2018年安徽省合肥市初中毕业班第五次十校联考 数学试题(Word版附答案)
- 格式:doc
- 大小:1.54 MB
- 文档页数:7
安徽省十校联考2018年中考数学二模试卷(解析版)一.选择题1.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A. 1500(1+x)2=2160B. 1500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 60°C. 25°D. 30°9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. aB. aC.D.二.填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解方程:4x2﹣12x+5=0.16.已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题。
安徽省十校联考2018年中考数学二模试卷(解析版)一.选择题1.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A. 1500(1+x)2=2160B. 1500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 60°C. 25°D. 30°9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. aB. aC.D.二.填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解方程:4x2﹣12x+5=0.16.已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)【答案】D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.3.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80【答案】C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴2222++=AE BE6810∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168⨯⨯2=100-24=76.故选C.考点:勾股定理.4.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 【答案】B【解析】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本; 则总共送出的图书为x(x−1); 又知实际互赠了210本图书, 则x(x−1)=210. 故选:B.6.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0 【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac- ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中. 7.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点 【答案】B【解析】二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误; 当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误, 故答案选B.考点:二次函数的性质.8.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=ax 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x的图象于点B ,当点M 在y=ax 的图象上运动时,以下结论: ①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3【答案】D【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解. 【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确;②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确; 故答案选D .考点:反比例系数的几何意义.9.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .0.96×107 B .9.6×106C .96×105D .9.6×102【答案】B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.10.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.分解因式:ax2﹣2ax+a=___________.【答案】a(x-1)1.【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.【答案】10π【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=12•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).14.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.【答案】10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称, ∴PB=PD , ∴PB+PE=PD+PE=DE. ∵BE=2,AE=3BE , ∴AE=6,AB=8, ∴DE=2268+=10, 故PB+PE 的最小值是10. 故答案为10.15.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______. 【答案】2243255和 【解析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==, 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB. ∵,4OD AB OD AD BD ⊥===, ∴△AOB 为等腰直角三角形,∴242OA t AD === ;(2)∵BC=AC ,CD 为AB 边的高, ∴∠ADC=90°,BD=DA=12AB=4, ∴CD=22AC AD -=3,当AC ∥y 轴时,∠ABO=∠CAB , ∴Rt △ABO ∽Rt △CAD ,∴AO AB CD AC =,即835t =, 解得,t=245,当BC ∥x 轴时,∠BAO=∠CBD , ∴Rt △ABO ∽Rt △BCD ,∴AO AB BD BC =,即845t =, 解得,t=325 , 则当t=245或325时,△ABC 的边与坐标轴平行.故答案为t=245或325.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键. 16.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =kx的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.【答案】-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴, ∵OA ⊥OB , ∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°, ∴∠OAC=∠BOD ,∴△ACO∽△ODB,∴OA OC ACOB BD OD==,∵∠OAB=60°,∴33OAOB=,设A(x,2x),∴BD=3OC=3x,OD=3AC=23x,∴B(3x,-23),把点B代入y=kx得,-23=3x,解得k=-6,故答案为-6.17.关于x的一元二次方程24410x ax a+++=有两个相等的实数根,则581a aa--的值等于_____.【答案】3-【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a+++--,然后代入即可得出结果.详解:由题意得:△=2(4)44(1)0a a-⨯+=,∴210a a--=,∴221,1a a a a=+-=,即a(a-1)=1,∴a-1=1a,5562232888()811a a a aa a a aaa--∴==-=--33232(1)8(1)33188357a a a a a a a a a=+-+=+++--=+--(1)3(1)57a a a a=+++--24a a=--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义. 18.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.【答案】2n+1.【解析】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.三、解答题(本题包括8个小题)19.如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.【答案】(1)见解析;(2)2.【解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=1﹣x,由(1)中作图知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【点睛】考核知识点:勾股定理和线段垂直平分线.20.观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.【答案】(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.21.为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.【答案】(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.22.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.【答案】(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人; (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人. 考点:①条形统计图;②扇形统计图.23.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)【答案】29033cm 【解析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF.【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒,∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用24.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).【答案】5.6千米【解析】设PD 的长为x 千米,DA 的长为y 千米,在Rt △PAD 中利用正切的定义得到tan18°=y x ,即y=0.33x ,同样在Rt △PDB 中得到y+5.6=1.33x ,所以0.33x+5.6=1.33x ,然后解方程求出x 即可.【详解】设PD 的长为x 千米,DA 的长为y 千米,在Rt △PAD 中,tan ∠DPA=DA DP , 即tan18°=y x, ∴y=0.33x ,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.25.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.【答案】(1)200;(2)答案见解析;(3)12.【解析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61.122【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.26.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【答案】10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 2.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x = 【答案】D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .3.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.4.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.5.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.6.下面的几何体中,主视图为圆的是()A.B.C.D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.7.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.8.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.9.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8【答案】B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=172在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)27)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.14 【答案】C【解析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.二、填空题(本题包括8个小题)11.分解因式a3﹣6a2+9a=_________________.【答案】a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.12.已知|x|=3,y2=16,xy<0,则x﹣y=_____.【答案】±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.13.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.【答案】-1【解析】∵关于x,y的二元一次方程组23{+2=1①②+=-x y kx y的解互为相反数,∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-114.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.如果53xx y=-,那么xy=______.【答案】52;【解析】先对等式进行转换,再求解.【详解】∵53 xx y-=∴3x=5x-5y ∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键.16.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)【答案】>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:3626463+++++=4,S甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,乙组的平均数为:4353465+++++=4,S 乙2=16×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=23,∵73>23, ∴S 甲2>S 乙2. 故答案为:>. 【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17.某一时刻,测得一根高1.5m 的竹竿在阳光下的影长为2.5m .同时测得旗杆在阳光下的影长为30m ,则旗杆的高为__________m . 【答案】1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长= 1.52.5∴旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1. 故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.18.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=kx的图象上,则k 的值为________.【答案】-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x,k x ),则点A 的坐标为(-x,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-三、解答题(本题包括8个小题)19.如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .。
