河北省衡水中学2014届高三下学期二调考试 数学理试题 Word版含答案
- 格式:doc
- 大小:607.50 KB
- 文档页数:14
衡水中学2013—-2014学年度第二学期期中考试高三年级(文科)数学试卷本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题共60分)一 选择题 (每小题5分,共60分,且每小题只有一个正确选项) 1、已知复数521i iz +=,则它的共轭复数z 等于( ) A .2i - B .2i + C .2i -+ D .2i -- 2、已知等差数列}{n a 中,299,161197==+s a a , 则12a 的值是( ) A . 15 B .30 C .31 D .643、已知1sin 23α=,则2cos ()4πα-=( ) A .13 B .13- C .23 D .23-4、若向量a ,b 满足||1a =,||2b =,且()a a b ⊥+,则a 与b 的夹角为( )A .2π B .23π C .34π D .56π5、某程序框图如右图所示,该程序运行后输出的值是(A .63B .31C .27D .156、若点(),x y 在曲线y x =-与2y =-(包括边界),则2x y -的最大值为( ) A .-6 B .4 C .6 D .87、下列函数中,与函数()3x xe ef x --=的奇偶性、单调性均相同的是( ) A . ln(y x =B .2y x =C .tan y x =D . xy e =8、以下判断正确的是( )A .相关系数r (||1r ≤),||r 值越小,变量之间的线性相关程度越高。
B .命题“2,10x R x x ∈+-<存在”的否定是“2,10x R x x ∈+->任意".C 。
命题“在ABC ∆中,若,sin sin A B A B >>则"的逆命题为假命题。
D .“0b ="是“函数2()f x ax bx c =++是偶函数”的充要条件.9、已知椭圆221:143x y C +=,双曲线22222:1(,0)x y C m n m n-=>,椭圆1C 的焦点和长轴端点分别是双曲线2C 的顶点和焦点,则双曲线2C 的渐近线必经过点( )A .(2,3)B .(2,3)C .(3,1)D . (3,3)- 10、已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )11、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( )。
本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为( ) A.16 B. 13 C. 35 D. 562、如果)(x f '是二次函数, 且)(x f '的图象开口向上,顶点坐标为(1,3), 那么曲线)(x f y =上任一点的切线的倾斜角α的取值范围是 ( )A .]3,0(πB .)2,3[ππC .]32,2(ππD .),3[ππ3、在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于( )A .0B .49C .4D .49-4、已知数列为等比数列,且.64,495==a a ,则=( )A .8B .16±C .16D .8±5、已知等比数列{}n a 的公比2=q ,且462,,48a a 成等差数列,则{}n a 的前8项和为( ) A. 127B. 255C. 511D. 10236、已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位 B.向右平移π12个长度单位 C.向左平移π6个长度单位 D.向左平移π12个长度单位7、函数0.5()2|log |1xf x x =-的零点个数为( ) A. 1B.2C. 3D.48若A B 中恰含有一个整数,则实数a 的取值范围是( )A B C D .()1,+∞ 9、在△ABC 所在平面上有三点P 、Q 、R ,满足,→→→→=++AB PC PB PA→→→→→→→→=++=++CA RC RB RA BC QC QB QA ,,则△PQR 的面积与△ABC 的面积之比为( ) A .1:2 B .1:3 C .1:4 D .1:5 10、已知函数1()(*)n f x x n N +=∈的图象与直线1x =交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为n x ,则12013log x +22013log x +…+20122013log x 的值为( )A .-1B . 1-log 20132012C .-log 20132012D .111、定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则a 的取值范围是 ( )A .)22,0( B .)33,0( C .)55,0( D .)66,0( 12、已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[]0,2上是增函数,若方程()(0)f x m m =>,在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234x x x x +++=( )A .-12B .-8C .-4D .42013~2014学年度上学期二调考试 高三年级数学(理科)试卷第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13、由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是14、在等比数列{}n a 中,若,81510987=+++a a a a 8998-=⋅a a ,则=+++109871111a a a a 。
