(12分)如图,在R t A B C △中,90C ∠=°,点E 在斜边AB 上,以AE 为直径的O ⊙与B C 相切于点.D(1)求证:A D 平分.B A C ∠ (2)若3 4.A C A E ==,①求A D 的值;②求图中阴影部分的面积.7.(12分)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,B C M △与A B C △的面积比不变,试求出这个比值;(3)是否存在使B C M △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.参考答案及评分意见会考卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A 2.B 3.C 4.A 5.D 6.C 7.D 8.B 9.A 10.C 11.B 12.D 二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接填在题中横线上.) 13.91 14.1x + 15.7 16.30 三、解答题(本大题共5小题,共44分) 17.解:(1)11()33n -==,22cos 451212b =+=⨯+°21=+,0(2010π)c =-1=,1221d =-=- ····························································································· 4分 (2)a c ,为有理数,b d ,为无理数, ····························································· 5分 31(21)(21)a c bd ∴+-=+-+- ··································································· 6分 =4(21)3--= ··················································································· 7分18.解:猜测 AE BD AE BD =,⊥. ···································································· 2分 理由如下:90A C D B C E ∠=∠= °,AC D D C E BC E D C E ∴∠+∠=∠+∠,即.A C E D C B ∠=∠ ·································· 3分 A C D ∴△和B C E △都是等腰直角三角形.A C C D C E CB ∴==,, ························································································ 4分 AC ED C B ∴△≌△. ····························································································· 5分 AE B D ∴=, ·········································································································· 6分 .C A E C D B ∠=∠ ·································································································· 7分 90AFC D FH D HF AC D ∠=∠∴∠=∠= ,°. ····················································· 8分AE BD ∴⊥.········································································································· 9分 19.解:(1)54 ······································································································ 2分 (2)200 ················································································································ 4分······························································································································ 7分 (3)20005%100⨯=(人) ···································9分20.解:过点A 作A D B C ⊥于点D . ·························1分 据题意,90306045ABC AC D ∠=-=∠=°°°,°. ····2分 45C AD AC D C AD ∴∠=∴∠=∠°,, AD C D ∴=,200.BD BC C D AD ∴=-=- ···································4分 在R t A B D △中,tan A D A B D B D∠=,tan (200)tan 603(200)AD BD ABD AD AD ∴=∠=-=-··°. ··························· 7分3200 3.AD AD ∴+= 2003300100 3.31A D ∴==-+ ············································································ 9分答:该河段的宽度为(3001003-)米.21.解:(1)设应安排x 天进行精加工,y 天进行粗加工, ································· 1分 根据题意得 12515140.x y x y +=⎧⎨+=⎩, ··············································································· 3分 解得48.x y =⎧⎨=⎩,答:应安排4天进行精加工,8天进行粗加工. ······················································ 4分(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +························································································· 6分 ② 要求在不超过10天的时间内将所有蔬菜加工完,14010515mm-∴+≤ 解得 5m ≤································································· 8分05m ∴<≤又 在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,5140000145000.W ⨯+=最大=1000 ········································· 9分 ∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. ······ 10分 加试卷(共60分)一、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.)1.28 2.10,28,50 3.7 4.512+二、解答题(本大题共3个小题,每小题12分,共36分.解答题必须写出必要的文字说明、证明过程或推演步骤.)5.解:(1)(1,1)······························································································ 2分(2)( 5.21.2-,) ································································································ 4分(2,3) ················································································································ 6分(3)1(01)P ,-→2(23)P ,→3( 5.21.2)P -,→4(3.2 1.2)P -,→5( 1.23.2)P -,→6(21)P -,→7(01)P -,→8(23)P ,…∴7P 的坐标和1P 的坐标相同,8P 的坐标和2P 的坐标相同,即坐标以6为周期循环.20126÷= 335…2,2012P ∴的坐标与2P 的坐标相同,为2012(23)P ,; ····················································· 8分 在x 轴上与点2012P 、点C 构成等腰三角形的点的坐标为(32)(20)(3210)(50)---1,0,,,,,,,································································ 12分 6.(1)证明:连接O D ,则O A O D =,D A O O D A ∴∠=∠. ································ 1分 B C 是O ⊙的切线,.O D B C ∴⊥A CBC OD A C ∴ ⊥,∥, ·········································2分.C AD O D A ∴∠=∠D A O C A D A D ∴∠=∠∴,平分.B A C ∠ ······················4分(2)①连结ED ,AE 为直径,90A D E C ∴∠=∠=°.又由(1)知D AO C AD AD E AC D ∠=∠∴,△∽△,·············································· 6分A DA CA E A D ∴=, ········································································································ 7分 34A C A E == ,,23412AD AE AC ∴==⨯=·,1223AD ∴==. ······························································································ 8分 ②在R t A D E △中,233cos 42ADD AE AE ∠===,30D AE ∴∠=°. ···································································································· 9分 120 2.A O D D E ∴∠==°,111 3.222A O D A D E S S AD D E ∴==⨯=△△· ·························································· 10分2120π24π.3603AOD S ⨯=扇形= ··················································································· 11分4π 3.3A O D A O D S S S ∴-=-△阴影扇形= ··································································· 12分 7.解:(1)22223(23)(1)4y m x m x m m x x m x m =--=--=-- ,∴抛物线顶点M 的坐标为(1,4-m ) ································································· 2分 抛物线223(0)y m x m x m m =-->与x 轴交于A B 、两点, ∴当0y =时,2230mx mx m --=,20230.m x x >∴--= ,解得1213x x =-=,,A B ∴、两点的坐标为(10-,)、(30,). ·························································· 4分(2)当0x =时,3y m =-,∴点C 的坐标为(03)m ,-.13(1)366.2A B C S m m m ∴=⨯--⨯-==△ ························································· 5分 过点M 作M D x ⊥轴于点D ,则12O D BD O B O D ==-=,,44.M D m m =-=BC M BD M O BC O C M D S S S S ∴=+-△△△梯形=111()222BD D M O C O M O D O B O C ++-··· =11124(34)133222m m m m ⨯⨯++⨯-⨯⨯=3m. ······································································································· 7分 :1:2.BC M ABC S S ∴=△△ ························································································· 8分(3)存在使B C M △为直角三角形的抛物线.过点C 作C N D M ⊥于点N ,则C M N △为R t △,13C N O D D N O C m ====,, .M N D M D N m ∴=-=22221.CM CN MN m ∴=+=+在R t O B C △中,222299BC OB OC m =+=+,在R t B D M △中,2222416.BM BD DM m =+=+①如果B C M △是R t △,且90B M C ∠=°,那么222CM BM BC +=, 即222141699m m m +++=+, 解得22m =±,20.2m m >∴= ,∴存在抛物线2232222y x x =--使得B C M △是R t △; ··························· 10分②如果B C M △是R t △,且90B C M ∠=°,那么222BC CM BM +=,。
2010年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题试题)和第Ⅱ卷(答卷,含解答题)两部分。
第Ⅰ卷共2页,第Ⅱ卷共6页。
考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封。
2.答题前,请考生务必将自己的姓名、准考证号按规定填写在第Ⅱ卷左边的密封线内。
3.填空题和选择题的答案必须填写在第Ⅱ卷中规定的位置,在第Ⅰ卷上作答无效。
一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.计算:2-7=__________.2.命题“如果一个数是偶数,那么这个数能被2整除”的逆命题是__________________________ _________________________________________________. 3.分解因式:x 2-4x +4=____________________. 4.已知|x |=2,则x =______________.5.请写出一个图象通过点(0,1)的一次函数的关系式,你所写的一次函数关系式是__________ ____________________.6.如果一个多边形的内角和等于其外角和,那么这个多边形是______边形. 7.分式方程112-=x x 的解是__________. 8.一元二次方程x 2+x -2=0的解是____________________. 9.如图,已知AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点, 且∠BAC =50°,则∠ACD = __________°.10.如图,已知扇形的圆心角是直角,半径是2,则图中阴影部分的面积是______________.(不要求计算近似值) (第9题图)(第10题图)二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中. 11.水银的密度为13600kg/m 3,这一数字保留两位有效数字的正确记法是A .14000B .1.4×104C .1.4×105D .1.36×10412.右图是由若干个相同的小正方体组合而成的几何体,则这个几何体的俯视图是13.使函数2+=x y 有意义的自变量x 的取值范围是A .x ≥-2B .x >-2C .x ≥2D .x >214.下列运算结果正确的是A .a -(b +c )=a -b +cB .632x x x =⋅ C .()ab a b a a -=-⋅222D .()b a a ab 22=÷-15.已知⊙O 1与⊙O 2相切,⊙O 1的半径为4,圆心距为10,则⊙O 2的半径是A .6B .14C .6或14D .716.在平面直角坐标系中,点A (-2,-1)绕原点O 逆时针旋转180°得到点B ,则点B 的坐标是A .(-1,-2)B .(-2,1)C .(2,-1)D .(2,1)17.如图,已知点D 、E 、F 分别是△ABC 边AB 、AC 、BC 的中点,设△ADE 和△BDF 的周长分别为L 1和L 2,则L 1和L 2的大小关系是 A .L 1=L 2 B .L 1<L 2C .L 1>L 2D .L 1与L 2的大小关系不确定18.将函数y =x 2的图象向左平移1个长度单位所得到的图象对应的函数关系式是A .y =x 2-1B .y =x 2+1C .y =(x -1)2D .y =(x +1)2AB C D(第12题图)(第17题图)2010年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅱ卷一、填空题:请将答案填写在相应题号后的横线上.(每小题3分,共30分)1.________;2._________________________________________________________________; 3.