2018年安徽省合肥市十校联中考数学最后一卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣的相反数是()A.﹣B.﹣C.D.2.(4分)计算(2a2b)2的正确结果是()A.4a2b B.2a4b2C.4a4b2D.2a4b3.(4分)如图是一个由两个小正方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.4.(4分)总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109C.1.6×1010D.1.6×1011 5.(4分)方程1﹣=的解为()A.x=﹣B.x=C.x=D.x=16.(4分)将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为()A.60°B.45°C.50°D.30°7.(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70B.720C.1680D.23708.(4分)为执行“均衡教育”政策,我县2015年投入教育经费2500万元,预计2017年投入3600万元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500+2500(1+x)+2500(1+x)2=3600C.2500(1﹣x)2=3600D.2500(1+x)+2500(1+x)2=36009.(4分)已知二次函数y=kx2+k(k≠0)与反比例函数y=﹣,它们在同一直角坐标系中的图象大致是()A.B.C.D.10.(4分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题(本小题共4小题,每小题5分,共20分)11.(5分)计算×的值是.12.(5分)因式分解:﹣2x2y+12xy﹣18y=.13.(5分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为.14.(5分)已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,PA交y 轴于E,则的值是.三、(本题共16分)15.(8分)计算:2sin60°+(﹣)﹣1﹣20180﹣|1﹣|.16.(8分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?四、(本题共16分)17.(8分)清明节假期,小红和小阳随爸妈去旅游,他们在景点看到一棵古松树,小红惊讶的说:“呀!这棵树真高!有60多米.”小阳却不以为然:“60多米?我看没有.”两个人争论不休,爸爸笑着说:“别争了,正好我带了一副三角板,用你们学过的知识量一量、算一算,看谁说的对吧!”小红和小阳进行了以下测量:如图所示,小红和小阳分别在树的东西两侧同一地平线上,他们用手平托三角板,保持三角板的一条直角边与地平面平行,然后前后移动各自位置,使目光沿着三角板的斜边正好经过树的最高点,这时,测得小红和小阳之间的距离为135米,他们的眼睛到地面的距离都是1.6米.(1)请在指定区域内画出小红和小阳测量古松树高的示意图;(2)通过计算说明小红和小阳谁的说法正确(计算结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.24)18.(8分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)将△AOB向上平移2个单位得到△A1O1B1,画出△A1O1B1;(2)将△AOB绕点O按逆时针方向旋转90°得到△A2OB2,画出△A2OB2;(3)在(2)的条件下,AB边扫过的面积是.(保留π)五.(本大题共20分)19.(10分)阅读材料:求31+32+33+34+35+36的值解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3∴2S=37﹣3,即S=∴31+32+33+34+35+36=以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:(一)棋盘摆米这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行”国王以为要不了多少粮食,就随口答应了,结果国王输了(1)国际象棋共有64个格子,则在第64格中应放粒米(用幂表示)(2)设国王输给阿基米德的米粒数为S,求S(二)拓广应用:1.计算:+++…+(仿照材料写出求解过程)2.计算:+++…+=(直接写出结果)20.(10分)如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.六、(本题12分)21.(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.七、(本大题12分)22.(12分)为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?八、(本大题14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH 交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.2018年安徽省合肥市十校联中考数学最后一卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)计算(2a2b)2的正确结果是()A.4a2b B.2a4b2C.4a4b2D.2a4b【分析】根据积的乘方,即可解答.【解答】解:(2a2b)2=4a4b2.故选:C.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方公式.3.(4分)如图是一个由两个小正方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.【分析】根据题目中的几何图形,可以得到它的主视图,从而可以解答本题.【解答】解:由两个小正方体和一个圆锥组成的几何体,它的主视图是,故选:B.【点评】本题考查简单组合的三视图,解答本题的关键是明确题意,画出相应的图形.4.(4分)总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109C.1.6×1010D.1.6×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将160亿用科学记数法表示为:1.6×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)方程1﹣=的解为()A.x=﹣B.x=C.x=D.x=1【分析】方程去分母去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:6﹣(x+3)=3x,去括号得:6﹣x﹣3=3x,移项合并得:4x=3,解得:x=,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.(4分)将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为()A.60°B.45°C.50°D.30°【分析】先根据∠1=60°,∠FEG=90°,求得∠3=30°,再根据平行线的性质,求得∠2的度数.【解答】解:如图,∵∠1=60°,∠FEG=90°,∴∠3=30°,∵AB∥CD,∴∠2=∠3=30°.故选:D.【点评】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.7.(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70B.720C.1680D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选:C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.8.(4分)为执行“均衡教育”政策,我县2015年投入教育经费2500万元,预计2017年投入3600万元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500+2500(1+x)+2500(1+x)2=3600C.2500(1﹣x)2=3600D.2500(1+x)+2500(1+x)2=3600【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,然后用x表示2017年的投入,再根据“2017年投入3600万元”可得出方程.【解答】解:设每年投入教育经费的年平均增长百分率为x,则2017年的投入为2500(1+x)2万元,由题意,得2500(1+x)2=3600.故选:A.【点评】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(4分)已知二次函数y=kx2+k(k≠0)与反比例函数y=﹣,它们在同一直角坐标系中的图象大致是()A.B.C.D.【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【解答】解:分两种情况讨论:①当k>0时,反比例函数y=﹣,在二、四象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,A符合;②当k<0时,反比例函数y=﹣,在一、三象限,而二次函数y=kx2+k开口向下,与y轴交点在原点下方,都不符.分析可得:它们在同一直角坐标系中的图象大致是A.故选:A.【点评】本题主要考查二次函数、反比例函数的图象特点.10.(4分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S=2S△ABD=4S△ADF.④正确;即可得出结论.△ABC【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,=2S△ABD=4S△ADF,④正确.∴S△ABC故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的判定与性质;本题综合性强,有一定难度,证明三角形相似和三角形全等是解决问题的关键.二、填空题(本小题共4小题,每小题5分,共20分)11.(5分)计算×的值是6.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(5分)因式分解:﹣2x2y+12xy﹣18y=﹣2y(x﹣3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣2y(x2﹣6x+9)=﹣2y(x﹣3)2.故答案为:﹣2y(x﹣3)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为π.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠D=45°,∴∠AOC=2∠D=90°,则劣弧AC的长为:=π.故答案为π.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.14.(5分)已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,PA交y 轴于E,则的值是1.【分析】方法1:由所求的式子联想到勾股定理,故过A作AG⊥y轴于G,过B 作BH⊥x轴于H,设FH=a,则有OF=4+a,BF2=a2+1.易证△AEG∽△BFH,从而有===4,就可用a的代数式表示AE2、EF2,然后代入所求的式子就可解决问题;方法2:过点A作AG∥BF,交x轴于点G,连接EG,易证△AOG≌△BOF,则有AG=BF,OG=OF.根据线段的垂直平分线的性质可得EG=EF,在Rt△GAE中运用勾股定理可得AG2+AE2=GE2,然后通过等量代换就可解决问题.【解答】解1:过A作AG⊥y轴于G,过B作BH⊥x轴于H,设直线AC与x轴交于点K,如图,联立,解得:,.∵点A在点B的左侧,∴A(﹣4,﹣1),B(4,1).∴AG=4,OG=1,OH=4,BH=1.设FH=a,则有OF=OH+FH=4+a,BF2=FH2+BH2=a2+1.∵AC⊥CF,OE⊥OK,∴∠CFK=90°﹣∠CKF=∠OEK.∵AG⊥y轴,BH⊥x轴,∴∠AGE=∠BHF=90°.∴△AEG∽△BFH.∴===4.∴AE2=16BF2=16(a2+1),EG=4FH=4a.∴OE==|4a﹣1|.∴EF2=(4a﹣1)2+(4+a)2=17(a2+1).∴==1.故答案为:1.解2:过点A作AG∥BF,交x轴于点G,连接EG,如图.则有∠GAC=∠FCA=90°,∠AGO=∠BFO.∵双曲线y=与直线y=x都关于点O成中心对称,∴它们的交点也关于点O成中心对称,即OA=OB.在△AOG和△BOF中,,∴△AOG≌△BOF,∴AG=BF,OG=OF.∵OE⊥GF,∴EG=EF.∵∠GAC=90°,∴AG2+AE2=GE2,∴BF2+AE2=EF2,∴=1.故答案为:1.【点评】本题考查了反比例函数与一次函数交点问题、相似三角形的判定与性质、勾股定理、全等三角形的判定与性质、线段的垂直平分线的性质等知识,而由线段的平方联想到勾股定理是解决本题的关键.