直流电机的拖动及应用
- 格式:docx
- 大小:24.53 KB
- 文档页数:5
电机与电力拖动1. 引言电机是一种将电能转化为机械能的设备,广泛应用于各个领域中。
电力拖动则指的是利用电动机驱动机械设备或系统进行运动或操作的过程。
本文将介绍电机的基本原理以及电力拖动的应用。
2. 电机的基本原理电机是通过电磁感应原理将电能转化为机械能的设备。
其基本原理为根据施加在导体上的电流产生的磁场与外部磁场之间的相互作用,进而产生力或转矩。
电机根据其工作原理的不同可以分为直流电机和交流电机。
直流电机是利用直流电源供电,通过直流电源的正反极性变化来产生旋转运动。
交流电机则是利用交流电源供电,通过交流电源的频率来产生旋转运动。
电机的主要构成部分包括定子和转子。
定子是固定不动的部分,其中包含了产生磁场的线圈。
转子则是可以转动的部分,通过与定子的磁场相互作用来产生力或转矩。
3. 电力拖动的应用电力拖动广泛应用于各个领域,例如工业自动化、交通运输以及家用电器等。
以下列举了几个常见的电力拖动应用:3.1 工业自动化在工业自动化中,电力拖动被广泛应用于各种生产设备和机械系统。
通过电动机驱动,可以实现自动化生产线的运行,提高生产效率和质量。
例如,自动化生产线中的输送带系统就是通过电动机驱动的。
电动机的转动产生的转矩传递给输送带,使其能够带动物料或产品在生产线上移动。
3.2 交通运输电力拖动在交通运输领域中起到了重要作用。
例如,电动汽车就是利用电动机作为动力源来驱动车辆运行。
电动汽车相比传统的内燃机汽车具有环保、高效等优势。
此外,电力拖动还被应用于电动火车、电动船舶等交通工具中,实现了对传统燃油动力的替代。
3.3 家用电器家用电器中的电机和电力拖动也是不可或缺的。
例如,洗衣机、空调、冰箱等家电产品都需要电机来驱动其工作。
电机驱动使得家用电器能够实现自动化、智能化的功能,提高生活质量和舒适度。
4. 总结电机作为将电能转化为机械能的设备,通过电磁感应原理实现了这一转化过程。
电力拖动则是利用电动机驱动机械设备或系统进行运动或操作的过程。
直流电机的电力拖动
一、概述
直流电机是一种常见的电动机,利用直流电流产生的磁场来实现转动。
在工业领域,直流电机的电力拖动应用广泛,包括但不限于电动车辆、机器人、工业生产线等领域。
二、直流电机的结构
直流电机通常包括定子和转子两部分。
定子上绕有电磁线圈,转子上则安装有电刷和电枢。
当电流通过电磁线圈产生磁场时,磁场与转子上的磁铁相互作用,导致转子产生转动。
三、直流电机的工作原理
直流电机的工作原理是基于洛伦兹力的作用。
当电流流过电磁线圈时,产生的磁场与磁铁相互作用,使转子受到一个力矩,从而实现转动。
这种力矩被称为电力拖动的基础。
1. 电动车辆
直流电机在电动车辆中广泛应用。
电动汽车利用直流电机将电能
转化为机械能,驱动车辆行驶。
电力拖动的优势在于高效、省时省力。
2. 机器人
机器人是另一个常见的使用直流电机电力拖动的例子。
直流电机
提供了机器人运动的动力,使其具备移动、抓取等功能。
3. 工业生产线
在工业生产线中,直流电机常用于传送带、旋转机械等设备的驱动。
通过电力拖动,提高了生产效率和精确度。
电力拖动具有高效、响应速度快、控制方便等特点。
通过调节电
流大小和方向,可以实现精准的转动控制,适用于多种工业应用。
六、结语
直流电机的电力拖动在现代工业中扮演着重要的角色,其应用范
围广泛且效果显著。
通过适当的控制和调节,直流电机可以实现高效、精准的电力拖动,推动各种机械设备的运行和发展。
电机与拖动直流电机的工作原理、直流电机的基本结构和额定值主题:直流电机的辅导文章——直流电机的工作原理、直流电机的基本结构和额定值、直流电机的磁场和电枢反应、直流电机的感应电动势和电磁转矩学习时间:2016年10月10日--10月16日内容:我们这周主要学习课件第2章直流电机的相关内容。
希望通过下面的内容能使同学们加深对直流电机相关知识的理解。
一、直流电机的工作原理(重点掌握)直流电机按其能量转换方向的不同分为直流发电机和直流电动机,两者之间具有可逆性。
1.直流电动机的工作原理:当给电枢绕组通入直流电流时,通过电刷和换向器转换为交变电流,使处于主极磁场中绕组的线圈始终受到相同方向电磁转矩的作用,保证了电动机连续转动,从而实现电能到机械能的转换。
图1 直流电动机的工作原理图2.直流发电机的工作原理:当原动机拖动电枢转动时,电枢绕组的线圈切割主极磁场而产生交变感应电动势,再通过电刷和换向器转换为直流电动势,由电枢绕组输出直流电流,从而实现机械能到电能的转换。
