电路理论基础第三版 答案 陈希有
- 格式:pdf
- 大小:352.86 KB
- 文档页数:32
电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。
当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。
所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。
答案1.3解:(a)元件a电压和电流为关联参考方向。
元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。
(b) 元件b电压和电流为关联参考方向。
元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。
(c) 元件c电压和电流为非关联参考方向。
元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。
答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。
(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。
i答案10.1解:t ::: 0时,电容处于开路,故u C (0 _) = 10mA 2k 「- 20V 由换路定律得:u C (0 .) +(0”20V换路后一瞬间,两电阻为串联,总电压为 u C (0 )。
所以再由节点①的KCL 方程得:i C (0 ) =10mA -i 1(0 .)二(10-5)mA =5mA答案10.2解:t :::0时电容处于开路,电感处于短路,3门电阻与61电阻相并联,所以45V6i(0J3A ,L(0Ji(0」= 2A(5+8 + 6 3)0 6+36+3u C (0J =8 i(0J = 24V 由换路定律得:U C (0 ) 7C (0J =24V ,匚(0.) “L (0_)=2A由KVL 得开关电压:u(0 ) --U c (0 ) 8 匚(0 .)=(-24 8 2)V 8V答案10.3解:t ::: 0时电容处于开路,i =0 ,受控源源电压4i =0 ,所以U C (0 J =U C (0」=U 1(0」61.5V = 0.6V(9 6尸等效电阻i i (0 )=%(0 .) (2 2)k 」=5mA(b)所示。
R 段「4i (6 3)i容i时间常数二 R C 二 0 ・1st 0后电路为零输入响应,故电容电压为:u C (t)二 u C (0 ,)e~ =0.6e A0°V6“电阻电压为:“⑴工―6门 i 6门 ^C-dUc ^0.72e 10t V (t 0)dt答案10.43解:t :::0时电感处于短路,故L(0J= 39A=3A ,由换路定律得:6 + 3i L (0^i L (0J=3A求等效电阻的电路如图(b)所示。
等效电阻R 「6 •色卫=8」,时间常数.二L/R =0.5s6+3t 0后电路为零输入响应,故电感电流为i L (t) =i L (0 .)e^^ =3e 2t A (t _o ) 电感电压._2tu ,(t)二 L 匕二-24e V (t .0)dt31电阻电流为U 36C 汽L +U 1小2八i 3 2e A33「3「31电阻消耗的能量为:W3°= f 30i ;dt = f12/dt =12[-0.25ed=3W答案10.5解:由换路定律得i L (0.) “L (0」=0,达到稳态时电感处于短路,故LG) =20/4=5A求等效电阻的电路如图(b)所示。
答案13.3解:(1) 由公式l t I B I Tt =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。
将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。
(a)(b)(c)(d)答案13.6解:由关联矩阵A 画出网络图,如图题13.6所示,由图写出基本割集矩阵如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=011101110101110001C图题13.6答案13.7解:由Tt l C B -=得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=0011011011101101t B , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==1011010001100010111000011101]|[t lB B B 由B 矩阵画出各基本回路,如图(a )~(d)所示。
将各基本回路综合在一起得题中所求线图,如图13.7(e )所示。
图题13.76(a)(b)(c)(d)(e)答案13.8解:由Tt l B C -=得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=101011111011100l C , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==1011010001110010110100011100]|[tl C C C 答案13.9解:由基本回路矩阵可知:支路1、2、3为连支,4、5、6为树支,已知树支电压,可以求出全部连支电压。