______________; 4._______________; 5._______________; 6._______________; 7.______________; 8._______________; 9._______________; 10.______________.二、选择题:请将正确答案前的字母填写在下表相应题号下的空格中.(每小题3分,共24分)三、解答题:本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.19.(本小题满分5分)计算:()91231-+--π.20.(本小题满分7分)下图是根据上海世博会官方网站公布的世博会自2010年5月1日开展至6月9日共40天,每10天入园参观人数累计所作的折线统计图.(1)这组数据的中位数是__________________________________________; (2)这组数据的极差是____________________________________________;(3)根据上述数据,选取适当的样本预测上海世博会自2010年5月1日开展至2010年10月31日闭展共185天入园参观的总人数(精确到0.1万人).21.(本小题满分8分)根据来宾市统计局2010年公布的数据,2009年底全市普通中小学在校学生共32.02万人,小学在校学生比普通中学在校学生多3.58万人.问2009年底我市普通中学和小学在校学生分别是多少万人?(第20题图)22.(本小题满分8分)已知在Rt △ABC 中,∠C =90°,点E 在边AB 上,且AE =AC ,∠BAC 的平分线AD 与BC 交于点D .(1)根据上述条件,用尺规在图中作出点E 和∠BAC 的平分线AD (不要求写出作法,但要保留作图痕迹);(2)证明:DE ⊥AB .23.(本小题满分8分)儿童活动乐园中的跷跷板AB 的支撑架位于板的中点O 处(如图),一端压下与地面接触于点A ,翘起的板与地面AC 所成的最大角度为15°,为了安全,要求此时翘起一端的端点B 离地面的最大高度是0.8米,最小高度是0.6米,试求出跷跷板的长度L 的取值范围(要求列不等式(组)求解,精确到0.01米).(参考数据:sin15°≈0.259, cos15°≈0.966,tan15°≈0.268)(第23题图)(第22题图)24.(本小题满分8分)已知反比例函数的图象过点(-2,-2).(1)求此反比例函数的关系式;(2)过点M (4,4)分别作x 、y 轴的垂线,垂足分别为A 、B ,这两条垂线与x 、y 轴围成一个正方形OAMB (如图),用列表法写出在这个正方形内(包括正方形的边和内部)且位于第一象限,横、纵坐标都是整数的点的坐标;并求在这些点中任取一点,该点恰好在所求反比例函数图象上的概率P .(第24题图)(1)试用t表示点N的坐标,并指出t的取值范围;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)是否存在某个时刻t,使得点O、N、M三点同在一条直线上?若存在,则求出t的值;若不存在,请说明理由.(第25题图)如图,在矩形ABCD (AB <AD )中,将△ABE 沿AE 对折,使AB 边落在对角线AC 上,点B 的对应点为F ,同时将△CEG 沿EG 对折,使CE 边落在EF 所在直线上,点C 的对应点为H .(1)证明:AF ∥HG (图(1)); (2)证明:△AEF ∽△EGH (图(1));(3)如果点C 的对应点H 恰好落在边AD 上(图(2)). 求此时∠BAC 的大小.(第26题图)2010年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分. 1.-5;2.如果一个数能被2整除,那么这个数是偶数; 3.(x -2)2; 4.±2;5.形如y =kx +1的一次函数式均可; 6.四; 7.x =2; 8.x =-2或x =1;9.40; 10.π-2.二、选择题:本大题共8小题,每小题3分,共24分.11.B ; 12.C ; 13.A ; 14.C ; 15.C ; 16.D ; 17.A ; 18.D .三、解答题:本大题共8小题,满分66分. 19.解:原式=31211-+………………3分(每个知识点1分) =6236-+ ………………4分=67 ……………………5分20.解:(1)(247.81+364.33)÷2=306.07(万人);…………………………………2分(2)421.65-156.4=265.25(万人);……………………………………………4分(3)40天中每天入园参观人数=7529406542133364812474156.....≈+++(万人)……6分所以,185天参观总人数为:29.75×185≈5503.8(万人)………………………7分说明:如果只用其中10天的数据预测总人数且数据正确(可能结果:2893.4,4585.3,4585.5,6739.6,6740.1,7800.5,7801.5),给1分,用中位数(可能结果:5662.3,5662.9)或两个极端数据(可能结果:5346.5,5347.0)预测总人数且数据正确的给3分,其余用20天的数据预测总人数且数据正确(可能结果:3738.9,4816.8,4817.4,6192.0,6192.5,7270.3,7270.5),给2分,用30天数据预测总人数的按上述步骤给分(30天数据的可能结果: 4739.3,4739.7,5810.9,5811.3,6375.0,6375.1;40天数据的另一结果:5504.6)21.解:设2009年底我市普通中学在校学生为x 万人,小学在校学生为y 万人,由题意得……1分⎩⎨⎧=-=+58.302.32x y y x ……………………………………………………………5分解得⎩⎨⎧==8.1722.14y x…………………………………………………………………7分答:2009年底我市普通中学在校学生为14.22万人,小学在校学生为17.8万人.……8分 22.解:(1)共3分.(作出点E 给1分,作出点P 给1分,连AP(2)∵AD 平分∠BAC .∴∠CAD =∠EAD …………………………4分在△CAD 与△EAD 中 AD =AD (公共边)∠CAD =∠EAD AC =AE (已知) ∴△CAD ≌△EAD…………………………6分∴∠DEA =∠DCA =90° ……………………7分 ∴DE ⊥AB……………………………………8分23.解:过点B 作BD ⊥AC 于D在Rt △ABD 中,BD =AB·sin15°=0.259L ……1分 由题意得:0.6≤0.259L ≤0.8…………5分即⎩⎨⎧≥≤6.0259.08.0259.0L L 解得:2.32≤L ≤3.08……………………7分答:跷跷板的长度L 的取值范围是不小于2.32米,不大于3.08米. …………8分24.解:(1)设反比例函数为xky =……………………1分 则由已知可得:22-=-k ……………………2分所以k =4所以,所求反比例函数关系式为y 4= …………3分 (2)…………………………6分(注:写对5个以上不足10个点给1分,写对10个以上不足16(第22(2)题参考图2)(第22(1)题参考图1)AA个点给2分,全对给3分;若将坐标轴上的点也写出来,共写出25个点,全对的,给2分,对10个以上但不全对的给1分)由上表及(1)知,只有点(1,4),(2,2),(4,1)在反比例函数xy 4=的图象上.……7分 所以,所求概率163=P . …………………………………………………………………8分 25.解:(1)过点N 作NP ⊥OA 于P ,则CN =AM =t ,AN =5-t ,由△APN ∽△AOC 得()t OC AC AN PN -=⋅=554…………………………1分()t OA AC AN PA -=⋅=553 ……………………2分t PA OA OP 53=-=∴点N 的坐标是(t 53,t 544-)(0≤t ≤4) …………4分(t 的取值范围占1分)(2)AP AM NP OA S S S AMN OAN OAMN ⋅+⋅=+=∆∆2121多边形……5分()()t t t -⋅⋅+-⨯⨯=55321554321 61031032++-=t t (0≤t ≤4)………………6分(3)存在t 使得O ,N ,M 三点在同一直线上. ………………………………………7分 【方法一】经过点O ,M 的直线表达式为x ty 3=………………………………………8分 若O ,N ,M 三点在同一直线上,则点N (t 53,t 544-)在直线x ty 3=上,那么t t t 533544⋅=- ………………………………………………………………………9分化简得:t 2+4t -20=0解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.……………………………10分【方法二】若O ,N ,M 三点在同一直线上,则△OPN ∽△OAM…………………8分∴OA OP AM NP =,即353544tt t =- …………………………………………………9分化简得:t 2+4t -20=0(第25题图)解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.………………………………10分 【方法三】若O ,N ,M 三点在同一直线上,则O AM O AMN S S ∆=多边形 …………………8分 即t t t 2361031032=++-…………………………………………………9分化简得:t 2+4t -20=0解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.………………………………10分 26.证明:(1)根据折叠的轴对称性知,∠AFE =∠ABE =∠EFC =90°∠EHG =∠ECG =90° …………………………1分 ∴∠EFC =∠EHG…………………………2分∴AF ∥HG……………………………………3分(2)根据折叠的轴对称性知,∠AEB =∠AEF ,∠GEH =∠GEC ………………4分 ∵∠AEB +∠AEF +∠GEH +∠GEC =180° ∴2∠AEF +2∠GEH =180°∴∠AEF +∠GEH =90° …………………………5分 ∵∠EAF +∠AEF =90° ∴∠EAF =∠GEH …………………………6分 又∵∠AFE =∠EHG =90°∴△AEF ∽△EGH…………………………7分(3)【方法一】连结HC ,交EG 于点P ………………8分由折叠的轴对称性知, CH ⊥EG ∴∠HPG =90° 由(2)知∠AEG =90°∴AE ∥HC …………………………………………9分 又∵AH ∥EC∴四边形AECH 是平行四边形 ………………10分∵AC ⊥EH∴四边形AECH 是菱形 ∴∠HAF =∠F AE………………………………11分∵∠F AE =∠BAE∴∠HAF =∠F AE =∠BAE =30°∴∠BAC =60° ……………………………………12分 【方法二】设AB =a ,BE =b ,CE =c ,则AD =b +c 根据折叠的轴对称性知,HE =c ,EF =b ,AF =a ,HF =c -b ………………8分∵cb aa b c HAF +=-=∠tan ……………………9分 ∴a 2+b 2=c 2 又∵AE 2=a 2+b 2∴AE =EC =c………………………………10分∴∠EAC =∠ECA又∵AD ∥BC ∴∠CAD =∠ECA………………………………11分∴∠CAD =∠EAC =∠BAE =30°∴∠BAC =60° ……………………………………12分。
南充市二O 一O 年高中阶段学校招生统一考试数 学 试 卷(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算-(-5)的结果是( ).(A )5 (B )-5 (C )15 (D )-152. 如图,立体图形的主视图是( ).3. 下列等式成立的是( ).(A )26a a =3() (B)223a a a -=- (C )632a a a ÷= (D )2(4)(4)4a a a +-=-4. 三根木条的长度如图,能组成三角形的是( ).正面(第2题)(A )(B ) (C ) (D )5. 计算111xx x ---结果是( ). (A )0 (B )1 (C )-1 (D )x 6. 如图,小球从点A 运动到点B ,速度v (米/秒)和时间t (秒)的函数关系式是v =2t .如果小球运动到点B 时的速度为6米/秒,小球从点A 到点B 的时间是( ). (A )1秒 (B )2秒 (C )3秒 (D )4秒7. A 、B 、C 、D 四个班各选10名同学参加学校1 500米长跑比赛,各班选手平均用时及(A )A 班 (B )B 班 (C )C 班 (D )D 班8. 甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大 (C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率 9. 如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ). (A )1(B )2 (C )3 (D )4 10. 如图,直线l1∥l 2,⊙O 与l 1和l 2分别相切于点A 和2cm 2cm 5cm(A )2cm2cm 4cm(B )2cm3cm 5cm(C )2cm3cm 4cm(D )(第6题)2N点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误..的是().(A)MN=(B)若MN与⊙O相切,则AM=(C)若∠MON=90°,则MN与⊙O相切(D)l1和l2的距离为2二、填空题(本大题共4个小题,每小题3分,共12分) 请将答案直接填写在题中横线上.11.x 取值范围是______.12. 如图,□ABCD 中,点A 关于点O 的对称点是点____. 13. 在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________. 14. 如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为_______.三、(本大题共3个小题,每小题6分,共18分)15. 计算:()228cos303-+︒--.(第12题)16. 如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .求证:四边形ABCD 是等腰梯形.17. 电视台在南充城市某居民小区对电视节目的收视情况进行抽样调查,每人只能在被调查的五类电视节目中选择一类“最喜欢”的电视节目,将统计结果绘制了两幅不完整的统计图(图1,图2).请根据图中信息解答问题:(1)这次抽样调查了多少人?(2)在扇形统计图中,最喜欢娱乐节目对应的圆心角比最喜欢戏曲节目对应的圆心角大90°,调查中最喜欢娱乐节目比最喜欢戏曲节目的多多少人? (3)估计南充城区有100万人中最喜欢体育节目的有多少人?新闻体育动画娱乐戏曲 (图1) (图2)四、(本大题共2个小题,每小题8分,共16分)18. 关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.19. 如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连结BD 并延长与CE交于点E .(1)求证:△ABD ∽△CED .(2)若AB =6,AD =2CD ,求BE 的长.五、(本题满分8分)20.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?六、(本题满分8分)21.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12 BC.(1)求∠BAC的度数.(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形.(3)若BD=6,CD=4,求AD的长.七、(本题满分8分)22. 已知抛物线2142y x bx =-++上有不同的两点E 2(3,1)k k +-+和F 2(1,1)k k ---+.(1)求抛物线的解析式. (2)如图,抛物线2142y x bx =-++与x 轴和y 轴的正半轴分别交于点A 和B ,M 为AB 的中点,∠PMQ 在AB 的同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C ,MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n ,求n 和m 之间的函数关系式. (3)当m ,n 为何值时,∠PMQ 的边过点F .南充市二O 一O 年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 正式阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.2. 全卷满分100分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3. 参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4. 要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题(本大题共10个小题,每小题3分,共30分)二、填空题(本大题共4个小题,每小题3分,共12分)11.12. C ;13. 接近16; 14.13三、(本大题共3个小题,每小题6分,共18分)15. 解:原式=4283+⨯- ……(4分)=43+=1. ……(6分) 16. 证明:∵ MA =MD ,∴ △MAD 是等腰三角形,∴ ∠DAM =∠ADM . ……(1分) ∵ AD ∥BC ,∴ ∠AMB =∠DAM ,∠DMC =∠ADM .∴ ∠AMB =∠DMC . ……(3分) 又∵ 点M 是BC 的中点,∴ BM =CM . ……(4分) 在△AMB 和△DMC 中,,,,AM DM AMB DMC BM CM =⎧⎪∠=∠⎨⎪=⎩∴ △AMB ≌△DMC . ……(5分)∴ AB =DC ,四边形ABCD 是等腰梯形. ……(6分)17. 解:(1)这次抽样调查人数为:600300020%=(人); ……(2分) (2)最喜欢娱乐节目比最喜欢戏曲节目的多:903000360⨯=750(人);…(4分)(3)估计南充城区最喜欢体育节目的有:10025%⨯=25(万人). ……(6分)答:(1)这次抽样调查了3000人;(2)最喜欢娱乐节目比最喜欢戏曲节目的多750人;(3)估计南充城区最喜欢体育节目的有25万人.四、(本大题共2个小题,每小题8分,共16分)18. 解:(1)方程有两个不相等的实数根,∴ 2(3)4()k --->0.即 49k >-,解得,94k >-. ……(4分) (2)若k 是负整数,k 只能为-1或-2. ……(5分) 如果k =-1,原方程为 2310x x -+=.解得,1x =2x =. ……(8分)(如果k =-2,原方程为2320x x -+=,解得,11x =,22x =.)19. (1)证明:∵ △ABC 是等边三角形, ∴ ∠BAC =∠ACB =60°.