三、(本题共16分)15.(8分)计算:2sin60°+(﹣)﹣1﹣20180﹣|1﹣|.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简进而得出答案.【解答】解:原式=2×﹣2﹣1﹣(﹣1)=﹣2﹣1﹣+1=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(8分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x﹣9,解得x=8.7x+7=7×8+7=63.答:该店有客房8间,房客63人.【点评】本题考查了一元一次方程的应用,熟练掌握一元一次方程的解题方法是解题的关键.四、(本题共16分)17.(8分)清明节假期,小红和小阳随爸妈去旅游,他们在景点看到一棵古松树,小红惊讶的说:“呀!这棵树真高!有60多米.”小阳却不以为然:“60多米?我看没有.”两个人争论不休,爸爸笑着说:“别争了,正好我带了一副三角板,用你们学过的知识量一量、算一算,看谁说的对吧!”小红和小阳进行了以下测量:如图所示,小红和小阳分别在树的东西两侧同一地平线上,他们用手平托三角板,保持三角板的一条直角边与地平面平行,然后前后移动各自位置,使目光沿着三角板的斜边正好经过树的最高点,这时,测得小红和小阳之间的距离为135米,他们的眼睛到地面的距离都是1.6米.(1)请在指定区域内画出小红和小阳测量古松树高的示意图;(2)通过计算说明小红和小阳谁的说法正确(计算结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.24)【分析】(1)如图,根据题意画出图形即可;(2)由题意得,四边形CDEF是矩形,于是得到CD=BG=EF=1.6米,CF=DE=135米,设AG=x米,解直角三角形即可得到结论.【解答】解:(1)如图,AB表示古松树的高,CD,EF分别表示小红和小阳的眼睛到地面的距离;(2)由题意得,四边形CDEF是矩形,∴CD=BG=EF=1.6米,CF=DE=135米,设AG=x米,∵∠ACG=30°,∠AFG=45°,∠AGC=∠AGF=90°,∴GF=AG=x,AC=2AG=2x,∴CG==x米,∴DE=BD+BE=CG+GF=x+x=135,∴x≈49.45,∴AB=AG+GB=51.1米,∴古松树高=51.1米<60米,∴小阳的说法正确.【点评】题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.18.(8分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)将△AOB向上平移2个单位得到△A1O1B1,画出△A1O1B1;(2)将△AOB绕点O按逆时针方向旋转90°得到△A2OB2,画出△A2OB2;(3)在(2)的条件下,AB边扫过的面积是π.(保留π)【分析】(1)根据网格结构找出点A、O、B向上平移2个单位的对应点A1、O1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、O、B绕点O按逆时针方向旋转90°的对应点A2、O、B2的位置,然后顺次连接即可;(3)利用勾股定理列式求出OB,再根据AB边扫过的面积等于AB扫过的面积减去OB扫过的面积列式计算即可得解.【解答】解:(1)△A1O1B1如图所示;(2)△A2OB2如图所示;(3)由勾股定理得,OB==,AB边扫过的面积=S扇形AOA2﹣S扇形BOB2,=﹣,=4π﹣π,=π.故答案为:π.【点评】本题考查了利用平移变换作图,利用旋转变换作图,扇形的面积熟练掌握网格结构,准确找出对应点的位置是解题的关键,难点在于观察出(3)AB 扫过的面积等于两个扇形的面积的差.五.(本大题共20分)19.(10分)阅读材料:求31+32+33+34+35+36的值解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3∴2S=37﹣3,即S=∴31+32+33+34+35+36=以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:(一)棋盘摆米这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行”国王以为要不了多少粮食,就随口答应了,结果国王输了(1)国际象棋共有64个格子,则在第64格中应放263粒米(用幂表示)(2)设国王输给阿基米德的米粒数为S,求S(二)拓广应用:1.计算:+++…+(仿照材料写出求解过程)2.计算:+++…+=n﹣+(直接写出结果)【分析】(一)(1)根据棋盘百米特点写出即可;(2)根据题意表示出S,利用阅读材料中的方法计算即可;(二)1、原式利用材料中的方法计算即可求出值;2、结合1计算即可求出值.【解答】解:(一)(1)国际象棋共有64个格子,则在第64格中应放263粒米;故答案为:263;(2)根据题意得:S=1+21+22+…+264,①则有2S=21+22+…+265,②②﹣①得:S=265﹣1;(二)1、设S=+++…+,①则有4S=1++++…+,②②﹣①得:3S=1﹣,则S=﹣;2、根据题意得:原式=1+1+…+1﹣(+++…+)=n﹣+,故答案为:n﹣+【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(10分)如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.【分析】(1)欲证明AB=CD,只需证得=;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.构建正方形EFOG,利用正方形的性质,垂径定理和勾股定理来求AF的长度,则易求AE的长度.【解答】(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=3.则AF=3+1=4,即AE=AF+3=7.【点评】本题考查了勾股定理,正方形的判定与性质,垂径定理以及圆周角、弧、弦间的关系.注意(2)中辅助线的作法.六、(本题12分)21.(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有5人,在扇形统计图中,“乒乓球”的百分比为20%,如果学校有800名学生,估计全校学生中有80人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.【分析】(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);“乒乓球”的百分比==20%,因为800×=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本大题12分)22.(12分)为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒糕点所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种糕点的每盒售价不得高于58元,且每天销售糕点的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元,∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售糕点的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,=﹣20×58+1600=440,∴当x=58时,y最小值即超市每天至少销售糕点440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒糕点所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.八、(本大题14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH 交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得=,即HC2=EH•CD,由此构建方程即可解决问题;【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵AC,BD为对角线,∴OD=OC,∵OG=OE,∠DOG=∠COE=90°,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=或(舍弃),∴HC=.【点评】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
安徽省十校2018届初中毕业班第五次联考数学试题含答案安徽省2018年初中毕业班第五次十校联盟数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题无效的。
4.考试结束后请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的。
1.|a|=2,则实数a的值是A.-2B.C.D.22.如图是由五个相同的小正方块搭成的几何体,其俯视图是3.下列运算正确的是A. B. C. D.4.一副三角板如图放置,若AB∥CD,则∠1的度数为A.75°B.70°C.65°D.60°5.一元二次方程的根的情况是A.无实数根B.有两个不相等的实数根C.有唯一实数根D.有两个相等的实数根6.不等式组,的解集在数轴上表示为7.用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52(材料的厚度忽略不计)。
若设小正方形的边长为xm,下列方程符合题意的是A. B.C. D.8.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是A.2B.2.5C.2D.9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为10.已知,平面直角坐标系中,直线与抛物线的图象如图,点P是上的一个动点,则点P 到直线的最短距离为A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.64的立方根是;12.若,则代数式的值是;13.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27∘,则∠B的大小是;14.如图,点M是正方形ABCD内一点,△MBC是等边三角形,连接AM、MD对角线BD交CM于点N现有以下结论:①∠AMD=150°;②;③;④其中正确的结论有(填写序号)三、(本大题共2小题,每小题8分,满分16分)15.计算:16.先化简,后求值:,其中四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△ (不写作法,但要标出字母);(2)将△ABC绕点O旋转180∘,得到△(不写作法,但要标出字母);(3)求点A绕着点O旋转到点所经过的路径长l。
2018年安徽省十校联考中考数学最后一卷副标题一、选择题(本大题共10小题,共40.0分)1.的倒数是A. 2B.C.D.2.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是A. B. C. D.3.下列各式正确的是A. B.C. D.4.方程组的解为,则被遮盖的两个数M、N分别为A. 4,2B. 1,3C. 2,3D. 2,45.将一条两边沿平行的纸带如图折叠,若,则等于A.B.C.D.6.某科普小组有5名成员,身高分别为单位::160,165,170,163,增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是A. 平均数和中位数不变,方差变小B. 平均数和中位数不变,方差变大C. 平均数不变,中位数和方差变小D. 平均数变小,中位数和方差不变7.如图,在中,BF平分,于点F,D为AB的中点,连接DF延长交AC于点若,,则线段EF的长为A. 4B. 3C. 2D. 18.某企业因春节放假,二月份产值比一月份下降,春节后生产呈现良好上升势头,四月份比一月份增长,设三、四月份的月平均增长率为x,则下列方程正确的是A. B.C. D.9.若关于x的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是A. B.C. D.10.如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是A. B. 3 C. D.二、填空题(本大题共4小题,共20.0分)11.将多项式因式分解得______12.一根成年女性的头发直径约为,数据““用科学记数法表示为______13.如图,矩形ABCD的一边AD与相切于点E,点B在上、BC与相交于点F,,,,则的半径长为______.14.在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形的面积为______.三、计算题(本大题共2小题,共16.0分)15.计算:16.解不等式组,并将它的解集在数轴上表示出来.四、解答题(本大题共7小题,共74.0分)17.观察下面的点阵图和相应的等式,探究其中的规律:认真观察,并在后面的横线上写出相应的等式.;;;______结合观察下列点阵图,并在后面的横线上写出相应的等式.;;;;______若在中的第n个点阵图斜线的左上方共有36个点,试求第n个点阵图中总共有多少个点.18.如图,某小区有多幢住宿楼,小明在自家的窗口C测得斜对面一幢住宿楼顶部D的仰角为,住宿楼底部B的俯角为、C、D在同一竖直平面内,已知小明家的窗口C距离地面的距离,且两幢住宿楼的底部在同一水平面.求的度数;求小明家斜对面住宿楼的高精确到,参考数值:,19.如图在边长为1个单位长度的小正方形组成的网格中,给出了格点、直线l和格点O.画出关于直线l成轴对称的;画出将向上平移1个单位得到的;以格点O为位似中心,将作位似变换,将其放大到原来的两倍,得到.20.2018年我市体育中考总分60分,其中男生1000米跑为必选项目,再在立定跳远、跳绳、实心球掷远、篮球运球和足球运球中选择两项;女生800米跑为必选项目,再在立定跳远、跳绳、仰卧起坐、篮球运球和足球运球中选择两项某校对得分超过40分的20位学生的成绩m进行统计,结果如频数分布表所示:求a的值;若用扇形图来描述,求分数在内所对应的扇形图的圆心角的大小;若男生小明在刚开始训练时在选考项目随机选择两项进行训练,试用列举法求小明选择”跳绳篮球运球“的概率提示:可以用字母表示各个项目21.如图,一次函数的图象与反比例函数的图象交于、B两点,与x轴交于点C,与y轴交于点E,其中.求该一次函数和反比例函数的解析式;若点D是x轴正半轴上一点,且,连接OB、BD,求的面积.22.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知米,米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y轴建立直角坐标系.求抛物线的解析式;由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于,才能安全通行,问这辆特殊货车能否安全通过隧道?23.阅读材料:一个点将一条直线分为两段,如果其中较长的一段与整个线段的比等于较短一段与较长一段的比,我们就说这个点是这条线段的黄金分割点,较长的一段与整个线段的比值或较短一段与较长一段的比值叫做黄金分割数,用一元二次方程的知识可以求出黄金分割数是我若AC、AD分别与BE交于点M、求证:点M是线段BN的一个黄金分割点.