小学奥数:周期问题.专项练习及答案解析
- 格式:doc
- 大小:1.06 MB
- 文档页数:15
小学奥数周期问题专题训练姓名:1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?2.如下图摆法摆251个图形,其中有几个正方形? 3.把72化成小数后第351位是几?4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几?5.21999=n ,n 的最终一位是多少?6.下表是11位数,随意相邻的三个数字之和是17,请将剩下几位填完。
7.下表中,每列上下的两个汉字成为一组,如第一组为“学做”, 第二组为“习接”,则第649组是什么? 8.循环小数··51238.0及··522348944.0首次出现该数位的数字都是5是在小数点后的哪一位? 9.2001年的植树节是星期一,则这年的国庆节是星期几?10.一本童话书,每2页文字之间有3页插图,也就是说3页插图前后各有1页文字,假如这本书有128页,而第1页是文字,这本书共有插图多少页?11.100个3相乘,得数的个位是几?12.小张工作3天休息1天,小李工作4天休息一天,小刘工作7天休息一天,假设今日他们都休息,则下次都休息是在几天以后?小学奥数周期问题专题训练(答案)1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?97÷6=16(组)……1(根)答:第97根旗是红颜色的。
2.如下图摆法摆251个图形,其中有几个正方形?251÷7=35(组)……6(个) 35×2+2=72(个)答:其中有72个正方形。
3.把72化成小数后第351位是几?2÷7=``485712.0 351÷6=58(组)……3(位) 答:把72化成小数后第351位是5。
4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几? 31×2+30×2+1=123(天) 123÷7=17(周)……4(天)答:同年的7月1日是星期四5.21999=n ,n 的最终一位是多少?规律:2个位2,2²个位4,2³个位8,24个位6,25个位2又开始循环 1999÷4=499(组)……3(位) 答:n 的最终一位是8。
第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。
我们把这种特殊的规律性问题称为周期问题。
解答周期问题的关键是找规律,找出周期。
确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。
二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。
(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。
(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。
(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。
1、1÷7=0.142857142857......小数点后面第100位是多少?
答案:100÷6=16(组)......4(个)
答:小数点后面第100位是8。
2、0.53728937289......间,小数点后面第2000位上的数字是多少? 前2000位上的数字之和是多少?
答案:(2000-1)÷5=399(组)......4(个)
3+7+2+8+9=29
29×399+3+7+2+8+5=11596
答:小数点后面第2000位上的数字是8,前2000位上的数字之和是11596。
3、请同学们伸出左手,如下图所示那样,从大拇指开始依次数数字,.. 问数到2014时,你数在哪个手指上?
答案:2014÷8=251(组)......6(个)
答:无名指。
4、如下图所示,每列上、下一个字和一一个字母组成一一组,例如:
第一组是(我、A),第二组是(们、B),那么第62组是什么?
我们爱科学我们爱科学...
A B C D E F G A B C ...
如下图所示,每列上、下一个字和一一个字母组成一一组,例如:第一组是(我、A),第二组是(们、B),那么第62组是什么?
答案:62÷5=12(组)......2(个)们
62÷7=8(组)......6(个) F
答:第62个数是“们、F”。
5、7×7×7×......×7积的个位数字是几?