=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321u u u V 628V 1264110111101t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-=U B U l 连支电流等于连支电压除以相应支路的电阻。
答案7.1解:设星形联接电源电路如图(a)所示,对称星形联接的三相电源线电压有效值倍,相位上超前前序相电压30︒。
即AB 3030)V=538.67cos()V u t t ωω=-︒+︒BC 538.67cos(120)V u t ω=-︒CA 538.67cos(240)V u t ω=-︒各相电压和线电压的相量图可表达如图(b)所示。
AB CN(a)&U &(b)U-&答案7.2解:题给三个相电压虽相位彼此相差120o ,但幅值不同,属于非对称三相电压,须按KVL 计算线电压。
设AN 127V U =& BN 127240V=(-63.5-j110)V U =∠︒& CN135120V=(-67.5+j116.9)V U =∠︒& 则ABANBNBC BN CN CA CN AN(190.5j 110)V 22030V (4j226.9)V 226.989V (194.5j 116.9)V 226.9149V UU U U U U U U U =-=+=∠︒=-=-=∠-︒=-=-+=∠︒&&&&&&&&& 即线电压有效值分别为220V ,226.9V ,226.9V 。
答案7.3设负载线电流分别为A B C i i i 、、,由KCL 可得A B C0I I I =&&&++。
又A B C 10A I I I ===,则A B C i i i 、、的相位彼此相差120︒,符合电流对称条件,即线电流是对称的。
但相电流不一定对称。
例如,若在三角形负载回路存在环流0I &(例如,按三角形联接的三相变压器),则负载相电流不再对称,因为CA CA 0BC BC 0AB AB ',','I I I I I I I I I &&&&&&&&&+=+=+=不满足对称条件。
教材习题3答案部分(P73)答案略 答案解:(a ) 本题考虑到电桥平衡,再利用叠加定理,计算非常简单。
(1)3V 电压源单独作用,如图(a-1)、(a-2)所示。
(a-1)(a-2)由图(a-2)可得'3V1A 148348I ==⨯Ω+Ω+由分流公式得:''182A 483I I Ω=-⨯=-Ω+Ω(2)1A 电流源单独作用,如图(a-3)所示。
(a-3)考虑到电桥平衡,"0I =,在由分流公式得:"1131A A 134I =-⨯=-+ (3)叠加:'"1A I I I =+= '"11117/12A I I I =+=-2111 2.007W P I Ω=⨯=(b )(1)4V 电压源单独作用,如图(b-1)所示。
'I '由图(b-1)可得,'24V2V (2+2)U Ω⨯==Ω'136A I U =-=- ''21'5A I I I =+=-(2)2A 电流源单独作用,如图(b-2)所示。
(b-2)''222A=2V 22U ⨯=Ω⨯+ "''2311A 2I I =⨯= 对节点②列KCL 方程得,"""1132A 4A I U I +==对节点③列KCL 方程得,"""230I I U ++=解得"5A I =(3) 叠加'"1116A 4A=10A I I I =+=---'"5A 5A=10A I I I =+=---2111100W P I Ω=⨯Ω=答案略答案略答案解 :利用叠加定理,含源电阻网络中的电源分为一组,其作用为'I ,如图(b)所示。
S I 为一组,其单独作用的结果I '' 与S I 成比例,即:"S I kI =,如图(c)所示。
答案11.1解: (1)2020001e 1e 1e e )()(-ssdt s stdt t t s F stst stst =-=+-==∞-∞-∞-∞----⎰⎰ε (2)20)(20)(00)(1e)(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞+-∞+-∞-∞-----⎰⎰s s dts s t dt t t s F ts t s st st t答案11.2解:)/1(//1)(1τττ+=+-=s s A s A s A s F 由拉氏变换的微分、线性和积分性质得:)/1(/)()()/(]/)([)()]0()([)(22111112ττ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F答案11.3解:设25)}({)(11+==s t f s F L ,52)}({)(22+==s t f L s F 则)5)(2(10)()(21++=s s s F s F)(1t f 与)(2t f 的卷积为)e e (310]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221t t t tt ttt d d t f t f --------=⨯==⨯=⎰⎰ξξξξξξ对上式取拉氏变换得:)5)(2(10)5121(310)}(*)({21++=+-+=s s s s t f t f L 由此验证)()()}(*)({2121s F s F t f t f =L 。