若,则______若有根号保留根号答案和解析【答案】1. B2. D3. C4. A5. B6. A7. B8. D9. C10. D11.12.13.14. 或或15. 解:原式.16. 解:解不等式,得:,解不等式,得:,则不等式组的解集为,将解集表示在数轴上如下:17. 10;18. 解:过点C作,则有,,;由题意得:,为等腰直角三角形,在中,,在中,,小明家斜对面住宿楼的高.19. 解:如图所示:,即为所求;如图所示:,即为所求;如图所示:,即为所求.20. 解:;分数在内所对应的扇形图的圆心角的大小为;画出树状图如图所示.共有20种选择,其中小明选择”跳绳篮球运球“的有2种结果,所以小明选择”跳绳篮球运球“的概率为.21. 解:过点F作轴于点F,点A的坐标是,点F的坐标是,,,,点C的坐标是,将,,代入,得,解得,一次函数的解析式是,将A点坐标代入,得,反比例函数的解析是;,,点D的坐标是联立一次函数与反比例函数,得,解得不符合题意,舍,,点坐标是,.22. 解:根据题意,顶点D的坐标为,点B的坐标为,设抛物线的解析式为,把点代入得:,解得:,即所求抛物线的解析式为:,由图象可知,高度越高,两排等间的距离越近,把代入得:,解得:,,所求最小距离为:,答:两排灯的水平距离最小是米,根据题意,当时,,能安全通过隧道,答:这辆特殊货车能安全通过隧道.23.【解析】1. 解:的倒数是.故选:B.根据倒数定义可知,的倒数是.主要考查倒数的定义,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2. 解:由图可知,左视图有二行,最下一层2个小正方体,上面左侧有一个小正方体,故选:D.先细心观察原立体图形四个圆柱体的位置关系,结合四个选项选出答案.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3. 解:A、,无法计算,故此选项错误;B、,无法分解因式,故此选项错误;C、,故此选项正确;D、,故此选项错误.故选:C.直接利用立方根的性质以及分解因式、合并同类项法则分别计算得出答案.此题主要考查了立方根的性质以及分解因式、合并同类项等知识,正确掌握相关运算法则是解题关键.4. 解:将代入得,,故选:A.本题主要将代入得出y和N,再将x,y的值代入方程组即可.本题主要考查了二元一次方程的解、问题转化等思想.5. 解:,,,,.故选:B.先根据可求出,根据可知,,进而可求出的度数.本题考查的是图形翻折变换的性质及平行线的性质,熟知图形翻折变换的性质是解答此题的关键.6. 解:原,中位数为165,原,新,中位数为,新,平均数和中位数不变,方差变小,故选:A.根据平均数、中位数的意义、方差的意义,可得答案.本题考查了方差,利用平均数、中位数和方差的定义是解题关键.7. 解:延长AF交BC于H,在和中,,≌ ,,又,,,,,,,故选:B.延长AF交BC于H,证明 ≌ ,得到,根据三角形中位线定理求出BH、HC,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8. 解:设一月份的产量为a,由题意可得,,则,故选:D.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.9. 解:关于x的一元二次方程有两个不相等的实数根,A.,,即,故A不正确;B.,,即,故B不正确;C.,,即,故C正确;D.,,即,故D不正确;故选:C.根据一元二次方程有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.10. 解:以点E为圆心,AE长度为半径作圆,连接CE,当点在线段CE上时,的长取最小值,如图所示.根据折叠可知:.在中,,,,,的最小值.故选:D.以点E为圆心,AE长度为半径作圆,连接CE,当点在线段CE上时,的长取最小值,根据折叠的性质可知,在中利用勾股定理可求出CE的长度,用即可求出结论.本题考查了翻折变换、矩形的性质以及勾股定理,利用作圆,找出取最小值时点的位置是解题的关键.11. 解:原式,故答案为:原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12. 解:故答案为:.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13. 解:连接OE交BC于H,四边形ABCD为矩形,,,,与相切于点E,,,,,设圆的半径为r,则,解得,,故答案为:.连接OE交BC于H,根据切线的性质得到,根据垂径定理得到,根据勾股定理计算即可.本题考查的是切线的性质、垂径定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.14. 解:分三种情况计算:当时,如图:;当时,如图:则,,;当时,如图:则,,;故答案为:或或.因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:为等腰直角三角形,直接利用面积公式求解即可;先利用勾股定理求出AE边上的高BF,再代入面积公式求解;先求出AE边上的高DF,再代入面积公式求解.本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.15. 先去绝对值符号、计算零指数幂、负整数指数幂、代入三角函数值、化简二次根式,再计算乘法和加减运算可得.本题主要考查实数的运算,解题的关键是掌握三角函数值、二次根式性质、绝对值性质及零指数幂等.16. 分别求出每一个不等式的解集,将两个不等式解集表示在数轴上找到其公共部分即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集并将解集表示在数轴上找到解集的公共部分是解答此题的关键.17. 解:根据题中所给出的规律可知:;故答案是:10;由图示可知点的总数是,所以.故答案是:.由可知解得,不合题意,舍去..第n个点阵图中总共有81个点.根据观察会发现第四个式子的等号的左边是,右边分子上是,从而得到规律;通过观察发现左边是,右边是25即5的平方;过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.主要考查了学生通过特例分析从而归纳总结出一般结论的能力对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.18. 过点C作,利用直角三角形的性质解答即可;利用直角三角形的性质好三角函数解答即可.本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.19. 利用轴对称图形的性质分别得出对应点位置进而得出答案;直接利用平移的性质进而得出对应点位置进而得出答案;直接利用位似图形的性质得出对应点位置进而得出答案.此题主要考查了位似变换以及轴对称变换以及平移变换,根据题意得出对应点位置是解题关键.20. 根据各组人数之和等于总人数即可得a的值;用乘以第二组人数占总人数的比例可得;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明选择”跳绳篮球运球“的情况数,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率及频数分布表、扇形统计图注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.21. 根据平行于y轴直线上的点的横坐标相等,可得F点坐标,根据等腰直角三角形的判定与性质,可得C点坐标,根据待定系数法,可得一次函数的解析式,反比例函数的解析式;根据等腰三角形的性质,可得D点坐标,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案.本题考查了反比例函数与一次函数,解的关键是利用等腰三角形的判定与性质得出C点坐标,解的关键是利用等腰三角坪行的性质得出D点坐标,又利用了解方程组求B点坐标.22. 抛物线顶点坐标为,设抛物线的解析式为,把点B的坐标代入即可,由图象可知,高度越高,两排灯间的距离越近,把代入所得解析式,求得一元二次方程的两个根,它们的差即为答案,由图象结合题意可知,集装箱与隧道最接近的位置在此坐标系中的纵坐标为,代入所得解析式,判断是够大于即可.本题考查了二次函数的应用,解题的关键是分析题意并结合图象列式求解,难度较大,综合程度较高.23. 解:连接OC、OD,、B、C、D、E是的五等分点,,;连接AB,由题意知、、是等弧,,,,∽ ,,即,点M是线段BN的一个黄金分割点;由知,,整理,得:,解得:负值舍去,与同理可得,,故答案为:.连接OC、OD,由圆五等分点知,根据可得答案;连接AB,由、、是等弧可得,即可知,即,根据 ∽ 可得答案;利用求得MN的长度,与同理可得,从而得出答案.本题主要考查圆的综合问题,解题的关键是掌握圆内接正多边形的性质、圆周角定理、相似三角形的判定与性质等知识点.。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1。
的绝对值是()A。
B. 8 C. D。
【答案】B【详解】数轴上表示数—8的点到原点的距离是8,所以—8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635。
2亿科学记数法表示()A。
B。
C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635。
2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C。
D。
【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得。
【详解】A. ,故A选项错误;B。
,故B选项错误;C。
,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键。
4。
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得。
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A。
安徽省2018年初中毕业班十校数学联考最后一卷含答案温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟。
2、本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
3、请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4、考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题:(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请把正确选项的代号写在题后的括号内。
每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是 ℃ A.-2 B.5 C.-10 D.-52.下列分式是最简分式的是A.b a a 232B.a a a 32-C.22ba ba ++ D.222b a ab a -- 3.估计327-的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间 4.如图是某物体的三视图,则这个物体的形状是 A.四面体 B.直三棱柱 C.直四棱柱 D.直五棱柱5. 3月12日为法定植树节。
某校团委这天组成20名团员同学共种了52棵树苗,其中男团员每人种树3棵,女团员每人种树2棵。
设男团员有x 人,女团员有y 人,根据题意,下列方程组正确的是 A.{522023=+=+y x y x B.{522032=+=+y x y x C.{205223=+=+y x y x D.{205232=+=+y x y x6.某市初中毕业生进行一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取3000个数据,统计如下表:数据x 7970≤≤x8980≤≤x9990≤≤x个数 800 1300 900 平均数788592请根据表格中的信息,估计这4万个数据的平均数约为 A.92 B.85 C.83 D.787.关于x 的一元二次方程0122=-+x ax 有两个不相等的实数根,则a 的取值范围是 A.a>-1 B.1-≥a C.0≠a D.a>-1且0≠a 8.下列语句中,其中正确的个数是①将多项式()()x y b y x a ---2因式分解,则原式=()()b ay ax y x +--②将多项式xy y x 4422-+因式分解,则原式=()22y x -;③90o的圆周角所对的弦是直径;④半圆(或直径)所对的圆周角是直角。
2018年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。
1.(2018安徽)-8的绝对值是()A.-8 B.8 C.±8 D.-1 82. (2018安徽)2017年我省粮食总产量为695.2亿斤,其中695.2亿科学记数法表示()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083. (2018安徽)下列运算正确的是()A.(a2)3=a5B.a2·a4=a8C.a6÷a3=a2D.(ab)3=a3b34. (2018安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5. (2018安徽)下列分解因式正确的是()A.-x2+4x=-x(x+4) B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)6. (2018安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7. (2018安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.-1B.1 C.-2或2 D.-3或18. (2018安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9. (2018安徽)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//C E D.∠BAE=∠DCF10. (2018安徽)如图,直线l1、l2都与直线l垂直,垂足分别为M,N,MN=1正方形ABCD的边3,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1、l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大共4小题,每小题5分,满分30分)11.(2018安徽)不等式x-82>1的解集是。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A 与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积. 【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,【解析】通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A 与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键. 22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元. 