202个7
答案:202÷4=50(组)……2(个)
答:积的个位数字是9。
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明:周期问题: 周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再例题精讲知识精讲教学目标周期问题看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题【难度】2星【题型】解答【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】黑珠、白珠共101颗,穿成一串,排列如下图。
【四年级奥数举一反三—全国通用】测评卷11《周期问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)将某数的3倍减5,计算出答案:将这个答案的3倍减5,计算出答案;⋯;这样反复4次,最后得出的结果是1177,那么原数是()A.14 B.15 C.16 D.17【解答】解:第四次计算后的结果为1177,第三次计算后的结果为:(11775)3394+÷=,第二次计算后的结果为:(3945)3133+÷=,第一次计算后的结果为(1335)346+÷=,原数为:(465)317+÷==.故选:D。
2.(2012•华罗庚金杯)在2012年,1月1日是星期日,并且()A.1月份有5个星期三,2月份只有4个星期三B.1月份有5个星期三,2月份也有5个星期三C.1月份有4个星期三,2月份也有4个星期三D.1月份有4个星期三,2月份有5个星期三【解答】解:因为2012年1月有31天,2月有29天,⋯(天),÷=(星期)33174⋯(天),÷=(星期)12974所以1月份有4个星期三,2月份有5个星期三.故选:D。
3.(2011•其他模拟)鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物依次代表各年的年号,如果公元1年是鸡年,那么公元2005年是()年.A.鸡B.牛C.虎D.兔【解答】解:2005121671÷=⋯,所以,以鸡开始循环的第1种动物是鸡,由此得出,公元2005年是鸡年,故选:A。
4.(2014•迎春杯)为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节,因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份()组尾号可出行的天数最少.A.1、6 B.2、7 C.4、9 D.5、0【解答】解:依题意可知:1月份共31天,由于1月1日是周三,所以1月份周三、周四、周五共5天,周一、周二共4天.其中1月30日周四、1月31日周五.所以只看周三即可.周三2、7以及3、8限行.故选:B。
简单的周期问题一、填空题(共10小题,每小题3分,满分30分)1.(3分)某年的二月份有五个星期日,这年六月一日是星期_________ .2.(3分)1989年12月5日是星期二,那么再过十年的12月5日是星期_________ .3.(3分)按如图摆法摆80个三角形,有_________ 个白色的.4.(3分)节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_________ 灯.5.(3分)时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_________ 时.6.(3分)把自然数1,2,3,4,5…如表依次排列成5列,那么数“1992”在_________ 列.7.(3分)把分数化成小数后,小数点第110位上的数字是_________ .8.(3分)循环小数与.这两个循环小数在小数点后第_________ 位,首次同时出现在该位中的数字都是7.9.(3分)一串数:1,9,9,1,4,1,4,1,9,9,1,4,1,4,1,9,9,1,4,…共有1991个数.(1)其中共有_________ 个1,_________ 个9 _________ 个4;(2)这些数字的总和是_________ .10.(3分)所得积末位数是_________ .二、解答题(共4小题,满分0分)11.紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8×9=72,在9后面写2,9×2=18,在2后面写8,…得到一串数字:1 9 8 9 2 8 6…这串数字从1开始往右数,第1989个数字是什么?12.1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?13.n=,那么n的末两位数字是多少?14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)某年的二月份有五个星期日,这年六月一日是星期二.考点:日期和时间的推算。
小学奥数周期性问题试题专项练习一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期_________.2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是_________色的,这种颜色的珠子在这串中共有_________颗.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是_________色.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在_________袋中.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_________行第_________列.6.(3分)分数化成小数后,小数点后面第1993位上的数字是_________.7.