∠ACF =120°. ∵ CE 是外角平分线, ∴ ∠ACE =60°. ∴ ∠BAC =∠ACE . ……(2分) 又∵ ∠ADB =∠CDE ,∴ △ABD ∽△CED . ……(4分) (2)解:作BM ⊥AC 于点M ,AC =AB =6.∴ AM =CM =3,BM =AB ·sin60°=∵ AD =2CD ,∴ CD =2,AD =4,MD =1. ……(6分)在Rt △BDM 中,BD……(7分)由(1)△ABD ∽△CED 得,BD AD ED CD=2=, ∴ ED,∴ BE =BD +ED= ……(8分) 五、(本题满分8分)20. 解:(1)以点O 为原点,AB 所在直线为x 轴建立直角坐标系(如图). ……(1分)M (0,5),B (2,0),C (1,0),D (32,0)设抛物线的解析式为2y ax k =+, 抛物线过点M 和点B ,则 5k =,54a =-. 即抛物线解析式为2554y x =-+. ……(4分) 当x =时,y =154;当x =32时,y =3516.即P (1,154),Q (32,3516)在抛物线上.当竖直摆放5个圆柱形桶时,桶高=310×5=32.∵ 32<154且32<3516,∴网球不能落入桶内. ……(5分)(2)设竖直摆放圆柱形桶m 个时网球可以落入桶内,由题意,得,3516≤310m ≤154. ……(6分)解得,7724≤m ≤1122.∵ m 为整数,∴ m 的值为8,9,10,11,12.∴ 当竖直摆放圆柱形桶8,9,10,11或12个时,网球可以落入桶内.……(8分)六、(本题满分8分)21. (1)解:连结OB 和OC .∵ OE ⊥BC ,∴ BE =CE .∵ OE =12BC ,∴ ∠BOC =90°,∴ ∠BAC =45°. ……(2分) (2)证明:∵ AD ⊥BC ,∴ ∠ADB =∠ADC =90°. 由折叠可知,AG =AF =AD ,∠AGH =∠AFH =90°,∠BAG =∠BAD ,∠CAF =∠CAD , ……(3分) ∴ ∠BAG +∠CAF =∠BAD +∠CAD =∠BAC =45°. ∴ ∠GAF =∠BAG +∠CAF +∠BAC =90°.∴ 四边形AFHG 是正方形. ……(5分) (3)解:由(2)得,∠BHC =90°,GH =HF =AD ,GB =BD =6,CF =CD =4. 设AD 的长为x ,则 BH =GH -GB =x -6,CH =HF -CF =x -4. ……(7分) 在Rt △BCH 中,BH 2+CH 2=BC 2,∴ (x -6)2+(x -4)2=102. 解得,x 1=12,x 2=-2(不合题意,舍去).∴ AD =12. ……(8分) 七、(本题满分8分) 22. 解:(1)抛物线2142y x bx =-++的对称轴为122bx b =-=⎛⎫⨯- ⎪⎝⎭. ……..(1分)∵ 抛物线上不同两个点E 2(3,1)k k +-+和F 2(1,1)k k ---+的纵坐标相同,∴ 点E 和点F 关于抛物线对称轴对称,则 (3)(1)12k k b ++--==,且k ≠-2.∴ 抛物线的解析式为2142y x x =-++. ……..(2分) (2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4), ∴ AB=AM =BM= ……..(3分) 在∠PMQ 绕点M 在AB 同侧旋转过程中,∠MBC =∠DAM =∠PMQ =45°, 在△BCM 中,∠BMC +∠BCM +∠MBC =180°,即∠BMC +∠BCM =135°, 在直线AB 上,∠BMC +∠PMQ +∠AMD =180°,即∠BMC +∠AMD =135°. ∴ ∠BCM =∠AMD .故 △BCM ∽△AMD . ……..(4分) ∴BC BM AM AD =,即m =,8n m =. 故n 和m 之间的函数关系式为8n m =(m >0). ……..(5分) (3)∵ F 2(1,1)k k ---+在2142y x x =-++上,∴ 221(1)(1)412k k k ---+--+=-+,化简得,2430k k -+=,∴ k 1=1,k 2=3.即F 1(-2,0)或F 2(-4,-8). ……..(6分) ①MF 过M (2,2)和F 1(-2,0),设MF 为y kx b =+,则 2220.k b k b +=⎧⎨-+=⎩, 解得,121.k b ⎧=⎪⎨⎪=⎩,∴ 直线MF 的解析式为112y x =+.直线MF 与x 轴交点为(-2,0),与y 轴交点为(0,1). 若MP 过点F (-2,0),则n =4-1=3,m =83; 若MQ 过点F (-2,0),则m =4-(-2)=6,n =43. ……..(7分) ②MF 过M (2,2)和F 1(-4,-8),设MF 为y kx b =+,则 2248.k b k b +=⎧⎨-+=-⎩, 解得,534.3k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴ 直线MF 的解析式为5433y x =-.直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-).若MP 过点F (-4,-8),则n =4-(43-)=163,m =32; 若MQ 过点F (-4,-8),则m =4-45=165,n =52. ……..(8分)故当118,33,m n ⎧=⎪⎨⎪=⎩226,4,3m n =⎧⎪⎨=⎪⎩333,2163m n ⎧=⎪⎪⎨⎪=⎪⎩或4416,552m n ⎧=⎪⎪⎨⎪=⎪⎩时,∠PMQ 的边过点F .。
2010年莆田市初中毕业、升学考试试卷数学试题(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得40分.1.2-的倒数是().A .2B .12 C .12- D .-2有意义,则x 的取值范围是( ).A .1x ≥B .1x ≤C .0x >D .1x >3.下列图形中,是中心对称图形的是( ).4.下列计算正确的是( ).A .325()a a = B .23a a a +=C .33a a a ÷=D .235a a a =·5.已知1O ⊙和2O ⊙的半径分别是3cm 和5cm ,若12O O =1cm ,则1O ⊙与2O⊙的位置关系是().A .相交B .相切C .相离D .内含 6.如图是由五个小正方体搭成的几何体,它的左视图...是( ).第3题 第6题7.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ).A .(1)10x x -=B .(1)102x x -= C .(1)10x x += D .(1)102x x += 8.11()A x y ,、22()B x y ,是一次函数2(0)y kx k =+>图象上不同的两点,若1212()()t x x y y =--,则( ).A .0t <B .0t =C .0t >D .0t ≤ 二、细心填一填:本大题共8小题,每小题4分,共32分. 9.化简:22(1)(1)a a +--=________.10.2009年我国全年国内生产总值约335000亿元,用科学记数法表示为________亿元. 11.如图,D 、E 分别是ABC △边AB 、AC 的中点,BC =10,计算:22|2.-解不等式213436x x --≤,并把它的解集在数轴上表示出来.19.(本小题满分8分)如图,四边形ABCD 的对角线AC 、DB 相交于点O ,现给出如下三个条件:AB DC AC DB OBC OCB ==∠=∠①②③.(1)请你再增加一个..条件:________,使得四边形ABCD 为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件________(用序号表示,只填一种情况),使得AOB DOC △≌△,并加以证明.第19题如图,在边长为1的小正方形组成的网格中,AOB △的三个顶点均在格点上,点A 、B 的坐标分别为(23)31.A B --,、(,)(1)画出AOB △绕点O 顺时针...旋转90°后的11AOB △; (2)点1A 的坐标为_______; (3)四边形11AOA B 的面积为_______.21.(本小题满分8分)如图,A 、B 是O ⊙上的两点,120AOB ∠=°,点D 为劣弧 AB 的中点.(1)求证:四边形AOBD 是菱形;(2)延长线段BO 至点P ,交O ⊙于另一点C ,且BP =3OB ,求证:AP 是O ⊙的切线.第20题第21题在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4yx=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足4yx<的概率.23.(本小题满分10分)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现在甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y(km),甲车行驶时间为t(h),y(km)与t(h)之间函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):(1)乙车的速度是_________km/h;(2)求甲车的速度和a的值.第23题如图1,在Rt ABC △中,9068ACB AC BC ∠===°,,,点D 在边AB 上运动,DE平分CDB ∠交边BC 于点E ,CM BD ⊥垂足为M EN CD ⊥,,垂足为N.(1)当AD=CD 时,求证:DE AC ∥;(2)探究:AD 为何值时,BME △与CNE △相似?(3)探究:AD 为何值时,四边形MEND 与BDE △的面积相等?第24题如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?第25题2010年莆田市初中毕业、升学考试试卷数学参考答案及评分标准说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分. (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分或扣分都不能出现小数点. 一、精心选一选(本大题共8小题,每小题4分,共32分) 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C二、细心填一填(本大题共8小题,每小题4分,共32分)9.4a 10. 53.3510⨯ 11. 5 12. 6 13. 2 14. 1 15.40217.(本小题满分8分)解:原式=2·························· 6分 =2- ························································ 8分注:2|24(2)=分18.(本小题满分8分)解:去分母,得2(21)x -·························· 2分去括号,得4234x x --≤ ··················································································· 4分 移项,合并同类项,得2x -≤ ∴不等式的解集为2x -≤ ····················································································· 6分 该解集在数轴上表示如下:································································································································· 8分 19.(本小题满分8分) (1)AD BC =(或AO OC =或BO OD =或90ABC ∠=°等) 3分 (2)解法1:②③ ··················································· 4分 证明:OBC OCB ∠=∠ OB OC ∴= ····························································· 5分第19题又AC DB OA OD =∴= ················································································ 6分 又AOB DOC ∠=∠ AOB DOC ∴△≌△ ······························································································ 8分 解法2:①② ··········································································································· 4分 证明:∵AB=DC ,DB=AC ,AD=DA ∴ABD DCA △≌△ ····························································································· 6分 ∴∠ABO=∠DCO ········································································································· 7分又∵∠AOB=∠DOC A O B D O C ∴△≌△ ······················································· 8分(注:若选①③第(2)小题得0分) 20.(本小题满分8分) (1)正确画出1OA 、1OB 、11A B 各得1分 ·························································· 3分 (2)(3,2) ·········································································································· 5分 (3)8 ······················································································································ 8分 21.(本小题满分8分) 证明:(1)连接OD . ·································· 1分D 是劣弧 AB 的中点,120AOB ∠=°60AOD DOB ∴∠=∠=° ························· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ·········· 3分 ∴AD=AO=OB=BD∴四边形AOBD 是菱形 ······························· 4分(2)连接AC.∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ········································································································· 5分12060AOB AOC ∠=∴∠= °°OAC ∴△为等边三角形∴PC=AC=OC ········································································································· 6分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP 30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ······································································ 7分 又OA 是半径AP ∴是O ⊙的切线 ································································································ 8分 22.(本小题满分10分) 解:(1)第21题································································································································· 3分 (2)可能出现的结果共有16个,它们出现的可能性相等. ································· 4分 满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ····································································· 7分 (3)能使x ,y 满足4y x<(记为事件B )的结果有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (B )=516·········································································· 10分23.(本小题满分10分) (1)40 ···················································································································· 3分 (2)解法1:设甲车的速度为x km/h ,依题意得12(121)40200x =+⨯+ ······················································································· 5分解得x =60 ················································································································· 6分 又(1)4060a a +⨯=⨯ ··························································································· 8分 ∴a =2 ························································································································ 9分 答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 解法2:设甲车的速度为x km/h ,依题意得40(1)(12)(40)200ax a a x =+⎧⎨--=⎩ ························································································ 7分 解得602.x a =⎧⎨=⎩··········································································································· 9分答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 24.