光弹性实验介绍
- 格式:ppt
- 大小:935.00 KB
- 文档页数:37
光弹性效应一实验原理(一)光弹性效应光弹性:某些介质,在自然状态下式各向同性的,没有双折射性质。
但当受到机械力作用时,将成为光学各向异性,出现双折射现象。
这种双折射是暂时的,应力解除后即消失。
我们称具有明显光弹性效应的物质为光敏物质;光弹性效应微弱的物质为非光敏物质。
光弹仪的原理:,σ为内应力(二)全息光弹法两次曝光法当模型未加力时,让物光和参考光同时投到全息干板上作第一次曝光,模型加上力后,再做第二次曝光。
将全息干板显影、定σk n n e =-0影,得到全息图。
放回原来位置,遮蔽物光,让参考光照射全息图,这时候迎着原物光方向观看,即可看到实验模型的立体虚像,通过望远镜可看到虚像中有明暗相间的干涉条纹,即为等和线。
此方法适用于非光敏物质。
一次曝光法:只在模型受力时作一次曝光,其余操作和两次曝光法一致。
将能看到等差线,该法适用于光敏物质。
(三)等和线&等差线形成原因:两次曝光法得到的光强分布为:若取非光敏物质做成模型做两次曝光,由于ηc ≈0,则上式成为:那么,当ηρ=0,±1、±2….相应点成为亮条纹,即沿同一条纹各点有相同的ηρ。
而ηρ与主应力之和(σ1+σ2)成正比,因此同一条纹各点主应力之和相等。
称之为等和线。
二实验过程1. 打开激光器,激光束打到分光镜有膜一面(中间的一块);2. 在模型后20cm 左右位置放置白屏,记录位置;3. 调节反光镜,使物光光束透过模型中心,打到白屏上,调节参考光光路反光镜,使参考光光点和物光光点重合;4. 测量两路光程,要做到差距在1cm 之内;5. 加上准直镜,为保证激光束垂直通过其光心,调节其位置,使白屏上光点重合,并且使反射光沿原路返回;)(cos )cos()2cos(212c c I πηπηπηρ++=)2cos(22ρπη+=I6.加扩束镜,撤掉白屏,这时候在墙壁上可以发现一个亮斑。
保证其亮斑中心与未加扩束镜时的亮斑中心重合,然后移动扩束镜,使其亮斑大小与准直镜通光孔径大致相同,并且亮斑均匀;7.加偏振片&1/4波片,调节角度成45°,加上毛玻璃片;8.找到两路光重叠的位置,标记;9.遮住激光束,在黑暗中固定好全息干板。
使用光弹性实验探究材料力学特性材料力学是研究材料在受力作用下的变形和破坏行为的学科。
而光弹性实验是一种常用的研究材料力学特性的方法。
通过光弹性实验,可以获得材料的应力-应变关系、杨氏模量、泊松比等重要参数,从而对材料的力学性能进行评估和分析。
光弹性实验的基本原理是利用光的干涉现象来研究材料的应力分布和变形情况。
在光弹性实验中,我们通常使用激光作为光源,将激光束照射到被测材料上。
被测材料受到外力作用后,会发生变形,导致光束经过材料时产生相位差。
通过测量相位差的变化,我们可以得到材料的应力分布和变形情况。
在进行光弹性实验时,我们通常会使用干涉仪来测量相位差的变化。
干涉仪可以将光束分为两束,分别经过被测材料的两个不同位置,然后再将两束光束重新合并。
当两束光束经过被测材料时,由于材料的变形,会导致相位差的变化,进而产生干涉条纹。
通过观察和记录干涉条纹的形态和变化,我们可以得到材料的应力-应变关系。
光弹性实验可以用于研究不同类型的材料,包括金属、陶瓷、塑料等。
不同材料的力学特性会影响光弹性实验的结果。
例如,金属通常具有较高的弹性模量和较低的泊松比,而塑料则具有较低的弹性模量和较高的泊松比。
通过对不同材料进行光弹性实验,我们可以比较它们的力学性能差异,并为材料的选择和设计提供依据。
除了研究材料的力学性能,光弹性实验还可以用于检测材料的质量和缺陷。
当材料存在内部缺陷或应力集中时,会导致光束经过材料时产生相位差的变化。
通过测量相位差的变化,我们可以判断材料是否存在缺陷或应力集中的情况。