答案11.4解:(a)6512)(2+++=s s s s F 3221+++=s A s A3|31221-=++=-=s s s A , 3|31221-=++=-=s s s A 所以t t s s t f 321e 5e 3}3523{)(---+-=+++-=L(b))2)(1(795)(23+++++=s s s s s s F 212)2)(1(3221+++++=+++++=s A s A s s s s s 2|2311=++=-=s s s A 1|1321-=++=-=s s s A 所以t t t t s s s L t f 21e e 2)(2)(}21122{)(----++'=+-++++=δδ (c)623)(2++=s s s F 22)5()1(5)5/3(++⨯=s 查表得)5sin(e 53)(t t f t-=答案11.5解:(a) 由运算电路(略)求得端口等效运算阻抗为:11262241)3/(142)]3/(14[21)(22i ++++=++++=s s ss s s s s s Z , 112611430)(22++++=s s s s s Z i (b) 画出运算电路如图11.5(c)所示U )(2s __在端口加电流,列写节点电压方程如下⎩⎨⎧-==++-=-+)2()]()([3)(3)()]5.0/(11[)()1()()()()1(2122s U s U s U s U s s U s I s U s U s由式(2)解得)(144)(2s U s ss U ⨯+=代入式(1)得)()()1221(s I s U s ss =+-+所以1212)(2i +++=s s s s Y答案11.6解:运算电路如图11.6(b)所示。
答案2.1解:本题练习分流、分压公式。
设电压、电流参考方向如图所示。
(a) 由分流公式得:23A 2A 23I R Ω⨯==Ω+解得75R =Ω(b) 由分压公式得:3V 2V 23R U R ⨯==Ω+解得47R =Ω答案2.2解:电路等效如图(b)所示。
20k Ω1U +-20k Ω(b)+_U图中等效电阻(13)520(13)k //5k k k 1359R +⨯=+ΩΩ=Ω=Ω++由分流公式得:220mA 2mA 20k RI R =⨯=+Ω电压220k 40V U I =Ω⨯=再对图(a)使用分压公式得:13==30V 1+3U U ⨯答案2.3解:设2R 与5k Ω的并联等效电阻为2325k 5k R R R ⨯Ω=+Ω(1)由已知条件得如下联立方程:32113130.05(2) 40k (3)eqR U UR R R R R ⎧==⎪+⎨⎪=+=Ω⎩由方程(2)、(3)解得138k R =Ω 32k R =Ω再将3R 代入(1)式得210k 3R =Ω答案2.4解:由并联电路分流公式,得1820mA 8mA (128)I Ω=⨯=+Ω2620mA 12mA (46)I Ω=⨯=+Ω由节点①的KCL 得128mA 12mA 4mA I I I =-=-=-答案2.5解:首先将电路化简成图(b)。
图 题2.5120Ω(a)(b)图中1(140100)240R =+Ω=Ω2(200160)120270360(200160)120R ⎡⎤+⨯=+Ω=Ω⎢⎥++⎣⎦ 由并联电路分流公式得211210A 6A R I R R =⨯=+及21104A I I =-=再由图(a)得321201A 360120I I =⨯=+由KVL 得,3131200100400V U U U I I =-=-=-答案2.6xRx(a-1)图2.6解:(a )设R 和r 为1级,则图题2.6(a)为2级再加x R 。
答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。
OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)SOC j I U Cω=(2) 由图(b)可知,当i 0Z =时,电阻两端电压U 与电阻R 无关,始终等于OC (0)U R ≠。
由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC 1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯90V u t ω=-()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。
U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。
解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压o U 可表示为o n1n 2U U U =-i i 1j 12j U C U R Cωω=-⨯+ i i i j 121j 2(j 1)U U CR U CR CR ωωω-=-=++ 当 0=R , o U 超前于i U 180;当 1R Cω=,o U 超前于i U ︒90;当 ∞→R , o U 与i U 同相位。
即当R 由零变到无穷时,o U 超前于i U 相位差从180到0变化。
答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。