(本小题满分12分) (1)证明:AD CD DAC DCA =∴∠=∠2BDC DAC ∴∠=∠ ································· 1分又∵DE 是∠BDC 的平分线 ∴∠BDC=2∠BDE∴∠DAC =∠BDE ········································· 2分∴DE ∥AC ···················································· 3分 (2)解:(Ⅰ)当BME CNE △∽△时,得MBE NCE ∠=∠ ∴BD=DC∵DE 平分∠BDC ∴DE ⊥BC ,BE=EC.又∠ACB =90° ∴DE ∥AC . ···················································································· 4分 ∴BE BD BC AB =即152BD AB === ∴AD =5 ···················································································································· 5分第24题(Ⅱ)当BME ENC △∽△时,得EBM CEN ∠=∠∴EN ∥BD又∵EN ⊥CD∴BD ⊥CD 即CD 是△ABC 斜边上的高 ································································· 6分 由三角形面积公式得AB ·CD=AC ·BC ∴CD=245∴185AD == ·················································································· 7分 综上,当AD =5或185时,△BME 与△CNE 相似. (3)由角平分线性质易得12MDE DEN S S DM ME ==△△· BDE MEND S S = △四边形12BD EM DM EM ∴=·· 即12DM BD = ······················································ 8分 ∴EM 是BD的垂直平分线.∴∠EDB=∠DBE∵∠EDB =∠CDE ∴∠DBE =∠CDE又∵∠DCE =∠BCD∴CDE CBD △∽△ ······················· 9分CD CE DE BC CD BD∴==① ············ 10分 2CD BE BE BC BD BM ∴== 即4BE CD = 5454=⨯= ······························································ 11分 25843939cos 5810B =⨯= 39112105-⨯= ······························································ 12分 25.(本小题满分14分)解:(1)OA =1,OC =2则A 点坐标为(0,1),C 点坐标为(2,0)设直线AC 的解析式为y=kx+b0120b k b +=⎧∴⎨+=⎩ 第24题解得121k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112y x =-+ ······································································ 2分 (2)123555(0)(0)(02))384P P P --,,,,,或3(0P (正确一个得2分) ······························································································· 8分(3)如图,设(1)O x ′,过O ′点作O F OC ⊥′于F 222251()4O D O F DF x ='+=+-′ 由折叠知OD O D =′ 22551()()44x ∴+-= 12x ∴=或2············································· 10分第25题。
图9B2010年河北省中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-6 2.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70° C .80° D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为A .6B .9C .12D .15 5.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a- B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x 9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8 C .9 D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3) D .(4,3) 12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.-的相反数是 . 14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α,则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”). 三、解答题(本大题共8个小题,共78分) 19.(8分)解方程:1211+=-x x .A B C D 图2图10-1 图10-2A BCD 40°120° 图1 图3 图5 图7 图8图4 A B D C 图6-1 图6-2A B C D20.(8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).21.(9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °. (2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.图11-2A图11-1B乙校成绩扇形统计图 图12-1乙校成绩条形统计图图12-2图15-2AD O BC 21MN图15-1A D BMN1 2图15-3AD O BC 21MNO 23.(10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是 分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P 到l 距离最大的位置,此时,点P 到l 的距离是 分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.24.(10分)在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.l图14-3l 图14-2图14-125.(12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.26.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为 常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是24(,)24b ac b a a--.2(0)y ax bx c a =++≠P Q图16 (备用图)2010年河北省中考数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. =三、解答题 19.解:)1(21-=+x x , 3=x .经检验知,3=x 是原方程的解.20.解:(1)如图1;【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】 (2)∵90π346π180⨯⨯=, ∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;(3)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.22.解:(1)设直线DE 的解析式为b kx y +=, ∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).(2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4.∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1). ∵ 当4=x 时,y =4x= 1,∴点N 在函数 xy 4=的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=, ∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBO ACBE =.又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD =.D 图1图4A D OB C21 MNE FA O BC1D 2图5MNE分数图2 l图325.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3,∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,Q E 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+.若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售;当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.图7图6。
2010年安徽省中考试题数 学一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2010安徽,1,4分)在-1,0,1,2这四个数中,既不是正数也不是负数的是………………( )A .1-B .0C .1D .2【分析】大于0的数是正数,小于0的数是负数. 【答案】B【涉及知识点】正、负数的概念【点评】本题考查有理数的概念,考查知识点单一,属于基础题. 【推荐指数】★ 2.(2010安徽,2,4分)计算x x ÷3)2(的结果正确的是…………………………( ) A .28x B .26x C .38x D .36x【分析】先将系数相除得2,再将字母及其指数相除得2x 【答案】A【涉及知识点】单项式除法【点评】熟悉单项式除法法则即可解决,属于简单题. 【推荐指数】★3.(2010安徽,3,4分)如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( )A .500.B .550C .600D .650【分析】可将∠3看成三角形的一个内角,利用两直线平行,同位角相等和对顶角相等可求出三角形的其他两个内角,再用三角形内角和即可求出∠3.【答案】C【涉及知识点】平行线的性质,三角形的内角和【点评】本题考查综合运用平行线的性质和三角形的内角和两个知识点,属于简单题. 【推荐指数】★★4.(2010安徽,4,4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………()A.2.89×107. B.2.89×106 .C.2.89×105. D.2.89×104.【分析】289万=2890000【答案】B【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★5.(2010安徽,5,4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是【分析】正方体的三视图都是正方形;球的三视图都是圆;直三棱柱的主视图是矩形,两边长分别是棱长、底面上的高,俯视图是矩形,两边长分别是棱长、底面的边长,左视图是正三角形;圆柱的主视图、俯视图都是矩形且这两个矩形全等;左视图是圆,符合题意.【答案】D【涉及知识点】视图与投影【点评】本题主要考查已知物体画三视图的能力,属于简单题.【推荐指数】★★★★6.(2010安徽,6,4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A.1~2月份利润的增长快于2~3月分利润的增长B.1~4月份利润的极差于1~5月分利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元【分析】1~2月份利润增长10万元,2~3月份利润增长20万元;1~4月份利润的极差与1~5月份利润的极差都是30万元;1~5月份利润的的中位数为115万元【答案】C【涉及知识点】折线统计图、极差、众数、中位数【点评】折线统计图是统计图之一,极差、众数、中位数等都是统计学中的重要概念,准确理解概念的内涵是解决此类问题的“法宝”,属于中档题.【推荐指数】★★★★7.(2010安徽,7,4分)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A .0,5B .0,1C .—4,5D .—4,1【分析】可将配方后的式子展开,比较两个解析式的系数,二次项系数都是1,一次项系数相等,常数项相等【答案】D【涉及知识点】配方法、待定系数法【点评】配方法是数学中一种重要思想方法,在二次项系数是1的情况下,一般是配上一次项系数一半的平方,本题将顶点式化简成一般式,再由待定系数法即可写出b 、k 的值,属于中档题.【推荐指数】★★★ 8.(2010安徽,8,4分)如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为………………( ) A .10 B .32 C .13 D .23【分析】因为等腰直角三角形和圆都是轴对称图形,延长AO 交BC 于D ,连接OB ,则AD=BD=DC=21BC=3,所以OD=A D -OA=2,由勾股定理,得:OB=13 【答案】C【涉及知识点】垂径定理,勾股定理【点评】求圆的半径是圆中常见的计算题,基本方法是构造以半径为斜边,半弦长、弦心距为直角边的直角三角形,利用勾股定理求出,属于中档题.【推荐指数】★★★【典型错误】选D ,将AB 当成圆的半径;选B ,仍将AB 当成圆的半径,但以为:AB=33BC ;选A 的同学还是将AB 当成圆的半径了,用:101322=+。
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.门票价格一览表指定日普通票2 00元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:20鲜鱼销售单价(元/kg)单位捕捞成本(元5﹣/kg)捕捞量(kg)950﹣10x(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b >c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2考点:有理数。
2010年龙岩市初中毕业、升学考试数 学 试 题 (满分:150分 考试时间:120分钟) 注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题!在本试题上答题无效。
提示:抛物线y=ax 2+bx+c (a ≠0)的对称轴是2b x a =-,顶点坐标是24(,)24b ac b a a -- 一、选择题(本大题共10题,每题4分,共40分。
每题的四个选项中,只有一个符合题意,请将正确的选项填涂到答题卡...上)1.-3的绝对值是A .-3B .-13C .3D .132.下列运算正确的是A .x 4+ x 4=2 x 8B .x 2·x 3= x 5C .x 8÷x 2= x 4D .(-x 2)4=-x 83.下列事件是不可能事件的是A .掷一次质地均匀的正方体骰子,向上的一面是5点B .在只装有红球和绿球的袋子中摸出一个球,结果是黄球C .经过城市中某一有交通信号灯的路口,遇到绿灯D .通常加热到100℃时,水沸腾4.若关于x 的一元二次方程20x x a -+=的一个根为2,则a 的值是A .6B .-6C .2D .-25.如图所示的几何体是由三个同样大小的正方体搭成的,其左视图是(第5题图) A B C D6.如图,若圆锥底面圆的半径为3,则该圆锥侧面展开图扇形的弧长为A .2 πB .4 πC .6 πD .9 π7.从4张分别写有数字-6,-4,0,3的卡片中,任意抽取一张,卡片上的数字是正数的概率是A .34B .12C .13D .14 8.把多项式x 2-6x +9分解因式,所得结果正确的是A .(x -3)2B .(x+3)2C .x (x -6)+9D .(x +3)(x -3) 考室座位号(第6题图)9.如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,∠B =25°,则∠D 等于A .25°B .40°C .30°D .50°10.对于反比例函数k y x=,当x >0时,y 随x 的增大而增大, 则二次函数2y kx kx =+的大致图象是A B C D(第10题图)二、填空题(本大题共7题,每题3分,共21分。