图2 直流发电机的工作原理图二、直流电机的基本组成和额定值(重点掌握)1.直流电机主要由定子和转子两大部分组成,其基本组成如图3所示。
转子称为电枢,它是能量转换的枢纽。
电枢绕组构成了直流电机的主要电路,它是由很多元件按一定规律连接起来的闭合绕组。
按元件的连接方式和端接形状分类,电枢绕组主要有叠绕组和波绕组两大类。
电枢绕组是电机的重要部件。
直流电机的绕组有五种形式:单叠绕组、单波绕组、复叠绕组、复波绕组和蛙绕组。
换向器是直流电机所特有的部件,与电刷配合,实现电枢绕组端部的直流电流与电枢绕组内部的交变电流之间的转换,即在直流电动机中起到了“逆变器”的作用,在直流发电机中起到了“整流器”的作用。
图3 直流电机的基本组成2.直流电机的额定值主要有额定电压、额定电流、额定功率和额定转速等。
1)额定电压N U :对于直流电动机,N U 是输入电压的额定值;对于直流发电机,N U 是输出电压的额定值。
直流电机及其电力拖动工作原理直流电机是实现直流电能和机械能相互转换的一种旋转电机,分为直流发电机和直流电动机。
如果作为发电机,必须由原动机拖动,把机械能转换为直流电能,以满足生产的需要,如直流电动机的电源、同步发电机的励磁电源(称为励磁机)、电镀和电解用的低压电源;如果作为电动机,将电能转变成机械能来拖动各种生产机械,以满足用户的各种要求。
由于直流电动机具有良好的起动特性,能在宽广的范围内平滑而经济地调速,所以它广泛地用于对起动和调速性能要求较高的生产机械上,如轧钢机、高炉卷扬设备、大型精密机床等。
小容量直流电机广泛作为测量、执行元件使用。
一、直流电机的基本原理和结构直流电机主要由定子和转子组成,定子由主磁极(产生恒定的气隙磁通,由铁心和励磁绕组构成)、换向磁极(改善换向)、电刷装置(与换向片配合,完成直流与交流的互换)、机座和端盖(起支承和固定作用)组成;转子由电枢铁心(主磁路的一部分,放置电枢绕组)、电枢绕组(由带绝缘的导线绕制而成,是电路部分)、换向器(与电刷装置配合,完成直流与交流的互换)、转轴、轴承组成。
直流电机是根据电磁感应定律和电磁率定律实现机械能与直流电能转换的电器设备。
按照转换方向不同可分为直流发电机(机械能转换为电能)和直流电动机(电能转换为机械能)。
二、直流电机的电力拖动原理由直流电机作为原动机的拖动系统称为直流电力拖动系统。
其优点是:系统的起动转矩大,在较大范围内能平滑地进行速度调节,控制简便。
然而,由于直流电机具有换向器和电刷,给使用带来了不少限制,如不能使用在易燃、易爆的场合;另外,换向器还限制了电机向高速、大容量方面发展。
尽管如此,直流电机在电力拖动系统的调速和起动方面的优势,使其至今仍在各个工业传动中发挥着重要的作用,特别是小型直流控制电机。
不同类型、励磁方式的电机特性各不相同,它们分别适用于不同类型的生产机械和工艺要求,本节以应用最为广泛的他励直流电机拖动系统为典型,研究他励直流电机的机械特性、起动、制动、调速运行及电力拖动系统稳定运行的条件。
电机拖动实践报告范文1. 引言电机是现代工业中必不可少的设备,广泛应用于各个领域,如工厂生产线的自动化、交通工具的驱动系统等。
电机拖动是利用电机实现物体运动或效果的一种应用方式。
本报告将介绍我们小组在电机拖动实践中的经验和教训,以及收获和改进。
2. 实践过程我们小组的实践项目是设计和制作一个能够抓取小物体的机械手。
我们选择了直流电机作为机械手的驱动力源,同时还使用了传感器和控制器来实现对机械手运动的精确控制。
2.1 设计和制作在设计阶段,我们首先确定了机械手的结构和功能要求。
然后,我们进行了零件的选购和加工,如轴承、齿轮、机械臂等。
接下来,我们组装了机械手的各个零部件,并进行测试和优化。
最后,我们进行了外观的美化和喷漆处理。
2.2 电机拖动的实现机械手的运动是通过电机的拖动来实现的。
我们选择了直流电机作为机械手的驱动力源,因为直流电机具有结构简单、体积小、功率密度高等优点。
我们通过电路连接和控制器编程,实现了对电机的启动、停止、正转、反转等操作。
2.3 传感器和控制器的应用为了实现对机械手运动的精确控制,我们还使用了传感器和控制器。
传感器可以测量机械手在运动中的位置、速度和力度等参数,控制器可以根据传感器的反馈信号来调整电机的转速和转向。
通过调整控制器的参数,我们可以实现机械手的快速、稳定和准确的运动。
3. 实践经验和教训在电机拖动实践中,我们积累了一些经验和教训。
3.1 注意电机的选择和驱动方式在选择电机时,需要考虑到工作环境、载荷要求、功率需求等因素。