(3分)化成小数后,小数点后面1993位上的数字是_________.8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_________和_________这两个数字上.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是_________.10.(3分)算式(367367+762762)×123123的得数的尾数是_________.二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_________.14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_________厘米.小学奥数周期性问题试题专项练习(一)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期五.考点:日期和时间的推算.分析:在这十年中有3个闰年,所以这10年的总天数是365×10+3,365被7除余1,所以总天数被7除的余数是13﹣7=6,因此10年后的1月18日是星期五.解答:解:(365×10+3)÷7=3653÷7=521(星期)…6(天),因此10年后的1月18日是星期五.故答案为:五.点评:考查了日期和时间的推算,本题得到从1992年1月18日起再过十年的1月18日的总天数是关键,同时还考查了星期几是7天一个循环.2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是黑色的,这种颜色的珠子在这串中共有26颗.考点:周期性问题.分析:根据图示可知,若去掉第一颗白珠后它们的排列是按“一黑三白”交替循环出现的,也就是这一排列的周期为4,由此即可得出答案.解答:解:因为,(102﹣1)÷4,=101÷4,=25…1,所以,最后一颗珠子是黑色的.又因为,1×25+1=26(颗),所以,这种颜色的珠子在这串中共有26颗;故答案为:黑,26.点评:解答此题的关键是,根据图示,找出珠子排列的周期数,由此即可解答.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是黑色.考点:周期性问题.分析:小木球是依次按5红,4黄,3绿,2黑和1白的规律涂色的,把它看成周期性问题,每个周期为15.由1993÷15=132…13,所以第1993个小球是第133周期中的第13个,按规律涂色应该是黑色,所以第1993个小球的颜色是黑色.解答:解:5+4+3+2+1=15,1993÷15=132…13,所以第1993个小球是第133周期中第13个,应该与第一周期的第13个小球颜色相同,是黑色.答:第1993个小珠的颜色是黑色.故答案为:黑.点评:此题关键是找出周期的规律,然后利用除法算式得出小球是第几周期的第几个,与第一周期的颜色对比即可得出.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在B袋中.考点:周期性问题.分析:根据题干,可以将已知图形化出分析示意图如下:这样就把这个题目转变成了一个数字排列的问题,由上图中的数字排列可以看出:右边为第一列,下边为第一行,从1开始依次排列;其规律是:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;由此规律,只要求出1992是第几周期的第几个数字,即可得出答案.解答:解:根据题干分析可得:上述数字的排列规律为:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;1992÷10=199…2,所以1992是第200个周期的第二个数字,与第一周期的第二个数字相同,即是B.答:第1992粒珠子投在B袋中.故答案为:B点评:此题抓住投珠子的方法,把这个实际操作的问题转化成一个单纯的数字问题,可以使分析简洁明了.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第24行第4列.考点:周期性问题.分析:为了分析方便,把列数从左到右依次排列为1、2、3、4、5、6,如上图;根据题干可得:①此题是一个等差数列,公差是3;②从排列可以看出,两行为一个周期,即10个数为一个周期,位置分别在的列数为:2、3、4、5、6、5、4、3、2、1;所以只要求出349是这个数列中的第几个数,在第几周期的第几个数字即可得出答案.解答:解:根据题干分析可得:(349﹣1)÷3+1=117,所以349是这列数中的第117个数.117÷10=11…7,所以这个数是第12周期的第7个数字,那么这个数是第1周期的第二行,所以这个数在第12×2=24行,与第一周期的第7个数字位置相同即:在第4列,答:数列中的数349应排在第24行第4列.故答案为:24;4.点评:此题要从两个方面考虑周期①行数,两行一周期,②列数,即10个数字依次排列的列数.6.(3分)分数化成小数后,小数点后面第1993位上的数字是6.考点:周期性问题.分析:=,很显然小数点后面的数字循环周期是6,由此只要得出1993在第几周期的第几个数字即可解决问题.解答:解:=,它的循环周期是6,因为1993÷6=332…1,即在第333周期的第一个数字,与第一周期的第一个数字相同,是6.故答案案为:6.点评:此题抓住的循环节,即可解决问题.7.(3分)化成小数后,小数点后面1993位上的数字是7.考点:周期性问题.分析:题目要求“小数点后面1993位上的数字是多少”,所以就要从化成小数后寻找规律.解答:解:=从小数点后面第二位开始,它的循环周期是6,因为(1993﹣1)÷6=332,则循环节“142857”恰好重复出现332次.所以小数点后面第1993位上的数字是7.故答案为:7.点评:此题考查了小数化分数的方法以及对循环节的掌握情况,同时培养学生寻找规律的能力.8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在3和7这两个数字上.考点:循环小数及其分类.