这对于材料的质量控制和缺陷检测具有重要意义。
总之,光弹性实验是一种常用的研究材料力学特性的方法。
通过测量光束经过材料时的相位差变化,我们可以得到材料的应力-应变关系、杨氏模量、泊松比等重要参数。
光弹性实验不仅可以用于研究材料的力学性能,还可以用于检测材料的质量和缺陷。
它在材料科学与工程领域具有广泛的应用前景,为材料的设计、制备和应用提供了重要的参考依据。
光弹性实验报告一、实验目的光弹性实验是一种用于测量材料内部应力分布的实验方法。
本次实验的主要目的是通过光弹性实验技术,观察和分析受力模型在不同载荷条件下的等差线和等倾线图案,从而确定模型内部的应力分布情况,并验证理论计算结果。
二、实验原理光弹性现象是指某些透明材料在承受载荷时,会产生暂时的双折射现象。
当一束偏振光通过受力的光弹性材料时,其偏振方向会发生改变,从而产生干涉条纹。
这些干涉条纹反映了材料内部的应力分布情况。
等差线是指光程差相等的点的轨迹,它与主应力差成正比。
等倾线则是指主应力方向相同的点的连线。
通过观察和分析等差线和等倾线的图案,可以计算出材料内部各点的应力大小和方向。
三、实验设备和材料1、光弹性实验仪:包括光源、偏振片、分析片、加载装置等。
2、模型材料:环氧树脂或有机玻璃等光弹性材料制成的模型。
3、量具:游标卡尺、千分尺等。
四、实验步骤1、模型制备选用合适的光弹性材料,根据实验要求制作模型。
确保模型的尺寸精度和表面质量,以减少实验误差。
2、仪器调试打开光源,调整偏振片和分析片的角度,使视场呈现暗背景。
检查加载装置的工作性能,确保加载平稳、准确。
3、模型安装将模型安装在加载装置上,注意安装位置和方向的准确性。
4、加载观测逐渐施加载荷,观察等差线和等倾线的形成和变化。
记录不同载荷下的干涉条纹图案。
5、数据测量使用量具测量模型的尺寸和加载力的大小。
记录等差线和等倾线的级数和角度等数据。
6、实验结束缓慢卸载,关闭实验仪器。
五、实验结果与分析1、等差线图案分析在不同载荷下,等差线的分布和密度发生了明显变化。
随着载荷的增加,等差线的级数增多,表明主应力差增大。
通过对等差线的分析,可以定性地了解模型内部应力集中的区域。
2、等倾线图案分析等倾线的分布反映了主应力的方向。
在模型的不同部位,主应力方向有所不同。
通过测量等倾线的角度,可以计算出主应力的方向。
3、应力计算根据等差线和等倾线的测量数据,结合光弹性实验的基本理论和计算公式,可以计算出模型内部各点的应力大小和方向。
全息光弹性法- 正文将全息照相和光弹性法相结合而发展起来的一种实验应力分析方法。
在全息光弹性法中,用单曝光法能给出反映主应力差的等差线;用双曝光法能给出反映主应力和的等和线。
根据测得的等差线和等和线的条纹级数,便可计算出模型内部的主应力分量。
20世纪60年代后期,M.E.福尔内、J.D.奥瓦内西翁等人将全息照相用于光弹性实验,获得了等和线条纹以及等和线和等差线的组合条纹。
后来,许多学者应用组合条纹分析平面应力问题。
此法所用的全息光弹性仪,其光路(图1)中布置有偏振元件,能获得具有偏振特性的物光和参考光。
透过模型的物光和参考光,在全息底片上干涉而成包含着物光波阵面信息的全息图,经过曝光、显影和定影以后的全息底片,再用参考光照射,便可再现物光波阵面。
如经两次曝光,将模型承受应力和不受应力两种状态的物光波阵面记录在同一张全息底片上,再现时便可以同时再现承受应力和不受应力两种状态的物光,并获得反映应力分布的两组物光干涉而得的条纹。
全息光弹性法常用的方法有:单曝光法设模型不受应力时,物光波阵面ω0为平面,模型承受应力之后,透过的物光会在模型的两个主应力方向分解成两束平面偏振光,其波阵面为ω1和ω2(图2)。
对承受应力的模型进行单次曝光全息照相后,用参考光照射全息底片,可以再现物光波阵面ω1和ω2。