同时,不同电机有不同的驱动方式,如直流电机可以使用直流电源或控制器来驱动,步进电机可以通过脉冲信号来控制。
正确选择电机和驱动方式是保证机械手正常运行的关键。
3.2 编程和调试的重要性在实践中,编程和调试是必不可少的环节。
通过编程,我们可以将机械手的运动和控制参数进行实时调整和优化。
同时,调试过程中可能会出现问题,如电路接线错误、传感器故障等,需要耐心分析和排查,并及时修复。
《电机与拖动实验》实验报告实验目的:1.通过实验研究电机的基本原理及拖动实验。
2.掌握电机的各种性能参数的测量方法。
3.理解电机在实际应用中的拖动效果。
实验仪器和材料:1.直流电机2.电流表和电压表3.频率表4.力矩表5.功率计6.动力装载机7.电机控制装置8.适量导线9.滑动变阻器10.实验样品实验原理:电机是将电能转化为机械能的装置,其工作原理基于电磁感应定律。
利用斯奥伐尔定律,当一根导线带有电流时,它会受到一个力矩,从而使电机转动。
同时,根据洛伦兹定律,当电机的转子相对于固定磁场运动时,会产生感应电动势,从而形成拖动效果。
本次实验主要研究电机转动所需的电压和功率,以及电机的拖动效果。
通过测量电流、电压和转速等参数,可以计算出电机的转动功率、效率和拖动系数。
实验步骤:1.建立电路连接:将电机接入直流电源,通过滑动变阻器控制电流大小。
2.测量基本参数:将电流表、电压表和频率表连接到电路中,分别测量电流、电压和频率的数值。
3.测量力矩和功率:通过力矩表测量电机的转动力矩,并通过功率计测量电机的输出功率。
4.测量转速:通过频率表测量电机的转速。
5.计算结果:根据测量得到的各项参数,计算电机的效率和拖动系数。
实验结果:实验结果显示,当电机的电流和电压增加时,其输出功率也随之增加。
同时,电机的效率在一定范围内随着电压的增加而提高,但超过一定电压后,效率开始下降。
拖动系数则表明电机的转动与外部负载的大小有关,当负载增大时,拖动系数也随之增加。
实验讨论:1.电机的效率与电压的关系:电势差越大,电机的效率越高。
因为较高的电压可以提供更大的功率输入,从而减小了能量的损耗。
2.电机的拖动效果:根据实验结果,可以看出电机的拖动系数与外部负载大小有关。
在实际应用中,需要根据不同的负载来选择合适的电机类型和规格。
3.实验误差分析:在实验过程中,由于仪器精度和操作技巧的限制,测量值可能存在一定的误差。
为了减小误差,可以采取多次测量取平均值的方法,并加强对仪器的校准和操作规范。
电机与拖动 直流电动机的运行分析、直流发电机的运行分析主 题:直流电机的辅导文章——直流电动机的运行分析、直流发电机的运行分析学习时间:2016年10月17日--10月23日内 容:我们这周主要还是学习课件第2章直流电机的相关内容。
希望通过下面的内容能使同学们加深对直流电机相关知识的理解。
一、直流电动机的运行分析(重点了解)1.我们以他励直流电动机为例,分析直流电动机的基本方程。
图3-1 直流电动机的正方向规定在如图3-1规定正方向的前提下,他励直流电动机的基本方程式为:电压平衡方程:a a U E R I =+ (3-1) 式中E E C n =Φ。
转矩平衡方程:20e T T T =+ (3-2) 式中e T a T C I =Φ。
其中,a R --电枢绕组总电阻,包括电刷的接触电阻;0T --空载转矩,是由电动机的机械摩擦损耗及铁损引起的总转矩; 2T --生产机械的制动转矩;功率平衡方程:1022Cu e Cu Cu fw Fe ad P P P P P P P P P P P =+=++=++++(3-3)直流电动机的基本方程式综合反映了电机内部的电磁关系和机电过程。
运用这些基本方程式,可以分析其工作特性和机械特性。
值得注意的是,对于不同的励磁方式,电压平衡方程式是不同的,而转矩平衡方程式和功率平衡方程式基本不变。
2.直流电动机的工作特性是指当N U U =、f fN I I =时,电机转速n 、电磁转矩e T 和效率η与电枢电流a I 的关系曲线,如图3-2所示。
图3-2 他励直流电动机的工作特性1)转速特性:如图3-2所示转速特性是一条略微下倾的曲线。
把公式E E C n =Φ带入a a U E R I =+,可得转速公式为:a a E E R U n I C C =-ΦΦ(3-4) 式3-4对各种励磁方式的电动机都适用。
在N U U =、f fN I I =条件下,影响转速的因素有两个:电枢回路的电阻压降a a R I 和电枢反应。
直流电机的拖动及应用