分析:表示循环小数的两个小圆点中,后一个小圆点显然应加在7的上面,且数字“5”肯定包含在循环节中,然后分情况讨论前一个循环节的点应放在哪.解答:解:后一个小圆点应加在7上;前一个小圆点的情况:(1)设前一个小圆点加在“5”的上面,这时循环周期是3,(100﹣4)÷3=32,第100位数字是7.(2)设前一个小圆点加在“4”的上面,这时循环周期是4,(100﹣3)÷4=24…1,第100位数字是4.(3)设前一个小圆点加在“3”的上面,这时的循环周期是5,(100﹣2)÷5=19…3,第100位数字正好是5.故答案为:3,7.点评:容易看出后一个小圆点应加在7的上面,但前一个圆点应加在哪个数字上,一下子难以确定,怎么办?唯一的办法就是“试”.因为循环节肯定要包含5,就从数字5开始试.逐步向前移动,直到成功为止.这就像我们在迷宫中行走,不知道该走哪条道才能走出迷宫,唯一的办法就是探索:先试一试这条,再试一试那条.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是2.考点:周期性问题;乘积的个位数.分析:根据题干,要求它们的连乘积的个位数字,可以先求出它们各自的乘积的个位数字是几,由特例不难归纳出:(1)9的连乘积的个位数字按9,1循环出现,周期为2;(2)8的连乘积的个位数字按8,4,2,6循环出现,周期为4;(3)7的连乘积的个位数字按7,9,3,1循环出现,周期为4.由此即可解决问题.解答:解:根据上述分析可以得出1991个9的乘积个位数字、1990个8的乘积个位数字、1989个7的个位数字分别为:(1)因为1991÷2=995…1,所以1991个9的连乘积的个位数字是第996周期的第一个数,与第一周期的第一个数字相同即是9;(2)因为1990÷4=497…2,所以1990个8的连乘积的个位数字是第498周期的第二个数字,与第一周期的第一个数字相同即是4;(3)因为1989÷4=497…1,所以1989个7的连乘积的个位数字是第498周期的第一个数字,与第一周期的第一个数字相同即是7.所以,9×4×7=252,即1991个9与1990个8与1989年7的连乘积的个位数字是2.答:连乘积的个位数是2.故答案为:2.点评:抓住题干,求出9的连乘积、8的连乘积和7的连乘积的个位数字的规律,是解决本题的关键.10.(3分)算式(367367+762762)×123123的得数的尾数是9.考点:周期性问题.分析:分别找出个位数字7、2、3的连乘积的个位数的循环周期:如7的连乘积,积的尾数以7,9,3,1,循环出现,周期为4,因为367÷4=913,所以,367367的尾数为3;如此类推,…即可解决问题.解答:解:(1)7的连乘积,尾数(个位数字)以7,9,3,1循环出现,周期为4;因为367÷4=91…3,所以,367367的尾数为3.(2)2的连乘积,尾数以2,4,8,6循环出现,周期为4;因为762÷4=190…2,所以,762762的尾数为4.(3)3的连乘积,尾数以3,9,7,1循环出现,周期为4;123÷4=30…3,所以,123123的尾数为7.(4)综上所述,(367367+762762)×123123的尾数就是(3+4)×7的尾数,(3+4)×7=49,答:得数的尾数是9.故答案为:9.点评:此题考查了利用个位数字为7,2,3的连乘积的积的尾数的规律进行解决问题的方法二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?考点:周期性问题.分析:我们用所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8(2的n次方的个位数字是2,4,8,6四位一周期495÷4=123…3)那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.解答:解:此题中是1991个数字的连乘积,根据题干分析:所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8;2的n次方的个位数字是2,4,8,6四位一周期,495÷4=123…3;那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.点评:将原式进行分组整合讨论,根据个位数字是2、5乘积的个位数字特点进行分析,得出从右边数第一位不为0的数字规律;根据2的连乘积的末位数的出现周期解决问题,是本题的关键所在.12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?考点:周期性问题.分析:(1)因为第一个数×=第二个数×,所以第一个数:第二个数=:=3:10.又两数互质,所以第一个数为3,第二个数为10,从而这串数为:3,10,13,23,36,59,95,154,249,403,652,1055…(2)要求这串数的第1991个数被3除所得的余数是几,可以先推理出得出这串数字除以3的余数的规律是什么;由此即可解决问题.解答:解:根据题干分析可得这串数字为:3,10,13,23,36,59,95,154,249,403,652,1055…这串数字被3除所得的余数依次为:0,1,1,2,0,2,2,1,0,1,1,2,所以可以看出这串数字除以3的余数按“0,1,1,2,0,2,2,1”循环,周期为8.因为1991÷8=248…7,所以第1991个数被3除所得余数应是第249周期中的第7个数,即2.答:这串数的第1991个数被3除所得的余数是2.点评:解答此题应注意以下两个问题:(1)由于两个数互质,所以这两个数只能是最简整数比的两个数;(2)求出这串数被3除所得的余数后,找出余数变化的周期,但这并不是这串数的周期.一般来说,一些有规律的数串,被某一个整数逐个去除,所得的余数也具有周期性.13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是(好,好).考点:周期性问题.