2010年成都市中考数学试题A 卷(共100分)一、选择题:(每小题3分,共30分) 1.下列各数中,最大的数是( )A. B . C .12D . 【答案】D 2.表示( )A. B .x x x ++ C.x x x ⋅⋅ D.3x + 【答案】C3.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为( )A.52.5610⨯ B.525.610⨯ C.42.5610⨯ D.425.610⨯ 【答案】A4.如图是一个几何体的三视图,则这个几何体的形状是( )A.圆柱 B.圆锥 C.圆台 D.长方体 【答案】B5.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ) A .21y x =+ B.2(1)y x =+ C .21y x =- D .2(1)y x =- 【答案】D6.如图,已知//AB ED , 65ECF ∠=,则BAC ∠的度数为( )A.115 B . C . D .7.,结果如下表:每天使用零花钱(单位:元) 12356人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( )A.3,3B.2,3 C.2,2 D.3,5 【答案】B8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( )A.相交 B.外切 C.外离 D.内含 【答案】A9若一次函数y kx b =+的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是( )A .0,0k b >> B.0,0k b >< C .0,0k b <> D.0,0k b <<【答案】D10.已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )A.6种 B.5种 C.4种 D .3种 【答案】C二、填空题:(每小题3分,共15分)11.在平面直角坐标系中,点(2,3)A -位于第___________象限.【答案】第四象限12.(2010年四川成都,12,3分)若,x y 为实数,且230x y ++-=,则2010()x y +的值为___________. 【答案】113.如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.【答案】100;14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是,则的值是________【答案】6;15.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是___________.【答案】3三、(第1小题7分,第2小题8分,共15分) 16.解答下列各题:(1)计算:0116tan30(3.6π)12()2-+--+.【答案】解:原式=361232⨯+-+=3 (2)若关于的一元二次方程2420x x k ++=有两个实数根,求的取值范围及的非负整数值.【答案】解:∵关于的一元二次方程2420x x k ++=有两个实数根, ∴△=244121680k k -⨯⨯=-≥ 解得2k ≤ ∴的非负整数值为0,1,2。
北京市2010年高级中等学校招生考试一、选择题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1.−2的倒数是( )A. −B.C. −2D. 22.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星—500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”.将12480用科学记数法表示应为( )A. 12.48×103B. 0.1248×105C. 1.248×104D. 1.248×1033.如图,在△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD∶AB=3∶4,AE=6,则AC等于( )A. 3B. 4C. 6D. 84.若菱形两条对角线的长分别为6和8,则这个菱形的周长为( )A. 20B. 16C. 12D. 105.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是( )A. B. C. D.6.将二次函数y=x 2−2x+3化为y=(x−ℎ)2+k的形式,结果为( )A. y=(x+1)2+4B. y=(x−1)2+4C. y=(x+1)2+2D. y=(x−1)2+27.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183设两队队员身高的平均数依次为 甲, 乙,身高的方差依次为,,则下列关系中完全正确的是( )A. 甲= 乙,>B. 甲= 乙,<C. 甲> 乙,>D. 甲< 乙,<8.美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是( )A. B.C. D.二、填空题(本大题共5小题,共21.0分)9.若二次根式有意义,则x的取值范围是________.10.分解因式:m 3−4m=________.11.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE= ________.12.下图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→⋯的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是_________(用含n的代数式表示).13.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着与AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着与BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动……如图1所示.问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A 1B 1CD.由轴对称的知识,发现P 2P 3=P 2E,P 1A=P 1E.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰________次;P点从A点出发到第一次与D点重合时所经过的路径的总长是________cm;(2)进一步探究:改变矩形ABCD中AD,AB的长,且满足AD>AB.动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB∶AD的值为________.三、计算题(本大题共2小题,共10.0分)14.计算:.15.解分式方程四、解答题(本大题共10小题,共57.0分。
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(4分)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×1045.(4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(4分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.9.(4分)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算:×﹣=.12.(5分)不等式组的解集是.13.(5分)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是上一点,则∠D=度.14.(5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(8分)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(10分)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.(12分)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(12分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(14分)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2【解答】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.2.(4分)(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x3【解答】解:(2x)3÷x=8x3÷x=8x2.故选A.3.(4分)(2014•河池)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【解答】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.4.(4分)(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×104【解答】解:289万=2 890 000=2.89×106.故选B.5.(4分)(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.【解答】解:正方体和球体的主视图、左视图以及俯视图都是相同的,排除A、B;直三棱柱的正视图是一个矩形,左视图是一个三角形,俯视图也是一个矩形,但与正视图的矩形不相同,排除C;圆柱的正视图以及俯视图是相同的,都是矩形,因为直径相同,左视图是个圆,故选:D.6.(4分)(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【解答】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选C.7.(4分)(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选D.8.(4分)(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.【解答】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB==.故选D.9.(4分)(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.503【解答】解:当第1位数字是3时,按如上操作得到一个多位数36 2486 2486 2486 2486 ....仔细观察36 2486 2486 2486 2486 ...中的规律,这个多位数前100位中前两个为36,接着出现2486 2486 2486...,所以36 2486 2486 2486 2486 ...的前100位是36 2486 2486 2486 (2486)2486 1486 24(因为98÷4=24余2,所以,这个多位数开头两个36中间有24个2486,最后两个24),因此,这个多位数前100位的所有数字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.故选A.10.(4分)(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.【解答】解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式v乙t=v甲t+100,根据甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,则乙要追上甲,所需时间为t=50,全程乙跑完后计时结束t总==200,则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m由上述分析可看出,C选项函数图象符合故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2010•安徽)计算:×﹣=2.【解答】解:原式=﹣=3﹣=2.故答案为:2.12.(5分)(2010•安徽)不等式组的解集是2<x≤4.【解答】解:由①得x>2,由②得x≤4,∴不等式组的解集为2<x≤4.故填空答案:2<x≤4.13.(5分)(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D 是上一点,则∠D=40度.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=180°﹣90°﹣50°=40°,∴∠D=∠A=40°.14.(5分)(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.三、解答题(共9小题,满分90分)15.(8分)(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=•=,当a=﹣1时,原式==.16.(8分)(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)【解答】解:如图,过点B作BC垂直于河岸,垂足为C.在Rt△ACB中,有:AB===600.∴t==2≈3.4(分).即船从A处到B处约需3.4分.17.(8分)(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.【解答】解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y=的图象上,∴k=2,∴反比例函数的解析式为y=.18.(8分)(2010•安徽)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.【解答】解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.19.(10分)(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【解答】解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.20.(10分)(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.【解答】证明:(1)∵AD∥FE,∴FE∥BC∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AF=BE,FC=ED.又∵AC=BD,∴△ACF≌△BDE.21.(12分)(2010•安徽)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.【解答】解:列表得:购票方案指定日普通票平日优惠票一 1 11二 2 9三 3 7四 4 5五 5 3六 6 1(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.22.(12分)(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.23.(14分)(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC 的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.【解答】(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.参与本试卷答题和审题的老师有:zhxl;MMCH;星期八;CJX;lanchong;csiya;py168;HLing;蓝月梦;张超。
2010年山东省东营市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列运算中,正确的是()A.a+a=a2B.a•a2=a2C.(2a)2=4a2D.(a3)2=a5★☆☆☆☆显示解析2.64的立方根等于()A.4 B.-4 C.8 D.-8★☆☆☆☆显示解析3.一次函数y=3x-4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限★☆☆☆☆显示解析4.分式方程1x-2=3x的解是()A.-3 B.2 C.3 D.-2显示解析5.不等式组x+4>3x≤1的解集为()A.-1<x≤1B.-1≤x<1 C.-1<x<1 D.x<-1或x≥1显示解析6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50°B.30°C.20°D.15°★★★★★显示解析7.如图所示,反比例函数y1与正比例函数y2的图象的一个交点坐标是A (2,1),若y2>y 1>0,则x的取值范围在数轴上表示为()A.B.C.D.★☆☆☆☆显示解析8.如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于()A.m•sinα米B.m•tanα米C.m•cosα米D.m tanα米显示解析9.有20张背面完全一样的卡片,其中8张正面印有天鹅湖风光,7张正面印有黄河入海口自然风景,5张正面印有孙武湖景色.把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是天鹅湖风光卡片的概率是()A.1 4 B.720C.25D.58显示解析10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行★★★★☆显示解析11.如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()A.逐渐增大B.逐渐减小C.始终不变D.先增大后变小显示解析12.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx-ac与反比例函数y= a-b+cx在同一坐标系内的图象大致为()A.B.C.D.☆☆☆☆☆显示解析二、填空题(共5小题,每小题4分,满分20分)13.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达280万度.这里的280万度用科学记数法表示(保留三个有效数字)为度.显示解析14.把x3-4x分解因式,结果为.☆☆☆☆☆显示解析15.有一组数据如下:3,a,4,6,7.它们的平均数是5,那么这组数据的方差为.☆☆☆☆☆显示解析16.将一直径为17cm的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为17cm3.★☆☆☆☆显示解析17.观察下表,回答问题,第个图形中“△”的个数是“○”的个数的5倍.☆☆☆☆☆显示解析三、解答题(共7小题,满分64分)18.先化简,再求值:(1x-y-1x+y)÷2yx2+2xy+y23232.显示解析19.如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.显示解析随机抽取了部分学生的成绩(得分取正整数,满分为2122.如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为acm,宽为bcm,厚为ccm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.显示解析23.如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.显示解析24.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.VIP显示解析。