【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x 的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD 中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2018年安徽省十校联考中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.(4分)若|a|=2,则a的值是()A.﹣2B.2C.D.±22.(4分)如图是由5个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.(4分)下列运算正确的是()A.2a+3b=5ab B.(﹣2a2)3=﹣6a6C.a2•a3=a6D.4.(4分)一副三角板如图放置,若AB∥CD,则∠1的度数为()A.75°B.70°C.65°D.60°5.(4分)一元二次方程2x2=3x+2的根的情况是()A.无实数根B.有两个不相等的实数根C.有唯一实数根D.有两个相等的实数根6.(4分)不等式的解集在数轴上表示为()A.B.C.D.7.(4分)用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为xm,下列方程符合题意的是()A.2x(10﹣7x)=3.52B.C.D.2x2+2x(10﹣9x)=3.528.(4分)如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是()A.2B.2.5C.2D.9.(4分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一坐标内的图象大致为()A.B.C.D.10.(4分)已知,平面直角坐标系中,直线y1=x+3与抛物线y2=﹣+2x的图象如图,点P是y2上的一个动点,则点P到直线y1的最短距离为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)64的立方根为.12.(5分)若x=3﹣,则代数式x2﹣6x+4的值是;13.(5分)如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是;14.(5分)如图,点M是正方形ABCD内一点,△MBC是等边三角形,连接AM、MD,对角线BD交CM于点N,现有以下结论:①∠AMD=150°;②MA2=MN•MC;③;④其中正确的结论有(填写序号)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2﹣1+•tan30°﹣+|﹣sin60°|16.(8分)先化简,后求值:,其中四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.18.(8分)如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN是晾衣架的一个滑槽,点P在滑槽MN上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm,且AB=CD=CP=DM=20cm.(1)当点P向下滑至点N处时,测得∠DCE=60°时①求滑槽MN的长度;②此时点A到直线DP的距离是多少?(2)当点P向上滑至点M处时,点A在相对于(1)的情况下向左移动的距离是多少?(结果精确到0.01cm,参考数据≈1.414,≈1.732)五、(本大题共2小题,每小题10分,满分20分)19.(10分)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)20.(10分)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(1)如图①,若∠BAC=23°,求∠AMB的大小;(Ⅱ)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB 的大小.六、(本题满分12分)21.(12分)张老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类中女生有名,D类中男生有名,将下面条形统计图补充完整;(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的公约多少人?(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.七、(本题满分12分)22.(12分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)若小李骑单车的时间y2(单位:分钟)于x满足关系式y2=ax2+bx+78,且此函数图象的对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家,试求y2与x的函数关系式;(3)试求小李应选择在哪一站出地铁,才能使他从文化宫回到家所需的总时间最短?并求出最短时间(其他环节时间忽略不计)八、(本题满分14分)23.(14分)如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过点E作EF∥BC且EF=BC 连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠F AE的度数;(3)在(2)的条件下,若AB=2,AD:CD=1:2,S△AEF=3S△CDE,求AF的长.2018年安徽省十校联考中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.(4分)若|a|=2,则a的值是()A.﹣2B.2C.D.±2【解答】解:∵|a|=2,∴a=±2.故选:D.2.(4分)如图是由5个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【解答】解:这个几何体的俯视图从左到右小正方形的个数是:1(在上面),2,1(在下面).故选:D.3.(4分)下列运算正确的是()A.2a+3b=5ab B.(﹣2a2)3=﹣6a6C.a2•a3=a6D.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2)3=﹣8a6,故此选项错误;C、a2•a3=a5,故此选项错误;D、(2a﹣1)﹣2=,正确.故选:D.4.(4分)一副三角板如图放置,若AB∥CD,则∠1的度数为()A.75°B.70°C.65°D.60°【解答】解:如图,∵AB∥CD,∴∠C=∠AEC=30°,又∵∠1是△AEF的外角,∴∠1=∠A+∠AEF=45°+30°=75°,故选:A.5.(4分)一元二次方程2x2=3x+2的根的情况是()A.无实数根B.有两个不相等的实数根C.有唯一实数根D.有两个相等的实数根【解答】解:∵原方程可化为2x2﹣3x﹣2=0,∴a=2,b=﹣3,c=﹣2,∴△=b2﹣4ac=(﹣3)2﹣4×2×(﹣2)=25>0,∴方程有两个不相等的实数根.故选:B.6.(4分)不等式的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式2x﹣1≥1,得:x≥1,解不等式x﹣2<0,得:x<2,∴不等式组的解集为:1≤x<2,故选:C.7.(4分)用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为xm,下列方程符合题意的是()A.2x(10﹣7x)=3.52B.C.D.2x2+2x(10﹣9x)=3.52【解答】解:设小正方形的边长为xm,则小矩形的宽为2xm,长为:m,依题意得:.故选:B.8.(4分)如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是()A.2B.2.5C.2D.【解答】解:延长BD,与AC交于点E,∵CD平分∠ACB,∴∠ACD=∠BCD,∵BD⊥CD,∴∠BDC=∠EDC=90°,在△BCD和△ECD中,,∴△BCD≌△ECD(ASA),∴BC=EC=3,BD=DE,∵∠A=∠ABE,∴AE=BE=AC﹣EC=AC﹣BC=5﹣3=2,∴BD=1,在Rt△BDC中,BD=1,BC=3,根据勾股定理得:CD==2.故选:C.9.(4分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一坐标内的图象大致为()A.B.C.D.【解答】解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,∵当x=1时y=a+b+c<0,∴y=bx+a的图象经过第二四象限,且与y轴的正半轴相交,反比例函数y=图象在第二、四象限,只有D选项图象符合.故选:D.10.(4分)已知,平面直角坐标系中,直线y1=x+3与抛物线y2=﹣+2x的图象如图,点P是y2上的一个动点,则点P到直线y1的最短距离为()A.B.C.D.【解答】解:设过点P平行直线y1的解析式为y=x+b,当直线y=x+b与抛物线只有一个交点时,点P到直线y1的距离最小,由,消去y得到:x2﹣2x+2b=0,当△=0时,4﹣8b=0,∴b=,∴直线的解析式为y=x+,如图设直线y1交x轴于A,交y轴于B,直线y=x+交x轴于C,作CD⊥AB于D,PE⊥AB于E,则A(﹣3,0),B(0,3),C(﹣,0)∴OA=OB=3,OC=,AC=,∴∠DAC=45°,∴CD==,∵AB∥PC,CD⊥AB,PE⊥AB,∴PE=CD=,故选:B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)64的立方根为4.【解答】解:64的立方根是4.故答案为:4.12.(5分)若x=3﹣,则代数式x2﹣6x+4的值是﹣3;【解答】解:∵x=3﹣,∴x2﹣6x+4=(x﹣3)2﹣5=(3﹣﹣3)2﹣5=(﹣)2﹣5=2﹣5=﹣3,故答案为:﹣3.13.(5分)如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是36°;【解答】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°﹣54°=36°.故答案为:36°14.(5分)如图,点M是正方形ABCD内一点,△MBC是等边三角形,连接AM、MD,对角线BD交CM于点N,现有以下结论:①∠AMD=150°;②MA2=MN•MC;③;④其中正确的结论有①②④(填写序号)【解答】解:①∵△MBC是等边三角形,∴∠MBC=∠MCB=∠CMB=60°,BM=BC,∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC,∴∠ABM=∠DCM=30°,∵AB=BM,∴∠AMB==75°,同理∠CMD=75°,∴∠AMD=360°﹣75°﹣75°﹣60°=150°;故①正确;②∵四边形ABCD是正方形,∴∠BDC=45°,∴∠MDN=75°﹣45°=30°,∵∠CMD=∠CMD,∠MDN=∠DCM=30°,∴△MND∽△MDC,∴=,∴DM2=MN•CM,∵AM=DM,∴MA2=MN•MC,故②正确;③如图1,过M作MG⊥AB于G,设MG=x,Rt△BGM中,∠GBM=30°,∴BM=BC=AB=2x,BG=x,∴AG=2x﹣x,∴====,故③不正确;④如图2,过N作NH⊥CD于H,设NH=x,∵∠NDH=∠DNH=45°,∴NH=DH=x,∵∠NCH=30°,∠CHN=90°∴CN=2x,CH=x,∵NH∥BC,∴==,故④正确;本题正确的结论有:①②④故答案为:①②④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2﹣1+•tan30°﹣+|﹣sin60°|【解答】解:原式=+×﹣2+﹣=﹣1.16.(8分)先化简,后求值:,其中【解答】解:===,当a=﹣2+时,原式=.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.18.(8分)如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN是晾衣架的一个滑槽,点P在滑槽MN上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm,且AB=CD=CP=DM=20cm.(1)当点P向下滑至点N处时,测得∠DCE=60°时①求滑槽MN的长度;②此时点A到直线DP的距离是多少?(2)当点P向上滑至点M处时,点A在相对于(1)的情况下向左移动的距离是多少?(结果精确到0.01cm,参考数据≈1.414,≈1.732)【解答】解:(1)①当点P向下滑至点N处时,如图1中,作CH⊥DN于H.∵∠DCE=60°,∴∠DCN=180°﹣∠DCE=120°,∵CD=CP=20cm,即CD=CN=20cm,∴∠CDN=(180°﹣∠DCN)=30°,∴CH=CD=10cm,NH=DH==10(cm),∴MN=DN﹣DM=2DH﹣DM=20﹣20≈14.6cm.∴滑槽MN的长度为14.6cm.②根据题意,点A到直线DP的距离是6CH=6×10=60cm.(2)当点P向上滑至点M处时,如图2中,△CMD是等边三角形,∴∠CDM=60°,作CG⊥DM于G,则CG=CD•sin60°=20×=10(cm),此时点A到直线DP的距离是6CG=6×10=60,∵60﹣60≈43.9cm,∴点A在相对于(1)的情况下向左移动的距离是43.9cm.五、(本大题共2小题,每小题10分,满分20分)19.(10分)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是79;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是67;(3)求图4中所有圆圈中各数值之和.(写出计算过程)【解答】解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+67=(1+2+3+...+23)+(1+2+3+ (67)=276+2278=2554.故答案为:(1)79;(2)67.20.(10分)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(1)如图①,若∠BAC=23°,求∠AMB的大小;(Ⅱ)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB 的大小.【解答】解:(1)连接OB,∵MA、MB分别切⊙O于A、B,∴∠OBM=∠OAM=90°,∵弧BC对的圆周角是∠BAC,圆心角是∠BOC,∠BAC=23°,∴∠BOC=2∠BAC=46°,∴∠BOA=180°﹣46°=134°,∴∠AMB=360°﹣90°﹣90°﹣134°=46°.(2)连接AD,AB,∵BD∥AM,DB=AM,∴四边形BMAD是平行四边形,∴BM=AD,∵MA切⊙O于A,∴AC⊥AM,∵BD∥AM,∴BD⊥AC,∵AC过O,∴BE=DE,∴AB=AD=BM,∵MA、MB分别切⊙O于A、B,∴MA=MB,∴BM=MA=AB,∴△BMA是等边三角形,∴∠AMB=60°.六、(本题满分12分)21.(12分)张老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类中女生有3名,D类中男生有1名,将下面条形统计图补充完整;(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的公约多少人?(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.