分析:此题分成两部分来看:(1)上面一部分的周期为:四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期最后一个,与第一组中第四个字“好”相同;(2)同样的方法可以得出下面的周期为:五字一周期:社→会→主→义→好,由此即可解决问题.解答:解:根据题干分析:(1)上面四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期的最后一个,与第一组中第四个字“好”相同;(2)下面五字一周期,分别为:社→会→主→义→好,那么第340个字在340÷5=68周期最后一个数字,与第一周期的最后一个字“好”相同;答:由上述推理可得:第340组的数字是(好,好),故答案为:(好,好).点评:此题也可以这样考虑:因为“共产党好”四个字,“社会主义好”五个字,4与5的最小公倍数是20,所以在连续写完5个“共产党好”与4个“社会主义好”之后,将重复从头写起,出现周期现象,而且每个周期是20组数.因为340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为75厘米.考点:公约数与公倍数问题.分析:根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,如图所示.由图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5×6×2=60厘米,也就是它们按60厘米为周期循环出现,据此可以轻松求解.解答:解:按60厘米为周期循环出现,在每一个周期中没有涂色的部分是,1+3+5+4+2=15(厘米);所以,在3米的木棍上没有涂黑色的部分长度总和是,15×(300÷60)=75(厘米).故答案为:75.点评:此题主要考查最小公倍数问题,注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.。
第11讲周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。
这些同学以一端开始,按先两个女生,再一个男生的规律站立着。
这些同学中共有多少个女生?【例题3】 2001年10月1日是星期一,那么,2002年1月1日是星期几?练习3:1.2002年1月1日是星期二,2002年的六月一日是星期几?2.如果今天是星期五,再过80天是星期几?3.以今天为标准,算一算今年自己的生日是星期几?【例题4】将奇数如下图排列,各列分别用A、B、C、D、E为代表,问:2001所在的列以哪个字母为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………练习4:1.将偶数2、4、6、8、……按下图依次排列,2014出现在哪一列?2.把自然数按下列规律排列,865排在哪一列?3.上表中,将每列上下两个字组成一组,如第一组为(小热),第二组为(学爱)。
余数与周期问题1、假如今天是星期一,从今天数起,第100天是星期几。
()A、星期二B、星期三C、星期五D、星期六2、81除以一个自然数,商是8,余数是1,这个自然数是多少。
()A、7B、8C、9D、103、国庆节挂彩灯按照“红黄蓝白”四种颜色的顺序排列,那么第43盏灯是什么颜色。
()A、红B、黄C、蓝D、白4、小华数左手的手指,大拇指为1,食指为2,中指为3,无名指为4,小拇指为5,然后换方向再数,小拇指为6,无名指为7,中指为8,食指为9,大拇指为10,再次换方向数,大拇指为11,……这样数到55,停在哪个手指上。
()A、大拇指B、食指C、无名指D、小拇指5、我国农历用鼠牛虎兔龙马羊蛇猴鸡狗猪这12种动物顺序轮流代表各年的年号。
如果1985年是牛年,那么2005年是什么年。
()A、蛇B、鸡C、猴D、狗6、有一列数:2,3,1,4,2,3,1,4,2,3,1,4,……第28个数是多少。
()A、1B、2C、3D、47、有同样大小的黑、白、红三种颜色的玻璃珠共96个,按先5个红,再4个白,再3个黑的排列着,那么黑色的玻璃珠一共有多少个。
()A、20B、24C、25D、368、按照○⊿⊙○⊿⊙……,排列,第26个图应该是哪个图。
()A、○B、⊿C、⊙9、有382本书,每位同学发6本,可以发给多少位同学,还剩多少本。
()A、64,3B、65,4C、63,4D、63,310、2011年6月1日“儿童节”是星期三,那么这年的7月1日是星期几。
()A、三B、四C、六D、五二、填空题(每小题3分,共30分)1、2004年9月1日是星期三,这一年的12月24日是星期______。
2、昨天是9日,今天是星期三,29日是星期______。
3、有一列数5、4、3、2、1、5、4、3、2、1……第26个数是______,这26个数的和是_____。
4、把一副扑克牌依次发给A、B、C、D四个人,那么最后一张扑克牌应发给______。
第三讲 周期问题知识要点:周期问题是指事物在运动变化的发展过程中,某些特征循环往复地出现,其连续两次出现所经过的时间叫做周期。
例1、有249朵花,按5朵红花,9朵黄花,13朵绿化的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?分析:这些花按5红、9黄、13绿的顺序轮流排列,即5+9+13=27(朵)花为一周期,不断循环。
练习、71=0.142857142857…小数点后面第100个数字是多少?例2、下面是一个11位数,每3个相邻数字之和都是17,你知道“?”表示的数字是几吗?分析:因为每相邻的3个数字之和为17,从左数起第一位数字与第二、三位数字之和为17,第二、三位数字与第四位数字之和也是17,所以第四位数字是8。
这样,就找到一条规律:从左向右每3位一循环,每隔两位必出现一个相同的数字。
练习、下面是一个8位数,每3个相邻数字之和都是14,你知道问号表示的数例3、2012年6月1日是星期五,问9月1日是星期几?分析:一个星期有7天,因此7天为一个周期。
2013年1月1日是星期二,2013年的6月1日是星期几?例4、将奇数如下图所示排列,各列分别用A、B、C、D、E作为代表,问2001所在的列以哪个字母作为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………分析:这些数按每8个数一组有规律地排列着(两行一组)。
