第一章 半导体物理基础解析
- 格式:ppt
- 大小:2.64 MB
- 文档页数:52
1第一章 半导体物理基础半导体物理知识是学习半导体器件物理课程的基础。
为了方便学过半导体物理的学生使用本书时对半导体物理的有关知识进行回顾和查阅,也为了给没有学过半导体物理的读者提供必要的参考,我们在本章简明地介绍半导体的基本性质。
其主要内容包括半导体能带论的主要结果,半导体中载流子浓度的统计分布,费米能级的计算,载流子的输运以及半导体中的基本控制方程等。
半导体表面和半导体光学性质等是半导体物理中的重要内容。
为不使本章的内容过于冗长,更为了学习相关器件物理的方便,分别把它们放在有关章节(第六、七章)予以介绍。
相信上述内容可为读者学习半导体器件物理提供足够的预备知识。
如果有些读者觉得本书所介绍的内容尚不够全面深入和详尽,可参阅标准的半导体物理和固体物理等教材。
1.1 半导体中的电子状态1.1.1半导体中电子的波函数和能量谱值 布洛赫定理电子状态亦称为量子态,指的是电子的运动状态。
晶体是由规则的周期性排列起来的原子所组成的。
每个原子又包含有原子核和核外电子。
原子核和电子之间、电子和电子之间存在着库仑作用。
因此,它们的运动不是彼此无关的,应该把它们作为一个体系统一地加以考虑。
也就是说,所遇到的是一个多体问题。
为使问题简化,近似地把每个电子的运动单独地加以考虑,即在研究一个电子的运动时,把在晶体中各处的其它电子和原子核对这个电子的库仑作用,按照它们的几率分布,被平均地加以考虑,这种近似称为单电子近似。
这样,一个电子所受的库仑作用仅随它自己的位置的变化而变化。
于是它的运动便由下面仅包含这个电子的坐标的波动方程式所决定()()()r E r r V m vv v h ψψ=⎥⎦⎤⎢⎣⎡+∇−222 (1-1) 式中2222∇−mh —— 电子的动能算符 )(r V v——电子的势能算符,它具有晶格的周期性E ——电子的能量()r vψ ——电子的波函数π2h =h ,h 为普朗克常数,h 称为约化普朗克常数如果势函数)(r V v有晶格的周期性,即)()(r V R r V m vv v =+ (1-2)则方程(1-1)的解)(r vψ具有如下形式)()(r u e r k rk i kv v r vv v ⋅=ψ (1-3) 式中)(r u kvv 为一与晶格具有同样周期性的周期性函数,即 ()()r u R r u k m kvv v v v =+ (1-4)(1-2)和(1-4)式中的m R v称为晶格平移矢量:332211a m a m a m R m vv v v ++= (1-5)式中1a v 、2a v 、3a v为晶格的一组基矢量,1m 、2m 、3m 为三个任意整数。
教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的NP 结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想NP-结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节VI-特性的温度依赖关系一、反向饱和电流和温度的关系二、VI-特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应τ二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(MollEbers-)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE 和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm 、gbe、CD的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td 、tr、tf、ts三、解电荷控制方程求贮存时间ts 第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gmlgmCG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、 M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S 功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节 等效电路和频率响应一、参数:g d g m r d 二、等效电路 三、截止频率第七节 亚阈值区一、亚阈值概念二、MOSFET 的亚阈值概念第九节 MOS 场效应晶体管的类型一、 N —沟增强型 N —沟耗尽型 二、 P —沟增强型 P —沟耗尽型第十节 器件尺寸比例MOSFET 制造工艺 一、P 沟道工艺 二、N 沟道工艺 三、硅栅工艺 四、离子注入工艺第七章 太阳电池和光电二极管 第一节半导体中光吸收一、两种光吸收过程 二、吸收系数 三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式 五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m二、效率的概念%100⨯=inLOC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程 二、例1-1,求少子分布,电流分布 三、计算光子收集效率:On pt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响 理解Fig7-9,Fig7-10所反映的物理意义第六节 提高太阳能电池效率的考虑一、光谱考虑 (多媒体演示) 二、最大功率考虑 三、串联电阻考虑 四、表面反射的影响 五、聚光作用第七节 肖特基势垒和MIS 太阳电池一、基本结构和能带图二、工作原理和特点 阅读 §7.8第九节 光电二极管一、基本工作原理 二、P-I-N 光电二极管 三、雪崩光电二极管四、金属-半导体光电二极管第十节 光电二极管的特性参数一、量子效率和响应度 二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP ) 四、探测率(D )、比探测率(D *)第八章 发光二极管与半导体激光器 第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合 二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED 的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED 的特性参数一、I-V 特性二:量子效率:注射效率γ、辐射效率r η、内量子效率i η ,逸出概率o η、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布 ,峰值半高宽 FWHM,峰值波长 ,主波长 ,亮度第四节 可见光LED一、GaP LED 二、GaAs 1-x P x LED 三、GaN LED第五节 红外 LED一 、性能特点二、 应用 光隔离器 阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。