2013~2014学年度上学期二调考试 高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1。
设nS 是等差数列{a n }的前n 项和,5283()Sa a =+,则53a a 的值为( )A. 16B.13C.35D 。
562、如果)(x f '是二次函数, 且)(x f '的图象开口向上,顶点坐标为(1,3), 那么曲线)(x f y =上任一点的切线的倾斜角α的取值范围是( )A .]3,0(πB .)2,3[ππC .]32,2(ππ D .),3[ππ3、在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于( )A .0B .49C .4D .49-4、已知数列为等比数列,且. 64,495==a a ,则 =( )A .8B 。
16±C .16D .8±5、已知等比数列{}na 的公比2=q ,且462,,48a a 成等差数列,则{}na 的前8项和为( )A 。
127B 。
255C 。
511 D. 10236、已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x=的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位 B.向右平移π12个长度单位C 。
向左平移π6个长度单位 D 。
向左平移π12个长度单位7、函数0.5()2|log |1xf x x =-的零点个数为( )A 。
1B 。
2C. 3 D 。
48、设集合{}2A=230x x x +->,集合{}2B=210,0x x ax a --≤>。
衡水中学2013—2014学年度下学期第二次调研考试高一年级数学(理科)试卷第Ⅰ卷(选择题 共60分)一、 选择题:(共12个小题,每题5分,共60分。
下列每个小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A .9B .18C .27D .362. 一位母亲记录了儿子3—9岁的身高,数据(略),由此建立的身高与年龄的回归模型为93.7319.7+=Λx y ,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A .身高一定是145.83cm B .身高在145.83cm 以上C .身高在145.83cm 左右D .身高在145.83cm 以下3. 阅读如图所示的语句:当输入的72,168==n m 时,输出的结果为( )A .48B .24C .12D .64. 若122543)(2345+++++=x x x x x x f ,当2=x 时,则4V 的值为( )A .50B .52C .104D .1065. 一个盒子中装有4张卡片,每张卡片上写一个数字,数字分别是1、2、3、4.现从盒子中随机抽取卡片.若一次抽取3张卡片,求3张卡片上数字之和大于7的概率( ) A .247 B .2411 C .167 D .216. 如图是求样本x 1,x 2,…,x 10平均数x -的程序框图,图中空白框中应填入的内容为( )A .S =S +x nB .S =S +x n nC .S =S +nD .S =S +1n第6题 第7题7.甲、乙两名同学在5次体育测试中的成绩统计如上面的茎叶图所示,则下列结论正确的是( )A.x -甲<x -乙;乙比甲稳定B.x -甲>x -乙;甲比乙稳定 C.x -甲>x -乙;乙比甲稳定 D.x -甲<x -乙;甲比乙稳定 8. 某程序框图如图所示,若输出的S =57,则判断框内为( )A .k>4?B .k>5?C .k>6?D .k>7?9. 如果上边程序运行后输出的结果是720,那么在程序WHILE 后面的“条件”应为( ) A.7>i B.7>=i C. 7<=i D. 7<i 10. 如图,ABCD 为正四面体,α面⊥AD 于点A ,点B C D 、、均在平面α外,且在平面α的同一侧,线段BC 的中点为E ,则直线AE 与平面α所成角的正弦值为 ( )•EAB .23 C.22 D.21 11. 设直线x +ky -1=0被圆O :x 2+y 2=2所截弦的中点的轨迹为M ,则曲线M 与直线x -y -1=0的位置关系是( )A .相离B .相切C .相交D .不确定12. 若直角坐标平面内两点P,Q 满足条件:①P,Q 都在函数f(x)的图象上;②P,Q 关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)为同一个“友好点对”).已知函数f(x)=⎪⎩⎪⎨⎧≥<++0,20,1422x ex x x x 则f(x)的“友好点对”有( )个.A .0B .1C .2D .4第Ⅱ卷(共90分)二、填空题:(每题5分,共30分,把答案填在题中横线上) 13.下面是2×2列联表:则表中b 的值分别为 ___ .14.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于_________.15.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出的,n S 的值分别为____________.16. 设f(x)是定义在R 上的增函数,且对于任意的x 都有f(-x)+f(x)=0恒成立.如果实数m 、n 满足不等式f(m 2-6m+21)+f(n 2-8n)<0,那么m 2+n 2的取值范围是___________.?三、解答题:17. (本题满分10分)箱子中装有6张卡片,分别写有1到6这6个整数. 从箱子中任意取出一张卡片,记下它的读数x,然后放回箱子,第二次再从箱子中取出一张卡片,记下它的读数y,试求:是5的倍数的概率;(2),x y中至少有一个5或6的概率。