由于这两个光波具有和参考光相同的偏振特性,故产生干涉,所形成的干涉条纹反映两个光波ω1和ω2的光程差⊿c=⊿2-⊿1,其光强度为:式中K为常数,N c为等差线条纹级数。
双曝光法在全息底片上,对模型加载前后两种状态进行两次曝光,可以在一张全息底片上,同时记录下模型不受应力时的物光ω0和承受应力后的物光ω1和ω2。
用参考光照射这张全息底片,便可以同时再现ω0、ω1和ω2三个物光的波阵面,并互相干涉而形成组合干涉条纹。
这种组合条纹,可看作是这三种光波中任何一对光波的干涉条纹的组合。
两次曝光获得的干涉条纹同主应力差和主应力和都有关,它是由等和线条纹和等差线条纹调制而成的组合条纹。
实验十光弹性演示实验用光学原理研究弹性力学问题的实验方法称为光弹性法。
它是用具有双折射效应的透明材料,严格遵守“相似律”原则制成构件模型,将模型置于白光光源的圆偏振光场中。
当给模型加上载荷时,即可看到模型上所出现的干涉条纹,依照应力-光学定律,那些颜色相同的条纹表示光程差相等的迹线,也就是主应力等值线,故称为等色线或等差线。
由产生的等色线或等差线干涉条纹图形,通过计算就能确定构件模型在载荷作用下的应力状态,可以得到直观的、可靠的、全场的应力分布状态。
利用光弹性法,可以研究几何形状和载荷条件都比较复杂的构件的应力分布状态,特别是应力集中的区域和三维内部应力问题。
对生物力学、断裂力学、复合材料力学等还可用光弹性法验证其提出的新理论、新假设的合理性和有效性,为发展新理论提供科学依据。
一、实验目的1.了解光弹性实验的基本原理和方法,认识偏光弹性仪。
2.观察模型受力时的条纹图案,识别等差线和等倾线,了解主应力差和条纹值的测量。
二、实验设备1.偏光弹性仪。
2.由环氧树脂制作的试件模型。
三、实验原理1.明场和暗场根据光的波动理论,当一束自然光通过偏振镜时,即在偏振轴平面上振动这种在某一固定平面中振动的光称为平面偏振光。
由光源S、起偏镜P和检偏镜A 就可组成一个简单的平面偏振光场,如图10-1示。
起偏镜P和检偏镜A均为偏振片,其各有一个偏振轴(简称为P轴和A轴)。
如果P轴与A轴平行,光源发出的光波通过起偏镜P产生的偏振光可以全部通过检偏镜A,此种情况称平面偏振场的明场。
称为明场。
当两个偏振片的偏振轴互相垂直时,光波被检偏镜A 阻挡,此种情况则称平面偏振场的暗场。
图10-1 平面偏振光场2.应力-光学定律当由光弹性材料制成的模型放在偏振光场中时,如果模型不受力,光线 通过模型后将不发生改变;如果模型受力,将产生暂时双折射现象,即入射 的偏振光将沿两个主应力方向分解为两束相互垂直的偏振光(如图10-1中 a 及b ),而且分解后的这两束偏振光射出模型时就产生一个光程差δ。
分掰式卡瓦在工作时都处于复杂的应力状态,而且作用在油井多工况的介质中,这就给精确的理论分析与计算结果带来很大困难。
因此,必须首先借助于较为精确的实验分析方法确定它的边界受力条件,然后再进行理论分析与计算,而光弹性正是其中比较理想的一种实验方法。
它是目前研究结构和零部件应力分布的有效手段,具有直观、全面、实时等优点,对测定构件的边界应力和应力集中更具特色。
从力学强度观点分析,本研究课题首先应采用光弹法确定分掰式卡瓦从坐封到贴紧套管内壁这个阶段其内部的应力分布及对套管内壁接触应力的大小,然后用理论计算进行校核。
因此,利用光弹性原理对卡瓦模型进行冻结切片处理,根据光弹性和模型相似理论换算出实物卡瓦中各点应力大小和方向,是研究本课题的技术关键之一。
光弹性是一种利用偏振光进行应力测量的方法。
它采用具有暂时双折射性能的透明塑料(本实验使用环氧树脂材料)制成与实物形状几何相似,并使模型受力情况与实物载荷相似,在高温应力冻结后,根据三维应力分析的需要对应力冻结的模型进行切片,将各切片置于偏振光场中,可获得等差线和等倾线的干涉条纹图。
