2.3.1单跨静定梁的内力分析
- 格式:ppt
- 大小:154.00 KB
- 文档页数:7
单跨静定梁的内力计算单跨静定梁的内力计算是结构力学中的一个基本问题,通过计算可以得到梁在不同位置处的剪力、弯矩和轴力等内力参数。
这些内力参数是设计和分析梁的性能和安全性的重要依据。
梁的内力计算可以通过多种方法进行,常见的有静力方法、能量方法和受力平衡方法等。
下面将介绍静力方法和能量方法这两种常用的计算方法,并简要说明计算步骤和注意事项。
1. 静力方法:静力方法是一种基于受力平衡的计算方法,通过平衡受力来计算内力。
具体步骤如下:1.1 绘制受力图:根据梁的受力情况,画出受力图,标注各个受力的方向和大小,包括支持力、荷载力、剪力和弯矩等。
1.2 利用受力平衡条件分析:根据受力平衡条件,设置适当的方程组,解方程组得到未知力的大小。
1.3 计算内力:根据受力图和已知力的大小,应用受力平衡和几何关系,计算梁的不同位置处的剪力、弯矩和轴力等内力。
2. 能量方法:能量方法是通过能量原理来计算内力的一种方法,包括弹性势能原理和最小势能原理。
具体步骤如下:2.1 建立适当的变形假设和应变位移关系:对梁的受力状态进行分析,建立适当的变形假设,如小位移假设,然后利用应变位移关系得到各部位的应变和位移。
2.2 建立应变能和位移能的表达式:利用应变能和位移能的定义,建立它们的表达式,一般包括弯曲应变能、剪切应变能和轴向应变能等。
2.3 建立总能量和平衡方程:将总能量表示为应变能和位移能的和,再应用极值原理,建立平衡方程,对系统总能量求导,使其达到极值。
2.4 计算内力:通过求解平衡方程,得到梁在不同位置处的内力。
在进行单跨静定梁的内力计算时,需要注意以下几点:- 细化受力图的绘制,要准确标注各个受力的方向和大小。
- 对于复杂的受力情况,可采用多段剖分的方法,将梁分割为多个小段进行分析,再将结果整合得到整体的内力。
- 静力和能量方法是两种常用的计算方法,其结果应尽可能一致,以确保计算结果的准确性。
- 在应用能量方法计算内力时,应根据实际情况选择适当的应变能和位移能表达式。
简捷法绘制单跨静定梁的内力图分析(1)摘要:正确计算截面内力,快速绘制静定梁内力图十分重要,阐述了用简捷法作单跨静定梁的内力图的基本条件,并举例说明了内力图在集中力、集中力偶处的特点和规律,还强调了弯矩图中抛物线的开口方向以及控制截面的选择方法。
?关键词:简捷法;剪力;剪力图;弯矩;弯矩图?梁的内力图绘制的目的是用图示方法形象地表示出剪力Q、弯矩M沿梁长变化的情况,绘制梁的内力图是材料力学教材中的一个重点和难点内容,熟练、正确地绘制内力图是材料力学的一项基本功,也是后续课程结构力学的基础。
绘制梁内力图的方法有静力法、简捷法和叠加法,其中简捷法是利用剪力、弯矩和荷载集度之间的微分关系作图的一种简便方法,通常是用来确定梁的危险截面作为强度计算的依据,因此熟练掌握简捷法作梁的内力图是十分必要的。
?1 简捷法绘制单跨静定梁的内力图的基本要求?(1)能快速准确地计算单跨梁的支座反力(悬臂梁除外)?支座反力的正确与否直接影响内力的计算,因此在静力学的学习过程中要打好基础。
?(2)能用简便方法求解指定截面的内力?1.1 求剪力的简便方法?某截面的剪力等于该截面一侧所有外力在截面上投影的代数和,即Q=?Y??左侧外力?(或)?Y??右侧外力?代数和中的符号为截面左侧向上的外力(或右侧向下的外力)使截面产生正的剪力,反之产生负剪力。
(即外力左上右下为正) ?1.2 求弯矩的简便方法?某截面的弯矩等于该截面一侧所有外力对截面形心力矩的代数和,即M=?M??c左侧外力?(或?M??c右侧外力?)?代数和中的符号为截面的左边绕截面顺时针转的力矩或力偶矩(或右边绕截面逆时针转的力矩或力偶矩)使截面产生正的弯矩,反之产生负弯矩。
(即外力矩或力偶矩左顺右逆为正)?1.3 举例说明:求图1中1-1截面的剪力和弯矩?解:取左侧为研究对象,根据简便方法有:?Q?1=25-5×4=5kN M?1=25×2-5×4×2=10kN•m?验证:取右侧为研究对象,根据简便方法有:?Q=15-10=5kN M?1=10×4-15×2=10kN•m?1.4 能将梁正确分段,根据各段梁上的荷载情况,判断剪力图和弯矩图的形状,寻找控制面,算出各控制面的Q和M弯矩、剪力与荷载集度之间的微分关系如下:?dM(x)dx=Q(x)?dQ(x)dx=q(x)?d?2M(x)dx?2=q(x)?利用弯矩、剪力与荷载集度之间的微分关系及其几何意义,可总结出下列一些规律,用来校核或绘制梁的剪力图和弯矩图,其规律如下表所示:?注意:根据函数图线的几何意义,当q>0(向上)时,弯矩图为开口向下的二次抛物线;反之q<0(向下)一时,弯矩图为开口向上的二次抛物线,即抛物线的凹性和凸性和均布荷载的方向保持一致。