2013—2014学年度第二学期高三年级二调考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知R 是实数集,2{|1},{|1}M x N y y x=<==,则=M C N R ( )A .)2,1(B .[]2,0C.∅ D .[]2,12.在复平面内,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1sin170-=( ) A .4 B .2 C .2- D .4-4.关于统计数据的分析,有以下几个结论,其中正确的个数为( )①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;④已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)等于0.158 7 ⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。
A .2 B .3 C .4 D .55.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+a 5+…+a 2n -1), a 1a 2a 3=27,则a 6=( )A.27B.81C. 243D.7296.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A. B.C. D.7. 程序框图如图所示,该程序运行后输出的S 的值是 ( ) A .2 B .13 C .3- D . 12-8. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c , 且 1=a ,A B 2=, 则b 的取值范围为 ( )A.()3,2 B. ()3,1 C.()2,2 D. ()2,09. 在ABC △所在的平面内,点P P 、0满足=B P 041AB ,AB λ=PB ,且对于任意实数λ,恒有≥⋅PC PB C P B P 00⋅, 则 ( ) A .︒=∠90ABC B .︒=∠90A C BC .BC AC =D .AC AB =10.在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A内的概率为827,则k 的值为( ) A.13 B.23 C.12 D.3411.如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为22221(0)x y a b a b +=>> ,若直线AC 与BD 的斜率之积为14- ,则椭圆的离心率为( )A.123412.已知函数1()()2(),f x f x f x x =∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有3个不同的交点,则实数a 的取值范围是( )A.1(0,)eB.1(0,)2e C.ln 31[,)3eD.ln 31[,)32e第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知i 是虚数单位,则复数3(1)z i i =+∙的共轭复数是( ) A .1i -- B .1i - C .1i -+ D .1i +2.设α表示直线,,αβγ表示不同的平面,则下列命题中正确的是( ) A .若a α⊥且a b ⊥,则//b α B .若γα⊥且γβ⊥,则//αβ C .若//a α且//a β,则//αβ D .若//γα且//γβ,则//αβ3.若抛物线22y px =上一点0(2,)P y 到其准线的距离为4,则抛物线的标准方程为( )A .24y x = B .26y x = C .28y x = D .210y x =考点:1.抛物线的标准方程;2.抛物线的准线方程;3.点到直线的距离.4.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.75.ABCD沿对角线BD折起,连结AC,得到三棱锥C ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.2B.12C.1D.2【解析】6.设变量,x y 满足约束条件:+222y x x y x ≥⎧⎪≤⎨⎪≥-⎩,则3z x y =-的最小值( )A .2-B .4-C .6-D .8-7.袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是( ) A .310 B .35 C .12 D .14【解析】8.函数()sin ln ||f x x x =∙的部分图像为( )9.已知球O ,过其球面上,,A B C 三点作截面,若O 点到该截面的距离是球半径的一半,且2AB BC ==,0120B ∠=,则球O 的表面积为( )A .643π B .83π C .4π D .169π10.