徐州市2010年初中毕业、升学考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-3的绝对值是 A .3 B .-3 C .31 D .-31 2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为 A .505×310 B .5.05×310 C .5.05×410 D .5.05×510 3.下列计算正确的是A .624a a a =+ B .2a ·4a =8a C .325a a a =÷ D .532)(a a = 4.下列四个图案中,是轴对称图形,但不是中心对称图形的是5.为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是 A .170万 B .400 C .1万 D .3万 6.一个几何体的三视图如图所示,则此几何体是 A .棱柱 B .正方体 C .圆柱 D .圆锥7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是 A .点M B .格点N C .格点P D .格点Q 8.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.写出1个比一1小的实数_______.10.计算(a-3)2的结果为_______.11.若α∠=36°,则∠α的余角为______度.D C BA12.若正多边形的一个外角是45°,则该正多边形的边数是_______.13.函数y=11-x 中自变量x 的取值范围是________. 14.不等式组⎪⎩⎪⎨⎧<≤-.12,32x x 的解集是_______.15.如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)_____P(4) (填“>”、“=”或“<”).16.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm . 17.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.三、解答题(本大题共有10小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算: 、(1)921201010+--)(; (2)xx x x x 4)41642-÷+-+( 20.(本题6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套; (2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.2l·(本题6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、 “布”三种手势(如图)中的一种,规定“石头”胜“剪子”, “剪子”胜“布”, “布”胜“石头”,手势 相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(本题6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(本题8分)如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上, CE ∥BF ,连接BE 、CF . (1)求证:△BDF≌△CDE;(2)若AB=AC ,求证:四边形BFCE 是菱形.24.(本题8分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).26.(本题8分)如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线 BA —AD —DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD=_____cm ,梯形ABCD 的面积_____cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:2.27.(本题8分)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①,△AEM 的周长=_____cm ; ②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.28.(本题10分)如图,已知二次函数y=423412++-x x 的图象与y 轴交于点A ,与x 轴 交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .(1)点A 的坐标为_______ ,点C 的坐标为_______ ;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个?徐州市2010年中考 数学参考答案及评分建议一、选择题(本大题共有8小题,每小题2分,共16分)二、填空题(本大题共有10小题,每小题3分,共30分)9. 2-(答案不唯一) 10.269a a -+ 11.54 12.8 13.1x ≠14.12x -≤<15.>16.8 17.2 18.(32)n -三、解答题(本大题共有10小题,共74分)19.解:(1)原式=123-+(三项全对得2分,全错得0分,其它得1分)= 2.……3分 (2)原式=()()()444444x x x xx x x xx +--÷=-⨯=+-.(每步1分) …………………6分 20.解:(1)18 000; ……………………………2分(2)如图;……………………………………4分 (3)3 780,4 410. …………………………6分 214分P (一次性分出胜负)=3. ……………………………………………………………5分 答:一次性分出胜负的概率为23.………………………………………………………6分 22.解:设九(2)班有x 人,九(1)班有()5x +人.根据题意,得3002251.25x x =⨯+ ,…………………………………………………………………………3分 解得45x =.…………………………………………………………………………………4分 经检验,45x =是原方程的根.…………5分 550x +=.答:九(1)班有50人,九(2)班有45人.……………………………………………6分23.(1)证明:∵ D 是BC 的中点,∴BD =CD . …………………………………………1分∵CE ∥BF ∴∠DBF=∠DCE . …………………………………………………………2分 又∵∠BDF=∠CDE ,…………… 3分 ∴△BDF ≌△CDE .……………………4分 (2)证明:∵△CDE ≌△BDF ,∴DE =DF . …………………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形. …………………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形. …………………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 24.解:过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ………………1分∴CE = AD =12. ………………………………………………………2分 Rt △ACE 中,∵60EAC ∠=︒,12CE =,∴tan 60CEAE ==︒4分Rt △ABE 中,∵30BAE ∠=︒,∴tan 304BE AE =⋅︒=.……………6分 ∴BC =CE +BE=16 m . …………………………………………………7分 答:旗杆的高度为16 m .………………………………………………8分(另解)过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ……………………………1 分 ∴CE = AD =12.……………………………………………………………………………2分 设BE x =,Rt △ABE 中,∵30BAE ∠=︒,∴22AB BE x ==.………………………4分 同理4BC x =.∴124x x +=,解得4x =.……6分 ∴BC =CE +BE=16 m .………7分 答:旗杆的高度为16 m .…………………………………………………………………8分 25.解:(1)将B (1,4)代入m y x =中,得4m =.∴4y x=. …………………………1分 将A (),2n -代入4y x=中,得2n =-. …………………………………………………2分 将A ()2,2--,B (1,4)代入y kx b =+中,得22,4.k b k b -+=-⎧⎨+=⎩ ………………………3分解得2,2.k b =⎧⎨=⎩∴22y x =+. ……………………………………………………………4分(2)当0x =时,2y =.∴2OC =.……5分 ∴12222AOC S =⨯⨯= .…………6分(3)2x <-或01x <<. …………………………………………………………………8分 26.解:(1)2,14.……………………………………………………………………………2分(第24题)(第26题)(2)①当点E 在BA 上运动时,如图①,此时05t <≤.分别过点E ,A 作EG ⊥BC ,AH ⊥BC ,垂足分别为G ,H ,则△BEG ∽△BAH . ∴BE EG BA AH =,即54t EG =,∴45EG t =.…………3分 ∴211422255y BF EG t t t =⋅=⋅⋅=.……………………4分② 当点E 在DC 上运动时,如图②,此时711t ≤<. ∴11CE t =-,∴()115555112222y BC CE t t =⋅=⨯⨯-=-. …………5分(自变量的取值范围写全写对得1分,否则0分) …6分 (3)当05t <≤时,2275t =,∴t =. …………7分当711t ≤<时,555722t -=, ∴8.2t =. …………8分∴t =s 或8.2t = s 时,EBF ∆与梯形ABCD 的面积之比为1:2. 27.解:(1)① 6 . …………………………………………………………………………2分②(图略)取EP 中点G ,连接MG .梯形AEPD 中,∵M 、G 分别是AD 、EP 的中点, ∴()12MG AE DP =+.……………………………………3分 由折叠得∠EMP =∠B =90︒,又G 为EP 的中点,∴12MG EP =.……………………………………………4分故EP AE DP =+.…………………………………………5分 (2)△PDM 的周长保持不变. 证明:如图,设AM x =cm ,Rt △EAM 中,由222(4)AE x AE +=-,可得:2128AE x =-.…6分∵∠AME +∠AEM =90︒,∠AME +∠PMD =90︒,∴∠AEM =∠PMD .又∵∠A =∠D =90︒,∴△AEM ∽△DMP . ……………………………………………7分 ∴DMP AEM C DM C AE = ,即24428DMP C x x x -=+- ,∴24(4)828DMP xC x x-=⋅+=- cm .…………8分 故△PDM 的周长保持不变.28.解:(1)A (0,4),C (8,0).…………………………………………………………2分(2)易得D (3,0),CD =5.设直线AC 对应的函数关系式为y kx b =+,(第27题)NFPECDB MA则4,80.b k b =⎧⎨+=⎩ 解得1,24.k b ⎧=-⎪⎨⎪=⎩ ∴142y x =-+. ……………………………………3分①当DE =DC 时,∵OA =4,OD =3.∴DA =5,∴1E (0,4). ………………………4分 ②当ED =EC 时,可得2E (112,54).……………5分 ③当CD =CE 时,如图,过点E 作EG ⊥CD , 则△CEG ∽△CAO ,∴EG CG CEOA OC AC==.即EG =CG =3E(8-.……………………………………6分 综上,符合条件的点E 有三个:1E (0,4),2E (112,54),3E(8-). (3)如图,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q .设P (m ,213442m m -++),则Q (m ,142m -+).①当08m <<时,PQ =(213442m m -++)-(142m -+)=2124m m -+,22118(2)(4)1624APC CPQ APQ S S S m m m =+=⨯⨯-+=--+ ,…………………………7分∴016S <≤; ……………………………………………………………………………8分 ②当20m -<<时,PQ =(142m -+)-(213442m m -++)=2124m m -,22118(2)(4)1624APC CPQ APQ S S S m m m =-=⨯⨯-=-- ,∴020S <<.………………………………………………………………………………9分 故16S =时,相应的点P 有且只有两个.………………………………………………10分。
2010年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.2.答题前将密封线以内的项目填写清楚.参考公式:二次函数()图象的顶点坐标为. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是【 】(A )(B )(C )(D ) 【答案】A【评析】作为整张试卷的第一题,直接考查“相反数”,不偏不难,有利于学生稳定情绪,增强信心,进入考试的正常状态,发挥水平.【课标】借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).2.我省2009年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】 (A )元 (B )元 (C )元(D )元 【答案】B【评析】该知识点自05年实行课改以来,除09年以外,每年都要考查,这里结合我省经济发展实际,旨在使学生的解题过程成为一个知识信息生成的过程,具有教育性和现实意义.该知识点需要注意单位和小数的科学计数法表示.【课标】了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示). 3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为:1。
71,1。
85,1。
85,1.96,2。
10,2。
31.则这组数据的众数和极差分别是【 】 (A )1。
85和0。
21 (B )2。
11和0。
46 (C )1.85和0.60(D )2.31和0。
60 【答案】C【评析】通过体育测试这样一个每位学生都熟知的学生生活的情景进行设置,极具公平性.直接考查众数、极差等统计知识,具有一定的概括性,体现了统计来源于生活、应用于生活的思想.【课标】探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度.4.如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③.其中正确的有【 】(A )3个 (B )2个 (C )1个 (D )0个 【答案】A【评析】涉及三角形中位线的图形是一个重要的基本图形,其蕴涵的数学知识点较多,综合性较强,但难度又不大,因此常被命题人眷顾,此题涵盖了中位线性质、三角形相似、比例线段等知识,是一道非常好的题目. 5.方程的根是【 】(A )(B ) (C )(D ) 【答案】D【评析】本题是最基本的一元二次方程的求解,旨在考查解一元二次方程的基本方法和基本解题过程.6.如图,将△ABC 绕点C (0, 1)旋转180°得到△A ’B'C ,设点A'的坐标为,则点A 的坐标为【 】(A )(B ) (C )(D ) 【答案】D(第4题)ABCDE(第6题)【评析】此题将图形与坐标、旋转有机结合起来,将图形的旋转变化(动态)与准确定位(静态)有机结合起来,考查学生在图形变换过程中的观察、探究、判断能力以及数形结合思想方法的运用能力,体现了重要的思想方法重点考查的思路.认真阅读领会题意后,抓住运动的本质特点,可将本题简化为线段A ’C 绕着端点C 逆旋转180°后,求点A 的坐标;或者已知线段一个端点和中点坐标,求另一端点的坐标;或者将图形(坐标系)整体向上(向下)平移一个单位.这道题作为选择题的把关题,其难度提升在于坐标点的符号化,以此来甄别初中生符号感的水平.但解决这类含有字母的选择题时,使用特殊值法非常奏效.即将对应点的坐标特殊化,进行验证.此方法只能作为最后考试技巧交给学生,平时教学中还应当进行正面解答,以深刻领会考试的意图,检验考查目标的达成情况. 二、填空题(每小题3分,共27分) 7.计算=__________________.【答案】5【评析】本题考查绝对值、平方、加减运算等基本概念和技能,属于基本送分题. 8.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是___________. 【答案】【评析】本题考查数感、数学估算能力、数形结合思想.9.写出一个y 随x 增大而增大的一次函数的解析式:__________________. 【答案】答案不唯一,如y =x 等.【评析】此题涉及到函数知识的考查,同时又是结论开放性试题,给学生足够的自由选择的空间,使得不同程度的学生都可以在这道题上得以发挥.该题出现学生书写含有字母系数或常数项的现象,只要给出字母的控制条件,使得解析式符合题目要求就应该给分. 10.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________. 【答案】75°(第8题)(第10【评析】该题入口宽,解法灵活,涉及的基本图形可归结为四边形内角和问题.如图,在演变过程中,∠A+∠B+∠C+∠D=360°保持不变.若引入有向角(方向的该变量,逆时针为正,顺时针为负),则可将问题推广到任意星型角的求和问题,即沿着星型角的边运动,方向的该变量的代数和等于自转的角度. 三角板是学生最为熟悉的工具,用一副三角板(角的特征和边的关系),或者相同的三角板进行组合图形,或者作图形变换,可以演变出非常丰富精彩的数学问题,基于它的低起点、高落点、可操作等特点,三角板问题已为中考数学的热点问题,我省近几年的中考数学试题中就频繁出现.平时多引导学生摆弄三角板,通过拼、凑、叠、平移和旋转等变换,多猜想、多探讨、多思考、多研究,使学生在一个充满探索的运动过程中理解数学,提出新问题,解决新问题,从中感受数学创造的乐趣,增进学好数学的信心,形成应用意识、创新意识. 11.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是上异于点C 、A 的一点,若∠ABO =32°,则∠ADC 的度数是______________. 【答案】29°【评析】本题考查直线与圆相切的性质、直角三角形锐角互余、圆周角与圆心角的关系等知识点,常规题型,难度适中,若“点D 是上异于点C 、A 的一点"改为“点D 是圆周上异于点C 、A 的一点",会出现两种情况.多解问题多考查学生思维的缜密性,学生漏解的根本原因多是对问题考虑不周,这需要引导学生加深对数学知识本质的理解,增加多解问题的知识积累.12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________. 