【解答】解:(1)C类中女生有:20×25%﹣2=3(名),D类中男生有20﹣3﹣10﹣5﹣1=1(人),条形统计图补充完整如图所示:(2)根据题意得:(名);答:九年级女生完成数学作业达到很好和较好的约108人;(3)根据题意画图如下:由树状图可得共有6种可能的结果,其中两名同学性别相同的结果有3种,所以所选两位同学恰好性别相同的概率是.七、(本题满分12分)22.(12分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)若小李骑单车的时间y2(单位:分钟)于x满足关系式y2=ax2+bx+78,且此函数图象的对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家,试求y2与x的函数关系式;(3)试求小李应选择在哪一站出地铁,才能使他从文化宫回到家所需的总时间最短?并求出最短时间(其他环节时间忽略不计)【解答】解:(1)设y1=kx+b,将(8,18),(9,20)代入得,解得故y1关于x的函数解析式为y1=2x+2;(2)由题意得,解得∴y=x2﹣11x+78;(3)设小李从文化宫回到家所需的时间为y分钟,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80=(x﹣9)2+39.5,∵a=>0,∴当x=9时,y有最小值,y最小=39.5,故小李应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.八、(本题满分14分)23.(14分)如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过点E作EF∥BC且EF=BC 连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠F AE的度数;(3)在(2)的条件下,若AB=2,AD:CD=1:2,S△AEF=3S△CDE,求AF的长.【解答】(1)证明:∵∠ADB=∠CDE∴∠ADB+∠BDE∠CDE+∠BDE,即∠ADE=∠BDC,在△ADE和△BDC中,∴△ADE≌△BDC∴AE=BC;(2)解:如图2,设AE交BC于点G,DE交BC于点H 由(1)得△ADE≌△BDC∴∠AED=∠BCD,AE=BC∴AE=EF∵∠DHC=∠GHE∴∠GHE=∠HDC∵EF∥BC∴∠GEF=∠EGH∴∠AEF=∠EDC=∠ADB=90°∴△AEF是等腰直角三角形,∠F AE=45°,(3)解:由(2)知∠AEF=∠ADB=∠CDE=90°∵AD=BD,CD=DE,∵∵∠ADB=∠CDE∴△ABD~△CED∴∵AB=2,∴CE=4,∵∠AEF=∠CDE,.∴△AEF~△CDE∴,即解得AF=.。
第9题图2018年安徽省初中毕业学业考试数学模拟卷五(卷Ⅰ)本卷共计3大题,时间45分钟,满分92分一、选择题(本大题共10小题,每小题4分,满分40分) 1.在下列各数(-1)0 、-|-1| 、(-1) 3 、(-1)-2中,负数的个数有························( )A .0个B .1个C .2个D .3个2.下列运算正确的是···············································( ) A .a 2·a 3=a 6 B .(12)-1=-2 C .16=±4 D .|-6|=63.在我国南海某海域探明可燃冰储量约有194亿立方米,将数字194亿用科学记数法表示正确的是············( ) A .1.94×1010 B .0.194×1010 C .19.4×109 D .1.94×1094.已知:点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x +1x -a =2的解是·····( )A .5B .1C .3D .不能确定5.如图,由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是·········( ) A .5个或6个 B .6个或7个 C .7个或8个 D .8个或9个 6.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为··········( )A .1B .1.5C .2D .2.57.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图所示,其中正确的是················( )A .B .C .D .8.如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连结AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误的是···································( ) A .∠ACD =∠DAB B .AD =DE C .AD 2=BD ·CD D .AD ·AB =AC ·BD9.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G ,H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是················································( ) 二、填空题(本大题共4小题,每小题5分,满分20分) 11.如果a +2b =-3,那么代数式2-2a -4b 的值是________.12.若关于x 的方程x 2+2mx +m 2+3m -2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为 .13.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,33),反比例函数y =kx 的图象与菱形对角线AO 交D 点,连结BD ,当DB ⊥x 轴时,k 的值是 .14.如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB =a ,CG =b (a >b ). 有下列结论:①△BCG ≌△DCE ; ②BG ⊥DE ; ③DG GC =GOCE; ④(a -b )2·S △EFO =b 2·S △DGO . 上述四个结论钟正确的是: .第5题图第8题图第6题图第10题图第13题图第14题图三、本大题共2小题,每小题8分,满分16分 15.计算:-(-12)-2×(-1)2017-|cos30°-1|-2×6.16.先化简,再求值:a 2+2ab +b 2a 2+ab -a 2-b 2a +b ÷a -b2+2,其中2a =3b .四、本大题共2小题,每小题8分,满分16分17.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上). (1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1;(2)把△A 1B 1C 1绕点A 1按逆时针旋转90°,在网格中画出旋转后的△A 1B 2C 2; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.18.如图,斜坡AC 的坡度(坡比)为1∶3,AC =10米.坡顶有一旗杆BC ,旗杆顶端点B 与点A 有一条彩带AB 相连,AB =14米,试求旗杆BC 的高度.2018年安徽省初中毕业学业考试数学模拟卷五(卷Ⅱ)本卷共计4大题,时间50分钟,满分58分五、本大题共2小题,每小题10分,满分20分19.“端午节”就要到了,我国民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.六、本大题满分12分21.我市某校计划购买甲、乙两种树苗共1000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.七、本大题满分12分22.如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点. (1)求此抛物线的解析式;(2)当P A +PB 的值最小时,求点P 的坐标.(3)抛物线对称轴上是否存在一点Q ,使得△QBC 为等腰三角形? 若存在,请直接写出点Q 的坐标;若不存在,请说明理由.备用图八、本大题满分14分23.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1,三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,直接写出线段AE 、CF 与EF 之间存在的等量关系;②如图2,三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,三角板的两直角边分别交AB ,BC 于E 、F 两点,若AO AC =14,求OEOF的值.图1 图2 图32018年安徽省初中毕业学业考试数学模拟卷五参考答案一、选择题答案二、填空题答案三、简答题答案 15.答案:3-332;16.答案:(1) 原式=1+b a 又因为2a =3b 所以b a =23 ∴原式=1+23=53 ;17.答案:(1) 图略 ; (2) 图略 ; (3) 32+22π ;18.答案:6米;19.答案:(1) 600人 ; (2) 图略 ; (3) 3200人;(4) 14 ;20.答案:(1) 证明略 ; (2) 85;21.答案:(1)甲400株 乙600株 ; (2) 甲最多购买600株 ;(3) 甲600株 乙400株时费用最低为27000元 ;22.答案:(1) y =-x 2+2x +3 ; (2) P (37,0) ; (3) Q (1,0)或Q (1,1)或Q (1,-6)或Q (1,6)23.答案:(1) ①AE 2+CF 2=EF 2 ②成立,理由略 ; (2) 13;。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 片的绝对值是()A. —B. 8C. _i 于D.【答案】Be析H好和樵质绝对社的足;r 一不数的总劭寸值是数轴上A示这个敎笫点到廉点的孤离诵亍解君即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. &352 1MB. 6 352C. 肥52,D.閃5 2 • 1(?【答案】C【解析】【分析】科学记数法的表示形式为a x 10n的形式,其中1W|a|<10,n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352 x 10 8,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中1W|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A.[『)" = (B.C.D.仗【答案】D【解析】【分析】根据幕的乘方、同底数幕乘法、同底数幕除法、积的乘方的运算法则逐项进行计算即可得.【详解】A.(艸,故A选项错误;B. 『J ,故B 选项错误;C. $ +J ,故C 选项错误;D. - aV ,正确,故选D.【点睛】本题考查了有关幕的运算,熟练掌握幕的乘方,同底数幕的乘法、除法,积的乘方的运 算法则是解题的关键•4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()<r. 4 sw:\.kc.lxA. ( A )B. ( B )C.( C )D.( D )【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长 方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A 选项符合题意, 故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解 题的关键.5. 下列分解因式正确的是( A.冷=一;..:鼻 4 工B.C. f 「.、、、、: J 、vi' 【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案•注意分解要彻底. 【详解】A. + J +乐-- 4||,故A 选项错误;B. x" + xy + \ ■ x (x 斗、+ 1),故 B 选项错误;C. . .、 ; • : . ■.,故C 选项正确;D.Jr & =:上:4D. [A 曲.7= (x-2 )2, 故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式•注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则( )A. b-d 4 22A% - 2)aB. b珂1 +22 1^4C. D. !:■ L2.7.-【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%) a万件,2018年我省有效发明专利数为(1+22.1%) ? ( 1+22.1%) a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%) a万件,2018年我省有效发明专利数为(1+22.1%) ? (1+22.1%) a万件,即b= (1+22.1%) 2a万件,故选B. 【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )A.卜B. 1C. |-WD. 7釦|【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0 ,2x +(a+1)x=0 ,由方程有两个相等的实数根,可得△= (a+1) 2- 4X 1 x 0=0,解得:a1=a2=-1 ,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1 )△> 0?方程有两个不相等的实数根;(2)△ =0?方程有两个相等的实数根;(3)△< 0?方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是( )A.甲、乙的众数相同B. 甲、乙的中位数相同C.甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,排序后最中间的数是4,所以中位数是4,一 2 + 3 K44- 8+ 8,S£-->[(2 5/+ (3-5/4 (4-5)_ I〔8 + (8-5)_]=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键9. □ ABCD中, E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF —定为平行四边形的是( )A. BE=DFB. AE=CFC. AF//CED. / BAE=Z DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得【详解】A如图,•••四边形ABCD是平行四边形,••• OA=OC OB=OD ••• BE=DF • OE=OF •四边形AECF是平行四边形,故不符合题意;AECF 是平行四边形,故符合题意;C 、如图,•••四边形 ABCD 是平行四边形,••• OA=OC •/ AF//CE ,•/ FAO=z ECO 又•••/ AOF 玄 COEAOF^A COE •- AF=CE• AF CE ,•四边形 AECF 是平行四边形,D 如图,•••四边形 ABCD 是平行四边形,• AB=CD AB//CD ,•••/ ABE=Z CDF又•••/ BAE=Z DCF , ABE^A CDF , •- AE=CF / AEB=Z CFDAEO 2 CFO• AE//CF ,• AE CF ,•四边形 AECF 是平行四边形,故不符合题意,【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解 题的关键•10. 