2001是这些数中的第1001个数。
练习、将偶数2,4,6,8,…按下图依次排列,2014出现在哪一列?A B C D E8 6 4 210 12 14 1624 22 20 1826 28 30 32……………………例5、888…8÷7,当商是整数时,余数是几?100个8练习、444…4÷3,当商是整数时,余数是几?100个41、有47盏彩灯,按2盏红灯、4盏蓝灯、3盏黄灯的顺序排列着。
例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)红花:5×9+5=50(朵)黄花:9×9+1=82(朵)绿花:13×9=117(朵)答:最后一朵是黄花。
这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。
模拟练习:1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)答:最后一张是红色。
第140张是白色。
2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。
最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯:2×5+2=12(盏)蓝灯:4×5=20(盏)黄灯:3×5=15(盏)答:最后一盏是红灯。
红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。
例2:2002年元旦是星期二,那么,2003年1月1日是星期几?2002年是平年,365+1=366(天)366÷7=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。
模拟练习:1、2008年8月8日是星期五,那么,2008年10月8日星期几?24+30+8=62(天) 62÷7=8(周)......6(天)答:2008年10月8日星期三。
2、2001年10月1日是星期一,那么,2002年1月1日是星期几?31+30+31+1=93(天)93÷7=13(周)……2(天)答:2002年1月1日是星期二。
【五年级奥数举一反三—全国通用】测评卷04《周期性问题》试卷满分:100分考试时间:100分钟一.选择题(共8小题,满分16分,每小题2分)1.(2分)三天打鱼,两天晒网(即前三天打鱼,后两天晒网),按照这种方式,在104天内,打鱼的天数是()A.60B.61C.62D.63【解答】解:1045204÷=⋯,⨯=(天);∴在104天内,打鱼的天数是21363故选:D。
2.(2分)2014年2月6日是星期四,小胖决定从这天起(含2月6日)练习计算,一直练习到2月17日,(含2月17日)开学为止.但是中间如果遇到周六和周日,小胖还是决定休息一下,不做练习.已知他第一天做1道题,第二天做3道题,第三天做5道题,依此变化做下去,那么小胖这段时间一共做了()道计算练习题.A.144B.100C.81D.64【解答】解:依题意可知:从2月6日到2月17日为止,一共有176112-+=(天);其中有2个星期六,星期日.工作了1248-=(天);共完成1357911131564+++++++=(题);故选:D。
3.(2分)张老师每周的周一、周六和周日都跑步锻炼20分钟,而其余日期每日都跳绳20分钟.某月他总跑步5小时,那么这个月的第10天是()A.周日B.周六C.周二D.周一【解答】解:他总跑步5小时,说明有5个周一、周六和周日,÷=周3⋯天,3174说明了这个月的1号是星期六,所以8号又是周六,10号是周一.故选:D。
4.(2分)将“OPQRST”连续写下去可得到:“OPQRSTOPQRST⋯”,从左至右第2015个字母应该是()A.S B.Q C.O D.T【解答】解:201563355÷=⋯,所以第2015个字母是第336周期的第5个字母,是S;故选:A。
5.(2分)6月份有30天,如果这个月有5个星期一和5个星期二,那么“六一”儿童节是星期() A.二B.四C.五D.一【解答】解:因为有5个星期一和5个星期二,所以从第1个星期一到第5个星期一,共29天.6月份共有30天,剩下的一天只可能在第5个星期二,所以这年的6月1日是星期一.故选:D。
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算. 例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球例题精讲知识精讲教学目标周期问题【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题【难度】2星【题型】解答【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每102425一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】黑珠、白珠共101颗,穿成一串,排列如下图。
小学三年级奥数专题七:周期问题专题简析:(1)先找出一个周期里包含了几个对象。
(2)总数÷周期对象数=周期数+余数。
(3)有余数,余几就是第几个对象;没有余数,最后一个数是周期内最后一个数。
例1:小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?思路:从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期。
32÷6=5(组)……2(个),32个珠子中含有5个周期多2个,所以第32个珠子就是重复5个周期后的第2个珠子,应为红色。
试一试1:“我要进江实我要进江实……”依次重复排列,第2013个字是什么?例2:2001年10月1日是星期一,问:10月25日是星期几?思路:我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。