【答案】【评析】概率与统计在人们生活中的重要作用决定了它成为《数学课程标准》中不可缺少的(第11题) AB CDOABC DA BC DA BC D 2 D 1AB1CDB 2组成部分.本题从以下两方面体现了课标的要求:一是按照概率这个数学分支发展起源的特点,本题背景“抽取扑克牌”具有明显的游戏色彩,符合概率的定义;二是解答本题需要用到列表或画树状图的基本方法.背景为考生所熟悉,问题设置难易适中.本题易错点是确定是否重复抽取.13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为________. 【答案】7【评析】“视图”是以在“视”的基础上的“对应”为特征,建立起三维的几何体与二维的平面图形之间的对应关系;本题给出三视图中的主、左两视图,逆向考查其直观图的特征,适当地加大了对学生空间观念的考查力度,解题时需要在大脑中模拟主视、左视二种可视活动,同时也考察了学生的观察能力、归纳概括能力和逆向思维能力,题目立足课本,背景公平自然,也促进我们的数学课堂要关注具体的数学活动过程,给学生积累思维的基础.14.如图矩形ABCD 中,AB =1,AD =,以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为______________________. 【答案】【评析】解答本题需要连结AE,判定扇形角的度数.该题将圆与矩形结合在一起,涉及到矩形、扇形、45°角直角三角形的性质及其面积计算,考察了学生的观察、分析、转化能力和对立统一、数形结合等思想方法的运用.此题出错的因素有两点,一是不会添加辅助线;二是结论合成化简(没必要)出错.15.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________. 【答案】2≤AD <3【评析】虽然本题题干只涉及到30°角的直角三角形和相等线段,问题呈现简单明了,但却蕴涵丰富,体现了在知识的交汇点、以能力立意的命题理念,考查学(第15题)ADCBE(第14题)生在几何图形的运动变化中,探索发现确定特殊位置的能力,渗透了动与静既对立又统一的辩证思想,使学生活跃思维、升华认知.解决本题的关键是确定2≤AD.下面是该题的不同解法:⑴直线与圆的位置关系:,;⑵垂线段最短:,;⑶三角函数:,;⑷分式函数:,,(用换元法、判别式法可解);⑸垂线段最短:□ADEG,,;⑹平行线间距离最短:,.⑺平方非负数:,,,.⑻正弦定理:△BDE中,,.该题的解题思路还有探究的空间.三、解答题(本大题共8个大题,满分75分)先化简,再求值,其中.【答案】选一:(A-B)÷C……1分……5分……7分当x=3时,原式……8分选二:A-B÷C……1分……3分……4分……7分当x=3时,原式……8分【评析】代数中的化简求值是数学课程标准所规定的一项基本内容,它涉及到对运算的理解以及运算技能的掌握两个方面.本题以两种形式呈现问题让学生选择,给学生一定的自由度,学生可根据自己的解题特点进行筛选,体现了对学生的人文关怀,同时也不失对平方差公式、分式的四则运算、分式的基本形式等核心知识的考查. 17.(9分)如图,四边形ABCD 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和B ’C 相交于点O ,连接BB'.(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB'O ≌△CDO .【答案】⑴△ABB ’,△AOC ,△BB'C ……3分⑵ 在□ABCD 中,AB =DC ,∠ABC =∠D . 由轴对称知AB'=AB ,∠ABC =∠AB ’C . ∴AB ’=CD ,∠AB ’O =∠D .……7分 在△AB ’O 和△CDO 中,∵∠AB'O =∠D ,∠AOB ’=∠COD ,AB ’=CD , ∴△AB ’O ≌△CDO .……9分【评析】本题容易在教材中找到原形,属于基本题型,通过对等腰三角形、平行四边形、全等三角形、轴对称图形等相关知识的运用,考查学生严密的逻辑思维能力和严谨的数学表达能力.此题给我们启示是,在教学过程中,不要误解《课程标准》对教学的要求,将教学极端化,而是更加重视对双基的教学,重视引导学生加强对数学本质问题的理解,在改变学生学习方式的同时,对基础的常规题目仍然作为教学的重点. 18.(9分)“校园手机"现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?【答案】⑴家长人数为80÷20%=400 ……3分(正确补全图①)……5分⑵ 表示家长“赞成”的圆心角的度数为×360°=36°……7分 ⑶学生恰好持“无所谓"态度的概率是=0。
2010年浙江省杭州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)232C1+.5.(3分)(2010•杭州)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图6.(3分)(2010•杭州)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自7.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()8.(3分)(2010•杭州)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=().C D.10.(3分)(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2010•杭州)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为_________人.12.(4分)(2013•泰安)分解因式:m3﹣4m=_________.13.(4分)(2010•杭州)如图,已知∠1=∠2=∠3=62°,则∠4=_________度.14.(4分)(2010•杭州)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要_________位.15.(4分)(2010•杭州)先化简﹣(﹣),再求得它的近似值为_________(精确到0.01,≈1.414,≈1.732).16.(4分)(2010•杭州)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=_________.三、解答题(共8小题,满分66分)17.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.18.(6分)(2010•杭州)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.19.(6分)(2010•杭州)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.20.(8分)(2010•杭州)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21.(8分)(2010•杭州)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.22.(10分)(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.23.(10分)(2010•杭州)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.24.(12分)(2010•杭州)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x 轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.2010年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)232C1+.5.(3分)(2010•杭州)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图6.(3分)(2010•杭州)16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自7.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()8.(3分)(2010•杭州)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=().C D.,<,,解集都是正<,∴10.(3分)(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.∴﹣,=,顶点坐标是(,)(﹣)+>,正确;﹣>,的顶点坐标为(,.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2010•杭州)至2009年末,杭州市参加基本养老保险约有3 422 000人,用科学记数法表示应为 3.422×106人.12.(4分)(2013•泰安)分解因式:m3﹣4m=m(m﹣2)(m+2).13.(4分)(2010•杭州)如图,已知∠1=∠2=∠3=62°,则∠4=118度.14.(4分)(2010•杭州)一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要4位.所在的范围解答即可.;;;..15.(4分)(2010•杭州)先化简﹣(﹣),再求得它的近似值为 5.20(精确到0.01,≈1.414,≈1.732).化简原式后再解答.﹣(﹣﹣()+16.(4分)(2010•杭州)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=3+3.BF=BG=3OD=AB=6,﹣CG=BC+BG=6+33=3三、解答题(共8小题,满分66分)17.(6分)(2010•杭州)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.318.(6分)(2010•杭州)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.19.(6分)(2010•杭州)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确.与双曲线的交点,然后要找到它们变化的内容及变化的规律:这个点的坐标,分别计算出对应的y=)把y=20.(8分)(2010•杭州)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.天的平均每天参观人数约为=20.4521.(8分)(2010•杭州)已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求+的值.h==∴==.22.(10分)(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.又∵=AD=2AE=EC=AD=BD(BDBC=223.(10分)(2010•杭州)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.=200t==524.(12分)(2010•杭州)在平面直角坐标系xOy中,抛物线的解析式是y=+1,点C的坐标为(﹣4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x 轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.+1,得:=,即:y=﹣±,±(﹣CM=倍,即时,得﹣,时,得t=2﹣。
2010年河南中考数学试题及答案一、选择题(共15题,每小题2分,共30分)1、若一个数加上56后,所得的和乘以- 3后等于11,那么这个数是:A. -9B. -6C. 9D. 62、在一个1到99的数列中,能被7整除或是个位为7的数共有多少个?A. 14B. 15C. 20D. 213、()的值最大.A. (0.7)^2B. 0.7^2C. (0.01)^2D. 0.01^24、将(3-√2)²的值按照由大到小的顺序排列,则正确的是:A. (√2-3)² < (3-√2)² < 9-6√2< 7B. 9-6√2< (√2-3)² < 7 < (3-√2)²C. (3-√2)² < 7 < (√2-3)²<9-6√2D. 7 < (3-√2)²< (√2-3)²<9-6√25、下列各式中,错误的式子是:A. 2/3<1/2B. 5/6>2/3C. 1/3<1/4D. 7/12<3/46、化简以下算式:- 12 ÷ 6 + (- 3) × 4 + ( - 24 ÷ - 4)A. -35B. -25C. -15D. -57、下列说法正确的是:A. 说法②和④B. 只有说法③C. 说法①和④D. 只有说法②8、已知平行线l与m的夹角是45°,则直线n与m的夹角可能是:A. 90°B. 45°C. 135°D. 180°9、小韩把一些铅笔6支一包,共分为若干包。
剩下1支,是包装了27个铅笔后的情况,剩下3支是包装了多少个铅笔后的情况?A. 101B. 102C. 103D. 10410、如图所示,矩形ABCD中,∠B=90°,O为BC的中点,则∠AOD的度数是()。
湖北省孝感市2010年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.2010(1)-的值是A .1 B.1- C .2010 D.2010-2.将一副三角板按如图所示的方式摆放在一起,则1∠的度数是A .55° B.65° C .75° D.85°3.如图所示,数轴上两点A B 、分别表示实数a b 、,则下列四个数中最大的一个数是A .a B.b C .1a D .1b4.将右边正方体的平面展开图重新折成正方体后,“董”字对面的字是 A .孝 B.感C .动 D.天5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是A .12 B.13 C .14 D.166.如图,ABC △的三个顶点分别在正方形网格的格点上,则tan A ∠的值是A .65 B.56C7.均匀地向如图所示的一个容器注水,最后把容器注满.在注水过程中,能大致反映水面高度h 随时间t 变化的图像是A .B .C . D. 8.双曲线4y x =与2y x=在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A B 、两点,连接OA OB 、,则AOB △的面积为 A .1 B.2 C.3 D.4(第2题图)(第3题图)(第4题图)(第5题图)(第6题图)ABOxy(第8题图)9.方程2220x x --=的一较小根为1x ,下面对1x 的估计正确的是 A .121x -<<- B.110x -<< C.101x << D.112x <<10.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是A .8B.C.D.11.有四个命题:①两条直线被第三条直线所截,同旁内角互补;②有两边和其中一边的对角对应相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则17d <<.其中正确的命题有 A .1个 B.2个 C.3个 D.4个12.若直线22x y m +=与直线223x y m +=+(m 为常数)的交点在第四象限,则整数m 的值为A .3210---,,, B.2101--,,, C.1012-,,, D.0123,,, 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13是整数的最小正整数n = ☆ .14.如图,长方形ABCD 的长4AB =,宽3BC =,以AB 所在直线为轴,将长方形旋转一周后所得几何体的主视图的面积是 ☆ . 15.对红星学校某年级学生的体重(单位:kg ,精确到1kg )情况进行了抽查,将所得数据处理后分成A B C 、、三组(每组含最低值,不含最高值),并制成图表(部分数据未填).在被抽查的学生中偏瘦和偏胖的学生共有 ☆人.16.为外一点,分别切于点,50APB ∠=°,点C 为O ⊙上一点(不与A B 、重合),则ACB ∠的度数为 ☆ . 17.如图,一艘船向正北航行,在A 处看到灯塔S 在船的北偏东30°的方向上,航行12海里到达B 点.在B 处看到灯塔S 在船的北偏东60°的方向上.此船继续沿正北方向航行过程中距灯塔S 的最近距离是 ☆ 海里(不作近似计算).18.用“○”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 ☆ 个“○”.A(第10题图)A DBC(第14题图) A B C 16% 20%(第15题图) 60° 30°(第17题图)三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上) 19.(本题满分6分). 解方程:211033x x x-+-=-- 20.(本题满分8分).某市为了节约生活用水,计划制定每位居民统一的月用水量标准,然后根据标准,实行分段收费.为此,对居民上年度的月均用水量进行了抽样调查,并根据调查结果绘制了上年度月均用水量的频数分布直方图(图中分组含最低值,不含最高值),请根据图中信息解答下列问题:(1)本次调查的居民人数为 ☆ 人;(2分)(2)本次调查的居民月均用水量的中位数落在频数分布直方图中的第 ☆ 小组内(从左至右数);(3分)(3)当地政府希望让85%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定为多少吨时较为合适?(3分)(第20题图)「问题情境」勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. 「定理表述」请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述):(3分)「尝试证明」以图1中的直角三角形为基础,可以构造出以a b 、为底,以a b +为高的直角梯形(如图2).请你利用图2,验证勾股定理;(4分) 「知识拓展」利用图2中的直角梯形,我们可以证明a bc+< BC a b =+ ,AD = ☆ .又 在直角梯形ABCD 中有BC ☆ AD (填大小关系),即 ☆ .a b c+∴<.(3分)22.(本题满分10分)关于x 的一元二次方程210x x p -+-=有两实数根12x x 、. (1)求p 的取值范围;(4分)(2)若1122[2(1)][2(1)]9x x x x +-+-=,求p 的值.(6分)(第21题图1) (第21题图2)如图1,O ⊙是边长为6的等边ABC △的外接圆,点D 在 BC 上运动(不与B C 、重合),过点D 作DE BC DE ∥,交AC 的延长线于点E ,连接AD CD 、. (1)在图1中,当AD =AE 的长;(4分)(2)当点D 为 BC 的中点时(如图2):①DE 与O ⊙的位置关系是 ☆ ;(2分) ②求ADC △的内切圆半径r .(4分)24.