如图,直线I 】、「都与直线I 垂直,垂足分别为 M N MN=1正方形ABCD 勺边长为k 巴,对角线AC 在直 线I 上,且点C 位于点M 处,将正方形 ABCD 沿 I 向右平移,直到点 A 与点N 重合为止,记点 C 平移的距离 为x ,正方形ABCD 勺边位于 之间分的长度和为y ,则y 关于x 的函数图象大致为( )故不符合题意;B 、如图所示,AE=CF 不能得到四边形【答案】A【解析】【分析】由已知易得AC=2 / ACD=45,分O W x w 1、1<x W 2、2<x<3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断【详解】由正方形的性质,已知正方形ABCD的边长为頑,易得正方形的对角线AC=2 / ACD=45 ,如图,当2<x<3时,y=2 ,【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键•二、填空题(本大共4小题,每小题5分,满分30分)v g11. 不等式—>1的解集是_______________ .n【答案】x> 10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得【详解】去分母,得x-8 >2,移项,得x >2+8,合并同类项,得x > 10,故答案为:x> 10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键•12. 如图,菱形ABOC勺AB AC分别与O O相切于点D E,若点D是AB的中点,则/ DOE _____________【答案】60°【解析】【分析】由AB, AC分别与O O相切于点D、E,可得/ BDO=/ ADO M AEO=90,根据已知条件可得到BD=OB在Rt△ OBD中,求得/ B=60°,继而可得/ A=120°,再利用四边形的内角和即可求得/ DOE勺2度数•【详解】T AB, AC分别与O O相切于点D E,•••/ BDO=/ ADO N AEO=90 ,•••四边形 ABO (是菱形,• AB=BO Z A+Z B=180° , 1BD= AB,忖 • BD=OB忖在 Rt △ OBD 中 ,Z ODB=90 , BD= 2• Z A=120° ,• Z DOE=360 -1 20° -90° -90° =60°, 故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是 解题的关键•13. 如图,正比例函数 y=kx 与反比例函数y=的图象有一个交点 A (2 , m ), AB 丄x 轴于点B,平移直线y=kx 使其经过点B ,得到直线I ,则直线I 对应的函数表达式是 _______________ .3【答案】y= x-3【解析】【分析】由已知先求出点 A 、点B 的坐标,继而求出 y=kx 的解析式,再根据直线y=kx 平移后经过点B,可设平移后的解析式为 y=kx+b ,将B 点坐标代入求解即可得• 【详解】当 x=2 时,y= =3,• A (2,3),B (2,0),•/ y=kx 过点 A (2,3), |3• 3=2k , • k=,3• y= x ,3•••直线y= x 平移后经过点B , •设平移后的解析式为y= x+b ,aOB • cos Z B,•/ B=60°,解得:b=-3 ,•••平移后的解析式为:y= x-3 ,故答案为:y= x-3.|2【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. ________________________________ 矩形ABCD中, AB=6, BC=8.点P在矩形ABCD勺内部,点E在边BC 上,满足△ PB0A DBC若厶APD是等腰三角形,则PE的长为数.【答案】3或1.2【解析】【分析】由厶PB0A DBC可得/ PBE=/ DBC继而可确定点P在BD上,然后再根据△ APD是等腰三角形,分DP=DA AP=DP两种情况进行讨论即可得.【详解】•••四边形ABCD是矩形,•/ BAD=Z C=90 , CD=AB=6 • BD=10,•/△PBE^A DBC•••/ PBE=Z DBC •点P 在BD上,如图1,当DP=DA=8寸,BP=2,•/△PBE^A DBC•PE: CD=PB DB=2 10,•PE: 6=2 : 10,如图2,当AP=DP寸,此时P为BD中点,•/△ PBE^^ DBC•PE: CD=PB DB=1 : 2,•PE: 6=1 : 2,综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15•计算:-L:..【答案】7【解析】【分析】先分别进行0次幕的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幕的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下:"今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+ x=100,解方程即可得.【详解】设城中有x户人家,由题意得11x+ x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10X 10网格中,已知点O, A, B均为网格线的交点(1 )在给定的网格中,以点0为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A B的对应点分别为乔勒).画出线段气叫;(2)将线段A®:绕点逆时针旋转90°得到线段卜畀』.画出线段卜屮;;(3)以为顶点的四边形一心.貯U-的面积是_________ 个平方单位•【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接0A并延长至A,使0A=20A同样的方法得到B1,连接AB1即可得;(2)结合网格特点根据旋转作图的方法找到A点,连接AB1即可得;(3)根据网格特点可知四边形AA B A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA B A2是正方形,AA=/' + 2‘ 瘫,所以四边形AA B A2的在面积为:不f=20,故答案为:20.=1,/ffJE ,A/J* L /QJ *$r *f*【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的 对应点是作图的关键•按照以上规律,解决下列问题: (1) 写出第6个等式:【分析】(1)根据观察到的规律写出第 6个等式即可;(2)根据观察到的规律写出第 n 个等式,然后根据分式的运算对等式的左边进行化简即可得证15 15⑴观察可知第6个等式为:^6 'T 1,(2) 写出你猜想的第 n 个等式:用含n 的等式表示),并证明. 【答案】 15151 n-l 1 n)厂卜 g ] ;(2) -+ H — ■ 一6 7 6 7n n H n n M 【解析】 【详解】故答案为:(2)猜想: n T 14- 1 n n 11 n- =n n4 1 1 n - 1 1 T A n n 4&14 1) 18.观察以下等式:(,证明见解析•(1) n - 证明:左边 ii- +*—+ I + n(n- I) - n -1 n(n + 1) =十—7 6右边=1, •••左边=右边, 原等式成立,•••第n 个等式为: —|n n + 1 n 1 丄、r 1 J1-1 1 n - J 故答案为:- -------- 一》、 -------- -- 1.n 1 n n 1【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆 AB 的高度,某综合实践小组在地面 D 处竖直放置标杆 CD 并在地面上水平放置个平 面镜E,使得B, E, D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶 A (此时/ AEB=Z FED ).在F 处测得旗杆顶 A 的仰角为39.3 °,平面镜E 的俯角为45°, FD=1.8米,问旗杆AB 的 高度约为多少米?(结果保留整数)(参考数据:tan39.3 °~ 0.82 , tan84.3 °~ 10.02)求得AB 的值即可.【详解】如图,••• FM//BD ,./ FED=Z MFE=45 ,•••/ DEF=Z BEA •/ AEB=45 ,•••/ FEA=90 ,•••/ FDE=Z ABE=90 , AB AE • △ FDE^^ ABE •DF EF在 Rt △ FEA 中,/ AFE=/ MFE f MFA=45 +39.3 ° =84.3 ° , tan84.3 —=tan84 3° ■ 10.02 IS【解析】【分析】如图先证明△AB AH 亠 亠 , Ah,在 Rt △ FEA 由 tan / AFE= DF EFEF AE ,从而得 ,通过运算••• AB=1.8X 10.02 〜18,答:旗杆AB 高约18米.AC在 ------- 匸鼻一一TF【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到 关键.20. 如图,O O 为锐角△ ABC 的外接圆,半径为 5. (1)用尺规作图作出/ BAC 的平分线,并标出它与劣弧BC 的交点E (保留作图痕迹,不写作法);【分析】(1)以点A 为圆心,以任意长为半径画弧,分别与 AB AC 有交点,再分别以这两个交点 为圆心, 以大于这两点距离的一半为半径画弧,两弧交于一点,过点A 与这点作射线,与圆交于点 E ,据此作图即可;(2)连接OE 交BC 于点F ,连接OG CE 由AE 平分/BAC 可推导得出 OEL BC 然后在 Rt △ OFC中,由勾股定理可求得 FC 的长,在Rt △ EFC 中,由勾股定理即可求得 CE 的长.【详解】(1)如图所示,射线 AE 就是所求作的角平分线; 【解3,求弦CE 的长.(2) 连接0E 交BC 于点F ,连接OG CE •/ AE 平分/ BAG 二 ,••• OEL BC, EF=3,「. OF=5-3=2,在Rt △ OFC 中,由勾股定理可得 FC 祁防产_匚:护=', 在Rt △ EFC 中,由勾股定理可得 CE==gm 卡拥.【点睛】本题考查了尺规作图一一作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推 导得出OEL BC 是解题的关键.21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:人,扇形统计图中“ 69.5〜79.5 ”这一组人数占总参赛人数的百 分比为 ____________(2)赛前规定,成绩由高到低前 60%勺参赛选手获奖.某参赛选手的比赛成绩为 78分,试判断他能否获奖, 并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选 2人作为获奖代表发言,试求恰好选中 1男1女的概率.t2【答案】(1) 50, 30% (2)不能,理由见解析;(3) P=3【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占 10%据此可得选手总数,然后求出 89.5~99.5这一分数段所占的百分比,用 1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%据此即可判断出该选手是否获奖;(1 )本次比赛参赛选手共有(3 )画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可•【详解】(1)本次比赛选手共有(2+3)+ 10%=50(人),“89.5〜99.5 ”这一组人数占百分比为:(8+4)+ 50X 100%=24%所以“ 69.5〜79.5 ”这一组人数占总人数的百分比为:1-10%-24%-36%=30%故答案为:50, 30%(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60% 而78V79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.12 3【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W, W2 (单位:元)(1)用含x的代数式分别表示W, W;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1) W=-2x2+60x+8000, W2=-19x+950 ; (2)当x=10 时,W总最大为9160 元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x ) 盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,② 花卉的平均每盆利润始终不变,即可得到利润W, W与x的关系式;(2)由Wm=W+W可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x 盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]= (50-x )盆,由题意得V\=(50+x)(160-2x)=- 2x2+60x+8000,W2=19(50-x)=-19x+950 ;(2) Wfe、=W+W2=-2x2+60x+8000+( -19x+950 ) =-2x2+41x+8950,•/ -2 v 0, 一_______ =10.25 ,2故当x=10时,W总最大,W总最大=-2X 102+41X 10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1 , Rt△ ABC中,/ ACB=90,点D为边AC上一点,DE I AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM(2)若/ BAC=50,求/ EMF的大小;(3)如图2,若厶DAE^A CEM点N为CM的中点,求证:AN// EM.【答案】(1)证明见解析;(2)Z EMF=100 ; (3)证明见解析.【解析】【分析】(1)在Rt△ DCB和Rt△ DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得/ ABC=40,根据CM=M,可得/ MCB M CBM从而可得/ CMD=Z CBM继而可得/ CME=Z CBA=80,根据邻补角的定义即可求得/ EMF的度数;亦由DAE- CEM CM = EM zDEA^90°合匚制三DM以及已知祭件可嚮DEM等边三角務.从而可彳继而可得^ACM-754 .连按AM创合AE=£M = MB可抄导得出A匚=AM 根按j N为匚胡中点、可AN1CM 再根折丄E网即可得出AN]匚【详解】(1)v M为BD中点,Rt △ DCB 中,MC=BD,TlRt △ DEB 中,EM=BD,n|••• MC=ME(2)•••/ BAC=50,/ ACB=90 ,•••/ ABC=90 -50° =40°,•/ CM=MB•••/ MCB2 CBM•••/ CMD M MCB# CBM=Z CBM同理,/ DME=2 EBM•••/ CME=Z CBA=80 ,•••/ EMF=80° -80° =100°;(3)•••△DAE^A CEM CM=EM•AE=EM DE=CM / CME2 DEA=90 , / ECM M ADE •/ CM=EM •- AE=ED DAE=/ ADE=45 ,•••/ ABC=45 , / ECM=45 ,1又••• CM=ME=BD=DMH占•DE=EM=DM•△ DEM是等边三角形,•••/ EDM=60 ,•••/ MBE=30 ,•/ CM=BM BCM M CBM•••/ MCB社ACE=45 ,/ CBM y MBE=45 ,•••/ ACE=Z MBE=30 ,•••/ ACM2 ACE+Z ECM=75 ,连接AM T AE=EM=MB•Z MEB Z EBM=30 ,1Z AME= Z MEB=15 ,2T Z CME=90 ,•••/ CMA=90 -15°=75° =Z ACM••• AC=AM••• N为CM中点,•ANL CM•/ CML EM•AN// CM.鼻 A k H【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键。