这些条纹显示了模型边界和内部各点的应力情况,按照光弹性原理,即可计算出模型各点应力的大小和方向,实物上的应力可根据模型相似理论换算求得。
以下是本课题光弹实验中所用的几个基本原理[102]。
2.1.1 应力-光学定律当光线进入具有暂时双折射效应的光弹性材料时,由于应力的存在,光线将沿主应力方向分解为沿主轴方向偏振的平面偏振光。
该偏振光的传播速度与该方向的折射率有关。
无应力时材料的折射率N与有应力以后沿三个主应力方向的折射率N1、N2、N3和三个主应力σ1、σ2、σ3有如下关系:。
1. 了解光弹性实验的基本原理和实验方法;2. 学习使用光弹性实验装置进行应力分析;3. 掌握光弹性实验数据处理方法,分析模型的应力分布。
二、实验原理光弹性实验是一种研究物体内部应力分布的方法,其基本原理是利用透明材料在应力作用下产生双折射现象。
通过观察和分析光弹性模型的光学性质变化,可以确定物体内部的应力分布。
实验过程中,将具有双折射现象的透明材料制成研究对象的模型,对模型施加相似载荷,使模型内部产生应力。
此时,模型中的光路发生改变,通过观察和记录模型的光学性质变化,可以分析模型内部的应力分布。
三、实验仪器与材料1. 实验仪器:光弹性实验装置、光源、照相机、量角器等;2. 实验材料:具有双折射现象的透明材料(如硝化纤维素、聚乙烯醇等)。
四、实验步骤1. 准备工作:将透明材料制成研究对象模型,确保模型尺寸符合实验要求;2. 安装模型:将模型放置在实验装置上,调整光源和照相机,使光路通过模型;3. 加载:对模型施加相似载荷,使模型内部产生应力;4. 观察记录:观察模型的光学性质变化,记录光路改变情况;5. 数据处理:对实验数据进行处理,分析模型内部的应力分布。
五、实验结果与分析1. 实验结果:通过实验,观察到了模型在加载过程中的光学性质变化,记录了光路改变情况;2. 数据处理:对实验数据进行处理,得到模型内部的应力分布图;3. 分析:根据应力分布图,分析了模型内部的应力集中区域和应力分布情况。
1. 光弹性实验是一种有效的应力分析方法,可以准确分析模型内部的应力分布;2. 通过光弹性实验,可以了解透明材料在应力作用下的光学性质变化,为材料设计和优化提供依据;3. 实验过程中,应严格按照操作规程进行,确保实验结果的准确性。
七、实验注意事项1. 实验过程中,注意观察模型的光学性质变化,避免光路干扰;2. 加载过程中,注意控制加载速度,防止模型损坏;3. 实验数据应准确记录,以便后续分析。
八、实验总结本次光弹性实验,使我们对光弹性实验的基本原理和实验方法有了更深入的了解。
光弹性实验一.实验目的1.光弹性实验是一种光学的应力测量方法,是材料力学实验的重要组成部分。
通 过该实验熟悉光弹性等色条纹级次的判定方法。
2.理解材料条纹的力学意义 二.实验原理塑料、玻璃等非晶体在通常情况下是各向同性而不产生双折射现象的。
但是当它们受到应力的时候,就会变成各向异性而显示出双折射性质,这种现象称为光弹性效应。
光弹性法的光源有单色光和白光两种,单色光是只有一种波长的光;白光则是由红、橙、黄、绿、青、蓝、紫等七种单色光组成的。
发自光源的自然光是向四面八方传播的横振动波。
当自然光遇到偏振片时,就只有振动方向与偏振轴平行的光线才能通过,这就形成平面偏振光,其振动方程为vtA u λπ2sin= (1)式中A 为光波的振幅,λ为单色光的波长,v 为光波的传播速度,t 为时间。
根据光学原理,偏振光的强度与振幅A 的平方成正比,即2KA I = (2) 比例常数K 是一个光学常数。
用具有双折射性能的透明材料(如环氧树脂塑料或聚碳酸脂塑料)制成与实际构件相似的模型,并将它放在起偏镜和检偏镜之间的平面偏振光场中(见图1)。
当模型不受力时,偏振光通过模型并无变化。