已知函数12()|log |f x x =,若m n <,有()()f m f n =,则3m n +的取值范围是( )A.)+∞ B.)+∞ C .[4,)+∞ D .(4,)+∞11.已知点G 是ABC ∆的重心,若0120A ∠=,2AB AC ∙=-,则||AG 的最小值是( )A.3 B.2 C .23 D .3412.已知函数11,1()10ln 1,1x x f x x x ⎧+≤⎪=⎨⎪->⎩,则方程()f x ax =恰有两个不同实数根时,实数a 的取值范围是( )(注:e 为自然对数的底数) A .(1,0]- B .1(1,)10- C .211(1,0][,)10e - D .21(1,)e-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某学校共有师生3200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 .考点:分层抽样.14.在ABC ∆中,若1BC =,3A π=,sin 2sin B C =,则AB 的长度为 .15.设12,F F 分别是双曲线22221x y a b-=(0,0)a b >>的左、右焦点,若双曲线右支上存在一点P ,使22()0OP OF F P +∙=(O 为坐标原点),且12||3||PF PF =,则该双曲线的离心率为 .16.如右图,一个类似杨辉三角的数阵,则第(2)n n ≥行的第2个数为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分) 已知函数()sin(4)cos(4)44f x x x ππ=++-. (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.试题解析:(1)18.(本小题满分12分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,346S a =+,且1413,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设21n an b =+,求数列{}n b 的前n 项和.【解析】19.(本小题满分12分)2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(1)完成被调查人员的频率分布直方图;(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,CD ⊥平面PAD ,//BC AD ,PA PD =,,O E 分别为,AD PC 的中点,22PO AD BC CD ===.(1)求证:AB DE ⊥;(2)求二面角A PC O --的余弦值.21.(本小题满分12分)已知1(1,0)F -、2(1,0)F 为椭圆C 的左、右焦点,且点(1,3P 在椭圆C 上. (1)求椭圆C 的方程;(2)过1F 的直线l 交椭圆C 于,A B 两点,则2F AB ∆的内切圆的面积是否存在最大值? 若存在其最大值及此时的直线方程;若不存在,请说明理由.22.(本小题满分12分)已知a 为实常数,函数()ln 1f x x ax =-+.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个不同的零点1212,()x x x x <;(Ⅱ)求证:111x e<<且122x x +>.(注:e 为自然对数的底数)【解析】②证法一:。
2013—2014学年度下学期二调考试高三年级数学试卷(文)本试卷分第I 卷和第Ⅱ卷两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上) 1.已知R是实数集,2{|1},{|1}M x N y y x=<==,则=M C N R ( )A .)2,1(B .[]2,0C.∅ D .[]2,12. 在复平面内,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.给定命题p :函数ln[(1)(1)]y x x =-+为偶函数;命题q :函数11x x e y e -=+为偶函数,下列说法正确的是( ) A .是假命题B .是假命题C .是真命题D .是真命题4.等差数列中,24)(2)(31310753=++++a a a a a ,则该数列前13项的和是( )A .13B .26C .52D .156 5.如图所示的程序框图输出的所有点都在函数( )A .y =x +1的图像上B .y =2x 的图像上C .y =2x的图像上 D .y =2x -1的图像上6.把边长为2的正方形ABCD 沿对角线BD 折起,连结AC ,得到三棱锥C-ABD ,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为( ) A .32B . 1 2C .1D .227.已知等边ABF ∆的顶点F 是抛物线21:2C y px =的焦点,顶点B 在抛物线的准线l 上且正视图俯视图AB ⊥l ,则点A 的位置( )A. 在1C 开口内B. 在1C 上C. 在1C 开口外D. 与p 值有关8.若函数x x f y cos )(+=在]43,4[ππ-上单调递减,则)(x f 可以是( )A .1B .x cosC .x sin -D .x sin9. 已知||2||0a b =≠ ,且关于x 的函数3211()||32f x x a x a bx =++⋅在R 上有极值,则向量,a b的夹角范围是( )A .