安徽省合肥市2018届初中毕业班第五次十校联考数 学 试 题完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1.实数38,42, 6π,-0.125,16925中无理数的个数是( )A. 0B. 1C. 2D. 32.根据安徽省统计局最新统计,2017年11月份,全省财政收入315.1亿元,增长5.4%,315.1亿用科学记数法表示正确的是( )A .315.1×108B .31.51×109C .3.151×1010D .0. 3151×10113.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )A B C D 4.下列运算中,计算结果正确的是( D )A. a 4·a 3=a 12B. a 6÷a 3=a 2C. (a 3)2=a 5D. (-ab)2=a 2b 2 5.把多项式x3-4x 因式分解所得的结果是( )A. x(x 2-4)B. x(x +4)(x -4)C. x(x +2)(x -2)D. (x +2)(x -2) 6.某班学生在颁奖大会上得知该班获得奖励的情况如下表:三好学生 优秀学生干部 优秀团员 市级 3 2 3 校级 18 6 12已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为 ( )A. 3项B. 4项C. 5项D. 6项 7.如图,△ABC 中,D 是AB 的中点,DE ∥BC ,连接BE .若AE=6,DE=5,∠BEC=90°,则△BCE 的周长是( )A. 12B. 24C. 36D. 48 8.某县为发展教育事业,加强了对教育经费的投入,2015年投入了300万元,2017年投入了500万元,设2015年至2017年间投入的教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .300x 2=500B .300(1+x)2=500C .300(1+x%)2=500D .300(1+2x) =5009.对于两个不相等的实数a 、b ,我们规定符号Max{a ,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x ,-x}=x x 12-的解为( )A .1-2B .2-2C .1+2或1-2D .1+2或-110.如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )A B C D得 分 评卷人二、填空题(每题5分,共20分)11.函数y=31+x 中自变量x 的取值范围是 . 12.如图,在菱形ABCD 中,E ,F 分别为BC ,CD 的中点,且AE ⊥BC ,AF ⊥CD ,则EF= .第12题图 第13题图13.如图,⊙O 是△ABC 的外接圆,∠BAC=120°,若⊙O 的半径为2,则弦BC 的长为 .得 分 评卷人14.定义运算a ⊕b=a 2+2b ,下面给出了关于这种运算的几个结论:①2⊕3=10; ②不等式3⊕x ≤13的解集为x ≤13; ③方程2x ⊕2=−1的根为x=21;④点(3,1)在函数=x ⊕(−4)的图象上.其中正确的是 .(填上你认为所有正确结论的序号) 得 分 评卷人三、解答题(共90分)15.先化简,再求值:(94322-++x x )÷31+-x x ,其中x=32+16.某班有54名同学去参加义务植树活动,男生每人植树3棵,女生每人植树2棵,一共植树137棵,求:该班男生、女生各有多少人?17.如图,根据要求画图.(1)把△ABC 向右平移5个方格,画出平移的图形.(2)以点B 为旋转中心,把△ABC 顺时针方向旋转90°,画出旋转后的图形.18.用同样大小的黑色棋子按如图所示的规律摆放:第1个 第2个 第3个 第4个(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 018颗黑色棋子?请说明理由.19.某片绿地的形状如图所示,其中∠A=60°,AB ⊥BC ,AD ⊥ CD ,AB=200m ,CD=100m ,求AD 、BC 的长.(精确到1m ,3≈1.732)20.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AB=2 , AC=3.(1)求∠A的度数.(2)求弧CBD的长.(3)求弓形CBD的面积.21.妈妈为小韵准备早餐,共煮了八个汤圆,其中2个是豆沙馅心,4个是果仁馅心,剩下2个是芝麻馅心,八个糖原除内部馅料不同外,其它一切均相同.(1)小韵从中随意取一个糖原,取到果仁馅心的概率是多少?(2)小韵吃完一个后,又从中随意取一个糖原,两次都取到果仁馅心的概率是多少?22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.(1)试举出一个有内心的四边形.(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?安徽省合肥市2018届初中毕业班第五次十校联考数 学 试 题 参 考 答 案完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案 CCCDCBBBDD1.实数38,42, 6π,-0.125,16925中无理数的个数是( C )A. 0B. 1C. 2D. 32.根据安徽省统计局最新统计,2017年11月份,全省财政收入315.1亿元,增长5.4%,315.1亿用科学记数法表示正确的是( C )A .315.1×108B .31.51×109C .3.151×1010D .0. 3151×10113.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( C )A B C D 4.下列运算中,计算结果正确的是( D )A. a 4·a 3=a 12B. a 6÷a 3=a 2C. (a 3)2=a 5D. (-ab)2=a 2b 2 5.把多项式x3-4x 因式分解所得的结果是( C )A. x(x 2-4)B. x(x +4)(x -4)C. x(x +2)(x -2)D. (x +2)(x -2) 6.某班学生在颁奖大会上得知该班获得奖励的情况如下表:三好学生 优秀学生干部 优秀团员 市级 3 2 3 校级 18 6 12已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为 ( B )A. 3项B. 4项C. 5项D. 6项 7.如图,△ABC 中,D 是AB 的中点,DE ∥BC ,连接BE .若AE=6,DE=5,∠BEC=90°,则△BCE 的周长是( B )A. 12B. 24C. 36D. 48 8.某县为发展教育事业,加强了对教育经费的投入,2015年投入了300万元,2017年投入了500万元,设2015年至2017年间投入的教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( B ) A .300x 2=500 B .300(1+x)2=500 C .300(1+x%)2=500 D .300(1+2x)=5009.对于两个不相等的实数a 、b ,我们规定符号Max{a ,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x ,-x}=x x 12-的解为( D )A .1-2B .2-2C .1+2或1-2D .1+2或-110.如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( D )A B C D得 分 评卷人二、填空题(每题5分,共20分)11.函数y=31+x 中自变量x 的取值范围是 x >-3 . 12.如图,在菱形ABCD 中,E ,F 分别为BC ,CD 的中点,且AE ⊥BC ,AF ⊥CD ,则EF= 32 .第12题图 第13题图13.如图,⊙O 是△ABC 的外接圆,∠BAC=120°,若⊙O 的半径为2,则弦BC 的长得 分 评卷人为 32 .14.定义运算a ⊕b=a 2+2b ,下面给出了关于这种运算的几个结论:①2⊕3=10; ②不等式3⊕x ≤13的解集为x ≤13; ③方程2x ⊕2=−1的根为x=21;④点(3,1)在函数=x ⊕(−4)的图象上.其中正确的是 ①④ .(填上你认为所有正确结论的序号) 得 分 评卷人三、解答题(共90分)15.先化简,再求值:(94322-++x x )÷31+-x x ,其中x=32+ 解:原式=94)3(22-+-x x ×13-+x x =9222--x x ×13-+x x =)3)(3()1(2-+-x x x ×13-+x x =32-x 当x=32+时,32-x=3322-+ =22 =216.某班有54名同学去参加义务植树活动,男生每人植树3棵,女生每人植树2棵,一共植树137棵,求:该班男生、女生各有多少人?解:设该班男生有x 人,则女生有(54-x)人,依题意可得3x+2(54-x)=137 解得x=29 (54-x)= 25答:男生有29人,女生有25人. 17.如图,根据要求画图.(1)把△ABC 向右平移5个方格,画出平移的图形.(2)以点B 为旋转中心,把△ABC 顺时针方向旋转90°,画出旋转后的图形.解:如图所示,(1) △A 'B 'C '即为平移后的图形;(2) △A"B"C"即为旋转后的图形.18.用同样大小的黑色棋子按如图所示的规律摆放:第1个 第2个 第3个 第4个(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 018颗黑色棋子?请说明理由.解:(1)图①有2个棋子,2=2×12,图②有8个棋子,8=2×22,, 图③有18个棋子,18=2×32, 2×52=50,∴第五个图形有50个黑色棋子; (2)设第n 个图形有2 018个黑色棋子,得:2×n 2=2018 , 此方程无整数解,∴没有哪个图形有2018颗黑色棋子.19.某片绿地的形状如图所示,其中∠A=60°,AB ⊥BC ,AD ⊥ CD ,AB=200m ,CD=100m ,求AD 、BC 的长.(精确到1m ,3≈1.732)解:如图,延长AD ,交BC 的延长线于点E ,在Rt △ABE 中,由AB=200m ,∠A=60°得 BE=AB•tanA=2003m 在AE=ABcos60°=400mRt △CDE 中,由CD=100m ,∠CED=90°-∠A=30°,得CE=2CD=200m , DE=CDtan ∠CED=1003m ∴AD=AE -DE=400-1003m≈227m BC=BE-CE=2003-200≈146m答:AD 的长约为227m ,BC 的长约为146m ; 20.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若AB=2 , AC=3. (1)求∠A 的度数. (2)求弧CBD 的长. (3)求弓形CBD 的面积. 解:(1)连接BC , ∵AB 是直径, ∴∠ACB =90° ∵AB =2,AC=3, ∴BC =1, ∴∠A =30° (2)连接OC ,∵CD ⊥AB 、AB 是直径 ∴∠BOC =2∠A =60°∴弧BC=36060×2π×1= 3π,∴弧CBD=2弧BC=2× 3π= 32π.(3)连接CD,∵OC =OA =1、∠BOC =60°∴OP=21, CP=3 , CD=23,∴S 扇形COD = 360120×π×12= 3π,∴S △CDO =23×21×21=23,∴S 弓形CBD=3π-23. 21.妈妈为小韵准备早餐,共煮了八个汤圆,其中2个是豆沙馅心,4个是果仁馅心,剩下2个是芝麻馅心,八个糖原除内部馅料不同外,其它一切均相同. (1)小韵从中随意取一个糖原,取到果仁馅心的概率是多少?(2)小韵吃完一个后,又从中随意取一个糖原,两次都取到果仁馅心的概率是多少?解:(1)取到果仁馅心的概率=84=21;(2)列表为:共有56种等可能的结果数,其中两次都取到果仁馅心的结果数为12,所以两次都取到果仁馅心的概率=5612=143.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件. (1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B :为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.解:(1)由题意得, 销售量=150-10(x-30) = -10x+450则w= (x-25)(-10x+450)= -10x2+700x-11250(2) w= -10x2+700x-11250= -10(x-35)2+1000∵-10<0∴函数图象开口向下,w有最大值当x=35时, w最大=1000元故当单价为35元时,该计算器每天的利润最大(3)B方案利润高,理由如下:A方案中:∵25×24%=6此时w A=6×(150-10) =840元,B方案中:每天的销售量为120件,单价为33元∴最大利润是120×(33-25) =960元此时w B=960元∵w B>w A∴B方案利润更高23.三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.(1)试举出一个有内心的四边形.(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?(3)探究:腰长为2的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?为什么?(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?(1)答:一个有内心的四边形是菱形.(2)答:对于任意四边形ABCD,如果有内心,则四边形的边长具备条件是对边和相等.(3)解:有无数条,作△ABC的内切圆,切AC、BC于M、N,在弧MN 上任取一点作内切圆圆的切线,即为裁剪线.(4)解:等腰直角△ACB,AC=BC=2,由勾股定理得:AB=22,过D作DF⊥AB于F,过E作EQ⊥AB于Q,∴DF∥EQ,∵DE∥AB,∴四边形DEQF是平行四边形,∴DE=FQ,DF=EQ,∵∠A=∠B=45°,∴AF=DF,同理BQ=QE,设DE=x,AB=22,过C作CM⊥BC,交DE与N点,由BC=AC,根据三线合一可得CM=2,由三角形的面积有两种求法,S=21AC•BC=21(AC+BC+AB)•OM,即4=(2+2+22)×OM,解得:OM=2-2,∴NM=2OM=4-22,CN=2-(4-22)=32-4,又△CDE∽△CAB,∴CMCNABDE=,即242322-=x,解得:x=62-8,则DE=62-8.。