如模型受力,且其某一单元的主应力为1σ和2σ,则偏振光通过这一单元时,又将沿1σ和2σ的方向分解成互相垂直,传播速度不同的两束偏振光,这种现象称为双折射。
由于两束偏振光在模型中的传播速度并不相同,穿过模型后它们之间产生一个光程差∆。
实验结果表明,∆与该单元主应力差()21σσ-和模型厚度h 成正比,即()21σσ-=∆Ch (3)式中比例常数C 与光波波长和模型材料的光学性质有关,称为材料的光学常数。
公式(3)称为应力光学定律。
光弹性法的实质,是利用光弹性仪测定光程差∆的大小,然后根据应力光学定律确定主应力差。
三.平面偏振布置PAΨσ1σ2uu 1,u ‘1u 2,u‘2o图2偏振轴与应力主轴的相对位置图1 受力模型在正交平面偏振布置中光源起偏镜模型检偏镜PA如图1所示的正交平面偏振布置,用符号P 和A 分别代表起偏镜和检偏镜的偏振轴。
目录实验光弹性效应实验 (1)实验光弹性效应实验一: 实验设备光学实验导轨1000mm 1根白光光源(含电源)1台二维+LD(含电源)1台扩束镜1套光弹性材料1块1/4波片2套偏振片2套压力架1个滑块8个透镜1个白屏1块二:实验原理塑料、玻璃等非晶体在通常情况下是各向同性而不产生双折射现象的。
但是当它们受到应力的时候,就会变成各向异性而显示出双折射性质,这种现象称为光弹性效应。
各向同向的介质在某一方向受应力时,在这个方向上就形成了介质的光轴。
设应力为P,设这时出现的o光和e光的折射率分别为no和ne ,则在一定的范围内:n o–n e =CPC为常量。
因此通过的厚度为L 的形变介质时,两偏振光的相位差为:L n n e o )(2-=λπφ单色光通过起偏镜后成为平面偏振光 ()t a u ωsin =u 到达第一个1/4波片后,沿波片分解成快、慢轴平面偏振光u1、u2 t a u ω45cos sin 1=︒= t a t a u ωωsin 245cos sin 2=︒=通过1/4波片后,u1、u2相对产生向位差2/π,则成为t a t a u ωπωcos 22sin 2'1=⎪⎭⎫ ⎝⎛+= (沿快轴) t au ωsin 2'2= (沿慢轴)u1、u2合成为圆偏振光。
设受力模型上o 点的主应力1σ的方向与第一个1/4波片的快轴成β角。
当u1、u2入射到模型o 点时,分别沿该点主应力1σ、2σ方向分解为()βωββσ-=+=t au u u cos 2sin 'cos '211 (沿1σ方向) ()βωββσ-=-=t au u u sin 2sin 'cos '211 (沿2σ方向) 通过试片后,1σu 、2σu 相对产生相位差φ,成为()φβωσ+-=t a u cos 2'1()βωσ-=t au sin 2'2 同理,可知经过第二个1/4波片后,公式就成为()()[]ββωβφβωsin sin cos cos 2'3--+-=t t a u (沿慢轴) ()()[]βφβωββωsin sin cos cos 2'4+---=t t au (沿快轴)3'u 、4'u 通过检偏镜后得合成偏振光为())22cos(2sin 45cos ''435φβωφ+-=︒-=t a u u u 当:φβ-︒=45,上式可简化为:⎪⎭⎫ ⎝⎛++=22cos 2sin 5φφωφt a u 如此一来,光通过检偏镜后再次利用光强公式我们可以写成2)2sin (φa K I =如果用光程差∆表示,则由于∆=λπφ2,得2)sin (λπ∆=a K I 很清楚的由公式我们可以看到仅在πλπN =∆,即△= λN (,...2,1,0=N )时才会出现暗点,这也表示利用圆偏振场的确可以消除等倾线对条纹图形的影响。
光弹性效应实验报告实验原理:1. 光弹性效应:有些光学介质在自然状态下没有双折射性质,但当受到机械力作用时,出现双折射现象,应力解除后现象随之消失,这种现象称为光弹性效应。