摘要:近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。
而我的这篇论文则介绍的就是电力拖动在我们生活中和一般工作生产中常用的一些线路控制,它主要利用电动机拖动生产机械的工作机构,使之运转。
由于电力在生产,传输,分配,使用和控制方面的优越性,使得电力拖动具有方便,经济,效率高,调节性能好,易于实现生产过程自动化等优点,所以电力控制系统获得了广泛的应用。
目前在日常生活中使用的电风扇,洗衣机等家用电器,再生产中大量使用的各种各样的生产机械,如车床,钻床,造纸机,轧钢机等,都采用的是电力拖动。
关键词:直流他励电动机、主要结构、基本工作原理、运行特性、基本参数、应用前景
第一章电机拖动的原理
1.1电力拖动是指电动机拖动生产机械的工作机构
控制设备是用来控制电动机的运转,有各种控制电动机,电器,自动化元件及工业控制计算机组成。
电动机是生产机械的原动机,将电能转化成机械能,分为交流电动机和直流电动机。
传动机构是在电动机和工作机构之间传送动力的机构。
如速箱,联轴器,传动器等。
按电动机拖动系统中电动机的组合数量分,电力拖动的发展过程经历了成组拖动,单电动机拖动和多电动机拖动三个阶段。
1.1.1电力拖动的控制方式
可分为断续控制系统和连续控制系统两种。
在电力拖动发展的不同阶段两种拖动方式占有不同的地位,且呈现交替发展的趋势。
随着电力拖动的出现。
最早产生的是手动控制电器控制电动机运转的手动断
续控制方式。
随后逐步发展为有继电器,接触器和主令电器等组成的继电接触式有触点断续控制方式。
这种控制系统结构简单,工作稳定,成本低,维护方便,不仅可以方便地实现生产过程自动化,而且可实现集中控制和远距离控制,所以目前生产机械仍广泛使用。
但这种控制仅有通和断,这两种状态,其控制是断续的,即只能控制信号的有无,而不能连续控制信号的变化。
为了适应控制信号连续变化的场合,又出现了直流电动机连续控制。
这种控制方式可充分利用直流电动机调速性能好的优点,得到高精度,宽度范围的平滑调速系统。
第二章电机拖动的发展
近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。
在电动机调速方面,已形成了电子功率器件与自动控制相结合的领域。
不但晶闸管-直流电动机调速系统得到了广泛应用,而且交流变频调速技术发展迅速,在许多领域交流电动机变频调速系统有取代晶闸管-直流电动机调速系统的趋势。
三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。
又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。
然而,电动机的起动特性却一直举步维艰。
这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。
在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。
同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。
因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。
为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。
对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。
定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。
此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损
耗。
又由于是分级起动,起动特性不平滑。
起动时定子绕组星形连接,起动后三角形连接。
在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。
当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。
当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。
同直接起动时相比,当电压降到W2/W1倍时,起动电流和起动转矩降到(W2/W1)2倍(W2/W1为自耦变压器的变比)。
这种起动方式的优点是起动时定子电压的大小可调。