从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。
所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。
试一试2:2013年5月1日是星期三,9月1日是星期几?例3:100个3相乘,积的个位数字是几?思路:因数3的个数积的个位1个3——→ 32个3——→93个3——→74个3——→ 15个3——→ 3……积的个位分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期。
100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1。
试一试3:50个7相乘,积的个位数字是几?。
小学奥数应用题专题--周期问题(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】在一根绳子上依次穿2个红珠、3个白珠、5个黑珠,并按此方式反复。
如果从头开始数,直到第77颗,那么其中白珠比黑珠少多少颗?【答案】13【解析】有2+3+5=10个珠子一个周期,77÷10=7……7,所以有7个周期再加上2颗红珠,3颗白珠,2颗黑珠。
所以,白珠有3×7+3=24颗,黑珠有5×7+2=37颗,白珠比黑珠少37-24=13颗。
【题文】如图,用红、橙、黄、绿、青、蓝、紫7种彩笔,在一张方格纸中自左上到右下的斜行里按顺序循环涂色.求第20行30列交叉处所涂的颜色。
【答案】紫色【解析】如果两个方格行号与列号的和相同,涂的颜色也相同.20+30=50=1+49.所以,第20行第30列的格子涂的颜色与第一行第49个格子中涂的颜色一样。
49÷7=7,所以第一行第49个格子中应该涂紫色.于是,第20行30列交叉处所涂的颜色为紫色。
【题文】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?【答案】(好,好)【解析】因为“共产党好”有4个字,”社会主义好”有5个字,4与5的最小的公共倍数是20,所以再连续写完5个“共产党好”与4个“社会主义好”之和,将重头写起,出现周期循环,而且每个周期是20组数。
而340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好) 。
【题文】如图,4只小动物不断交换座位。
一开始,小鼠坐第1号椅子,小猴坐第2号椅子,小免坐第3号椅子,小猫坐第4号椅子。
第1次前后两排交换.第2次是在第1次交换的基础上左右两排交换。
第3次评卷人得分又是前后两排交换.第4次再左右两排交换,……,这样一直换下去。
小学三年级奥数周期问题1、(归一问题)工程队计划用60人5天修好一条长米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?3、(赴援问题)大客车和小轿车同地、同方向送出,大客车每小时行60千米,小轿车每小时行84千米,大客车启程2小时后小轿车才启程,几小时后小轿车冲上大客车?4、(过桥问题)列车通过一座长米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟米,列车车身长多少米?5、(错车问题)一列客车车长米,一列货车车长米,在平行的轨道上并肩而行,从两个车头碰面至车尾嗟乎经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头碰到货车尾再至客车尾返回货车头经过秒。
客车的速度和货车的速度分别是多少?6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少?7、(和倍问题)小李存有邮票30枚,小刘存有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数就是小刘的8倍?8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9、(和差问题)一只两层书架共放书72本,若从上层中掏出9本给下层,上层还比下层多4本,上下层各放书多少本?10、(周期问题)20xx年7月1日是星期六,求10月1日是星期几?一、科学知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
答疑定义新运算,关键就是必须正确地认知崭新定义的算式含义,然后严苛按照崭新定义的排序程序,将数值代入,转变为常规的四则运算算式展开排序。
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算. 例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球例题精讲知识精讲教学目标周期问题【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题【难度】2星【题型】解答【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每102425一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】黑珠、白珠共101颗,穿成一串,排列如下图。
这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.【考点】周期问题【难度】2星【题型】解答【解析】观察图形可知从第二个珠子开始每隔3个出现一个黑色的,即4个一循环。
所以:(101-1)÷4=25,判定最后一个为黑色,共有25颗。
【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有25个【巩固】★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星?【考点】周期问题【难度】2星【题型】解答【解析】87(23) 17⨯+=(个).÷+=…2.第87个图形是圆形.172135【答案】35【例 2】甲、乙、丙三个网站定期更新,甲网站每隔一天更新1次;乙网站每隔两天更新1次,丙网站每隔三天更新1次。