(本题满分10分)X 市与W 市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数与该列车每次拖挂车厢节数的部分数据如下:(1)请你根据上表数据,在三个函数模型:y kx b =+①(k b ,为常数,0k ≠);y x=②(k 为常数,0k ≠);2y a x b x c =++③(a b c ,,为常数,0a ≠)中,选取一个合适的函数模型,求出的m 关于n 的函数关系式是m = ☆ (不写n 的范围);(4分) (2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q 最多(每节车厢载客量设定为常数p ).(6分)(第23题图1) (第23题图2)如图,已知二次函数图像的顶点坐标为(20),,直线1y x =+与二次函数的图像交于A B 、两点,其中点A 在y 轴上.(1)二次函数的解析式为y = ☆ ;(3分)(2)证明点(21)m m --,不在(1)中所求的二次函数的图像上;(3分)(3)若C 为线段AB 的中点,过C 点作CE x ⊥轴于E 点,CE 与二次函数的图像交于D 点.①y 轴上存在点K ,使以K A D C 、、、为顶点的四边形是平行四边形,则K 点的坐标是 ☆ ;(2分)②二次函数的图像上是否存在点P ,使得2POE ABD S S =△△?若存在,求出P 点坐标;若不存在,请说明理由.(4分)(第25题图)湖北省孝感市2010年中考数学参考答案一、选择题1A 2C 3D 4C 5B 6A 7C 8A 9B 10D 11A 12B 二、填空题13.3; 14.24; 15.18; 16.65°或115°; 17. 18.181 说明:第16题答对一解给2分. 三、解答题19.解:方程两边同乘以(3)x -,得21(3)0x x ----= ············································································································· 2分解此方程,得2x =. ············································································································ 4分 当2x =时,30x -≠.2x ∴=是原方程的解. ································································ 5分∴原方程的解是2x = ············································································································ 6分 20.解:(1)100; ················································································································· 2分 (2)5(或五); ···················································································································· 5分 (3)居民月用水量标准定为3吨较为合适. ······································································· 8分 21.「定理表述」 如果直角三角形的两直角边长分别为a b 、,斜边长为c ,那么222a b c +=. ················ 3分 说明:只有文字语言,没有符号语言给2分. 「尝试证明」Rt Rt ABE ECD △≌△,AEB EDC ∴∠=∠.又90EDC DEC ∠+∠=°,90AEB DEC ∴∠+∠=°. 90AED ∴∠=°. ································································ 5分Rt Rt Rt ABE DEC AED ABCD S S S S =++ △△△梯形,21111()()2222a b a b ab ab c ∴++=++. 整理,得222a b c +=. ········································································································· 7分 「知识拓展」AD =;BC AD <;a b +<. ·········································································· 10分说明:填对一个给1分. 22.解:(1)由题意得:2(1)4(1)0p ∆=---≥. ··································································································· 2分 解得,54p ≤. ····················································································································· 4分 (2)由1122[2(1)][2(1)]9x x x x +-+-=得,(第21题图2)221122(2)(2)9x x x x +-+-=. ···························································································· 6分 12x x 、是方程210x x p -+-=的两实数根,21110x x p ∴-+-=,22210x x p -+-=, 22112211x x p x x p ∴-=--=-,.(21)(21)9p p ∴+-+-=,即2(1)9p +=.···································································· 8分 2p ∴=,或4p =-. ·········································································································· 9分 54p ≤,∴所求p 的值为4p =-. ··············································································· 10分说明:1.可利用121x x +=,得121x x =-,211x x =-代入原求值式中求解; 2.把已知等式按多项式乘法展开后求解. 23.解:(1)如图1,ABC △为等边三角形,60ACB B ∴∠=∠=°. 又DE BC ∥,E ACB ∴∠=∠.又B ADC E ADC ∠=∠∴∠=∠,. 又DAC EAD ∠=∠,ADC AED ∴△∽△. ······················· 2分AD ACAE AD∴=,又AD = 2402026633AD AE AC ⎛⎫∴=== ⎪⎝⎭或. ······································· 4分 (2)①相切: ······················································································································ 6分②如图2,当D 为 BC的中点时,有 BD DC =, 30BAD DAC ∴∠=∠=°,又AB AC = AD ∴垂直平分BC .AD ∴为O ⊙的直径,90ACD ∴∠=°. ············································································ 7分 在Rt ACD △中,30DAC ∠=°,6AC =,6tan 306DC ∴===·°2AD DC ∴== ································································· 8分 作Rt ADC △的内切圆O '⊙,分别切AD AC DC 、、于F G H 、、点,易知CG CH r ==,6AG AF r ∴==-,DH DF r ==. AF DF AD +=6r r ∴-+=.(第23题图1)(第23题图2)26r ∴-=-+3r ∴= ·················································································· 10分 说明:1.不作出内切圆,求出三边后直接用2AC DC ADr +-=计算不扣分;2.可利用面积法求r . 24.解:(1)224m n =-+; ······························································································ 4分 (2)Q pmn = ······················································································································ 6分 =2(-224)224pn n pn pn +=-+. ······················································································· 7分20p -< ,Q ∴有最大值.∴当2462(2)pn p =-=⨯-时,Q 取最大值.此时,224262412m n =-+=-⨯+=. ··········································································· 9分 ∴一列火车每次挂6节车厢,一天往返12次时, 一天的设计运营人数最多. ································································································· 10分 说明:第(2)问中函数关系式列为Q mn =,而求得的结果正确的给4分.25.(1)解:2114y x x =-+(或21(2)4y x =-). ·························································· 3分 (2)证明:设点(21)m m --,在二次函数2114y x x =-+的图象上, 则有:212114m m m -=++. ····························································································· 4分整理得2480m m -+=,2(4)48160∆=--⨯=-< .∴原方程无解. ······················································································································ 5分 ∴点(21)m m --,不在二次函数2114y x x =-+的图象上. ··············································· 6分 说明:由2112-14m m m ++-()得到211102m ⎛⎫-+> ⎪⎝⎭,从而判断点(2-1)m m -,不在二次函数图象上的同样给分.(3)解:(05)K ①,或(03)-,; ·························································································· 8分②二次函数的图象上存在点P ,使得2POE ABD S S =△△.如图,过点B 作BF x ⊥轴于F ,则BF CE AO ∥∥,又C 为AB 中点,OE EF ∴=.由2114y x x =-+和1y x =+可求得点(89)B ,.(40)4145E D C ∴,,(,),(,).AD x ∴∥轴.12244162ABD ACD S S ∴==⨯⨯⨯=△△. ············································································ 9分设2114P x x x ⎛⎫-+ ⎪⎝⎭,,由题意有:221114122242POE S x x x x ⎛⎫=⨯-+=-+ ⎪⎝⎭△. ································································· 10分 2POE ABD S S = △△,2122322x x ∴-+=. 解得6x =-或10x =. ························································ 11分当6x =-时,13661164y =⨯++=,当10x =时,1100101164y =⨯-+=.∴存在点(616)P -,和(1016)P ,,使得2POE ABD S S =△△. ································································································ 12分说明:在求出16ABD S =△后,也可由2POE ABD S S =△△得到POE △的边OE 上的高为16,然后由211614x x =-+可求出P 点坐标. 注意:1.按照评分标准分步评分,不得随意变更给分点;2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.(第25题图)。
2010年中考数学试卷
一、选择题(每小题3分,共18分)
1.的相反数是【 】
(A) (B) (C) (D)
2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】
(A)元 (B)元
(C)元 (D)元
3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:
1.71,1.85,1.85,1.96,
2.10,2.31.则这组数据的众数和极差分别是【 】
(A)1.85和0.21 (B)2.11和0.46
(C)1.85和0.60 (D)2.31和0.60
4.如图,△ABC中,点DE分别是ABAC的中点,则下列结论:①BC=2DE;
②△ADE∽△ABC;③.其中正确的有【 】
(第4题)
(A)3个 (B)2个
(C)1个 (D)0个
5.方程的根是【 】
(A) (B) (C) (D)
6.如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为则点A的坐标为【 】
(第6题)
(A) (B)
(C) (D)
二、填空题(每小题3分,共27分)
7.计算=__________________.
(第8题)
8.若将三个数表示在
数轴上,其中能被如图所示的墨迹覆盖的数是__________________.9.写出一个y随x增大而增大的一次函数的解析式:
__________________.
10.将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.
(第10题)
(第11题)
11.如图,AB切⊙O于点A,BO交⊙O于点C,点D是上异于点C、A的一点,若∠ABO=32°,则∠ADC的度数是______________.
12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.
(第14题)
(第15题)
(第13题)
主视图
左视图
14.如图矩形ABCD中,AD=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为______________________.
15.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是___________________.
三、解答题(本大题共8个大题,满分75分)
16.(8分)已知将它们组合成或的形式,请你从中任选一种进行计算,先化简,再求值其中.
17.(9分)如图,四边形ABCD是平行四边形,△AB’C和△ABC关
于AC所在的直线对称,AD和B’C相交于点O,连接BB’.
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证:△AB’O≌△CDO.
18.(9分)“校园手机”现象越来越受到社会的关注.“五
一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态
度的学生的概率是多少?
学生及家长对中学生带手机
的态度统计图
学生及家长对中学生带手机的态度统计图
图① 图②
19.(9分)如图,在梯形ABCD中,AD//BC,E是BC的中
点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长
为x.
(1)当x的值为____________时,以点P、A、D、E为顶点的四边形
为直角梯形;
(2)当x的值为____________时,以点P、A、D、E为顶点的四边形
为平行四边形;;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能
否构成菱形?试说明理由.
20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2.单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?
21.(9分)如图,直线与反比例函数的图象交于A,B两点.(1)求、的值;
(2)直接写出时x的取值范围;
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
22.(10分)
(1)操作发现
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到
△GBE,且点G在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求的值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求的值.
23.(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的
面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.。