比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。
要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。
对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。
但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。
由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。
第三章电动机的具体内容
3.1电动机的分类
电动机有直流电动机和交流电动机两大类,直流电动机虽不像交流电动机那样结构简单、制造容易、维护方便、运行可靠,但由于交流电动机的调速问题长期未能得到满意的解决,因此在过去一段时间内,直流电动机显示出交流电动机所不能比拟的良好的启动性能和调速性能,具有宽广的调速范围,平滑的无级调速特性,可实现频繁的无级快速启动、制动和反转;过载能力大,能承受频繁的冲击负载;能满足自动化生产系统中各种特殊运行的要求。
而直流发电机则能提供无脉动的大功率直流电源,且输出电压可以精确地调节和控制。
目前,虽然
交流电动机的调速问题已经解决,但是,速度调节要求较高,正、反转和启、制动频繁或多单元同步协调运转的生产机械,仍采用直流电动机拖动。
但直流电机也有它显著的缺点:一是制造工艺复杂,消耗有色金属较多,生产成本高;二是运行时由于电刷与换向器之间容易产生火花,因而可靠性较差,维护比较困难。
所以在一些对调速性能要求不高的领域中己被交流变频调速系统所取代。
但是在某些要求调速范围大、快速性高、精密度好、控制性能优异的场合,直流电动机的应用目前仍占有较大的比重。
3.2主要结构
直流电动机分为两部分:定子与转子。
定子包括:主磁极,机座,换向极,电刷装置等。
转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等。
定子和转子之间由空气隙分开。
3.2.1定子
定子就是发动机中固定不动的部分,它主要由主磁极、机座和电刷装置组成。
主磁极是由主磁极铁芯(极心和极掌)和励磁绕组组成,其作用时用来产生磁场。
极心上放置励磁绕组,极掌的作用是使电动机空气隙中磁感应强度分配最为合理,并用来阻挡励磁绕组。
主磁极用硅钢片叠成,固定在机座上。
机座也是磁路的一部分,常用铸钢制成。
电刷是引入电流的装置,其位置固定不变。
它与转动的交换器作滑动连接,将外加的直流电流引入电枢绕组中,使其转化为交流电流。
直流电动机的磁场是一个恒定不变的磁场,是由励志绕组中的直流电流形成的磁场方向和励磁电流的关系由右螺旋法则确定。
在微型直流电动机中,也有用永久磁铁作磁极的。
3.2.2转子
转子是电动机的转动部分,主要由电枢和换向器组成。
电枢是电动机中产生感应电动势的部分,主要包括电枢铁芯和点数饶组。
电枢铁芯成圆柱形,由硅钢片叠成,表面冲有槽,槽中放电枢绕组。
通有电流的电枢绕组在磁场中受到电磁力矩的作用,驱动转子旋转,起了能量转换的枢纽作用,故称“电枢”。
换向器
又称整流子,是直流电动机的一种特殊装置。
它是由楔形铜片叠成,片间用云母垫片绝缘。
换向片嵌放在套筒上,用压圈固定后成为换向器再压装,在转轴上电枢绕组的导线按一定的规则焊接在换向片突出的叉口中。
在换向器表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路连接起来,并实现将外部直流电流转化为电枢绕组内的交流电流。
结束语
经历了100多年的技术发展,电动机自身的理论基本成熟。
随着电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高。
电磁材料的性能不断提高,电工电子技术的广泛应用,为电动机的发展注入了新的活力。
未来电动机将会沿着体积更小、机电能量转换效率更高、控制更灵活的方向继续发展。
电动机在我国的经济建设中担当着重要的角色,随着我国加入WTO后,我国电动机行业所面临的国际社会的巨大竞争压力和挑战日益加剧。
从节约能源,保护环境出发,高效率电动机是目前国际发展的趋势。
这样看来,推广中国的高效率电动机是非常有必要的。
参考文献
[1]《机电传动控制》邓星钟华中科技大学出版社
[2]《直流电动机实际应用技巧》谷腰欣司科学出版社
[3]《电机及拖动》许晓峰高等教育出版社
[4]《电动机使用与维修》李洋、孙晋、范翠香人民邮电出版社。