把具有明显光弹性效应的物质称为光敏物质,其他称为非光敏物质。
在实际应用中,可以用光敏物质做成与待分析部件相似的模型,按部件实际受力情况施加相应的应力。
模型的各受力点产生相应的双折射,即o光与e光折射率n o与n e不同,各点折射率差与改点内应力成正比,即n o-n e=kςK为常数。
利用此原理制成的仪器称为光弹仪。
2.全息光弹法全息光弹法是利用全息干涉原理研究光弹性效应的技术。
光路图如图4-1-1在一个全息照相用的防震台上,让激光束经分束镜分为两束。
一束经扩束镜,准光镜成为平行光,再通过偏振片和四分之一波片成为圆偏振光,经毛玻璃散射后照射待测模型,透过模型投射于全息干板上,这束光称为物光;另一束光经另一套扩束镜,准光镜,偏振片和四分之一波片,成为一束圆偏振光的平行光束,直接投射于全息干板上。
物光与参考光须同时左旋或右旋的圆偏振光。
在模型未加外力时,让物光和参考光同时投射于全息干板上做第一次曝光,记录一次全息条纹;然后给模型加上适当应力,在做第二次曝光。
经两次曝光记录了两套干涉条纹的全息干板显影,定影后,成为全息图。
放回拍摄的位置,撤去实验模型,遮掉物光,以参考光束照射全息图。
迎着原物光方向看,可看到原模型位置有一个所用实验模型的立体虚像,透过望远镜可看到虚像中有明暗相间的干涉条纹。
以ς1表示模型受力最大方向的应力,ς2表示受力最小方向的应力,称ς1与ς2为主应力。
由于沿一个干涉条纹各点有相同的主应力和(ς1+ς2),称此条纹为等和线。
二次曝光法适用于非光敏物质,用于观察等和线。
一次曝光法光路同上,只是在模型未加外力时不曝光,仅在给模型加好外力后作一次曝光,只记录一次全息条纹。
显影定影后放回原位用参考光照明,可用望远镜在模型虚像中看到另一组干涉条纹。
一、实验目的1. 了解光弹性效应的基本原理;2. 掌握光弹性效应实验的方法和步骤;3. 分析光弹性效应在不同材料中的表现;4. 提高对光学测试技术的认识。
二、实验原理光弹性效应是指当透明材料受到应力作用时,其光学性质发生改变的现象。
这种现象可以通过偏振光来观察。
当材料受到拉伸或压缩应力时,其折射率会发生变化,从而导致光波在材料中传播速度的改变,进而影响偏振光的传播方向。
三、实验仪器与材料1. 实验仪器:光弹性效应测试仪、显微镜、偏振片、透明材料(如玻璃、塑料等)、样品夹具;2. 实验材料:透明材料样品。
四、实验步骤1. 准备实验材料:将透明材料样品切割成所需尺寸,并清洗干净;2. 安装样品:将样品放入样品夹具中,确保样品表面平整;3. 连接仪器:将光弹性效应测试仪与显微镜连接,调节仪器至最佳状态;4. 选择偏振片:根据实验要求选择合适的偏振片;5. 观察现象:开启测试仪,观察偏振光在透明材料中的传播情况,记录现象;6. 分析结果:根据观察到的现象,分析光弹性效应在不同材料中的表现;7. 实验数据整理:整理实验数据,绘制实验曲线。
五、实验结果与分析1. 实验结果:(1)当透明材料受到拉伸应力时,其折射率减小,光波传播速度变快,偏振光传播方向发生改变;(2)当透明材料受到压缩应力时,其折射率增大,光波传播速度变慢,偏振光传播方向发生改变;(3)不同材料的应力-折射率关系不同,表现出不同的光弹性效应。
2. 实验分析:(1)光弹性效应是材料受到应力作用时,其光学性质发生改变的现象;(2)通过观察偏振光在透明材料中的传播情况,可以判断材料受到的应力类型和大小;(3)光弹性效应在工程领域有广泛的应用,如材料力学性能测试、光学器件设计等。
六、实验总结本次实验通过观察光弹性效应在不同材料中的表现,掌握了光弹性效应实验的方法和步骤。
实验结果表明,光弹性效应在工程领域有广泛的应用前景。
在今后的学习和工作中,我们将进一步深入研究光弹性效应,为相关领域的发展做出贡献。