在一个星期内,三个网站最多更新次。
【考点】周期问题【难度】2星【题型】解答【关键词】希望杯,五年级,二试【解析】甲最多4次,乙最多3次,丙最多2次,和为9次【答案】35【例 3】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【考点】周期问题【难度】2星【题型】解答【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=(颗)=+47⨯+452⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524⨯+10414=+=(颗).【答案】⑴蓝色⑵47⑶14【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【考点】周期问题【难度】2星【题型】解答【解析】50(225) 5⨯+=(个).÷++=…5.52212【答案】12【例 4】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【考点】周期问题【难度】2星【题型】解答【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20⨯=(盏)÷++=的周期.每个周期都有4盏蓝灯,20480前200盏彩灯中有80盏蓝灯.【答案】⑴黄色⑵80【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【考点】周期问题【难度】2星【题型】解答【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是: 1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【答案】白灯【巩固】按下面的摆法,摆一百个三角形,请问第100个三角形是什么颜色的?在这100个三角形中有多少个白色的三角形?△△△▲▲▲△△△▲▲▲△△△▲▲▲……【考点】周期问题【难度】2星【题型】解答【解析】从图中可以看出,按照6个为一个周期,因为100616÷=…4,所以第100个三角形应该是这一个周期当中的第四个,应该是黑色的.每个周期里有3个白色的,一共有16个周期就有48个白色三角形,余下的4个三角形中还有3个白色的,所以一共有163351⨯+=个.【答案】51【巩固】流水线上给小木球涂色的次序是:先5个红、再4个黄、再3个绿、在2个黑、再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第2003个小球该涂什么颜色?【考点】周期问题【难度】2星【题型】解答【解析】小木球的涂色顺序是:“5红、4黄、3绿、2黑、1白”,也就是每涂过“5红、4黄、3绿、2黑、1白”循环一次,给小木球涂色的一个周期是5432115++++=,因此只要用2003除以15,÷=…8根据余数是8就可以判断:第2003个小木球出现在上面所列一个周期中200315133第8个,所以第2003个小球是涂黄色.【答案】涂黄色【例 5】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【考点】周期问题【难度】2星【题型】解答【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【答案】“欢”【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二【解析】要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【答案】“北奥”【例 6】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【考点】周期问题【难度】2星【题型】解答【解析】⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断÷=……2,所以最后一枚是1分硬币200633⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【答案】⑴1分硬币⑵398分【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【考点】周期问题【难度】2星【题型】解答【解析】1963÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.÷=…1,1462【答案】最后一个是一角的,第十四个是五角的【例 7】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【考点】周期问题【难度】2星【题型】解答【解析】这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【答案】红花最少,少67朵【巩固】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组是“们,B ”……我 们 爱 科 学 我 们 爱 科 学 我 ……A B C D E F G A B C D ……⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【考点】周期问题 【难度】2星 【题型】解答【解析】 ⑴要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【答案】⑴第62组是“们,F ” ⑵2008年对应的组为“学,F ”【例 8】 如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A 、B 、C 三点周围的阴影部分是圆形的水洼。