[0,)6πB .(,]6ππC .(,]3ππD .2(,)33ππ10.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点, P 是C 上一点,若126,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为( )B.11.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()x f x a g x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f fg g -+=-.若数列(){}()f n g n 的前n 项和大于62,则n 的最小值为( )A .6B .7C .8D .912. 已知函数则方程f(x)=ax 恰有两个不同的实根时,实数a 的取值范围是(注:e 为自然对数的底数)( )第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。
河北衡水中学2013—2014学年度下学期二调考试高三理综试卷注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共16页,满分300分。
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
3.非选择题的作答:用黑色字迹签字笔直接答在答题卡上对应的答题区域内4.选考题的作答:先把所选题目的题号在答题卡指定的位置用2B铅笔涂黑。
答题答在答题卡对应的答题区域内,答在试题卷、草稿纸上无效。
预祝每位学子取得佳绩!可能用到的相对原子质量:H l C l2 N 14 O 16 Mg 24 Al 27 S 32 C135.5 Fe56 Cu64 I 127 Ba 137 Na23 Zn65卷Ⅰ(选择题共126分)一、选择题(每小题6分)1. 建立数学模型是生态学研究的重要方法,图1坐标系中的曲线可表示生态学中相关研究对象的变化规律,以下描述最准确的是A.1和2可分别表示死亡率和出生率随种群数量的变化B.若X和Y分别表示年龄和数量,则2表示的年龄结构为稳定型C.2可表示种群数量的S型增长在一定时间范围内的曲线D.1可表示群落初生演替至森林的过程中生态系统恢复力稳定性随时间的变化2.下图中甲、乙分别表示人体不同体液间的物质交换和生态系统的碳循环过程,说法正确的是()①乙中的d为分解者,a为生产者②人体过敏反应时,甲中的c增加引起水肿③甲中d处的CO浓度最高④甲中d为细胞内液、b为淋巴2⑤甲中的a、b、c构成内环境;⑥乙中有3条食物链,其中b所处营养级贮存的能量最少A.①③④⑤ B.①②③④⑤⑥ C.③④⑤ D.①②⑥3.下列有关细胞的叙述不.正确的是()A.矿工中常见的“硅肺”是由于肺泡细胞中的溶酶体缺乏分解硅尘的酶引起的B.真核细胞中存在有维持细胞形态、保护细胞内部结构有序性的细胞骨架,它是由蛋白质纤维组成的网架结构,与细胞运动、能量转换等生命活动密切相关C.科研上鉴别细胞死活可用台盼蓝染色,凡是死的动物细胞会被染成蓝色;细胞在癌变过程中,细胞膜成分发生改变,表面的AFP等蛋白质会增加D.成熟生物体中,细胞的自然更新、被病原体感染的细胞的消除,是通过细胞凋亡完成的4.下列有关生物学实验的叙述,不.正确的是()A.探索淀粉酶对淀粉和蔗糖作用的专一性时,不可用碘液替代斐林试剂进行鉴定;探索α-淀粉酶活性受温度影响实验中,一般用过氧化氢与过氧化氢酶B.在色素的提取和分离实验中,用无水乙醇进行提取,叶绿素b在层析液中的溶解度最低,扩散速度最慢C.用某一浓度的硝酸钾溶液处理洋葱鳞片叶表皮细胞,不一定观察到质壁分离复原现象;探究酵母菌的呼吸方式可以用是否产生二氧化碳来予以确定D.在“观察洋葱根尖有丝分裂”和“观察细胞中RNA和DNA分布”的实验中加入盐酸的质量分数和目的都不相同5. 某种有机磷农药能使突触间隙中的分解乙酰胆碱的乙酰胆碱酯酶活性受抑制,某种蝎毒会抑制 Na+通道的打开。
2013—2014学年度第二学期高三年级二调考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知R 是实数集,2{|1},{|1}M x N y y x=<==,则=M C N R ( )A .)2,1(B .[]2,0C.∅ D .[]2,12.在复平面内,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1sin170-=( ) A .4 B .2 C .2- D .4-4.关于统计数据的分析,有以下几个结论,其中正确的个数为( )①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法; ④已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)等于0.158 7⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。
A .2 B .3 C .4 D .55.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+a 5+…+a 2n -1), a 1a 2a 3=27,则a 6=( )A.27B.81C. 243D.7296.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A. B.C. D.7. 程序框图如图所示,该程序运行后输出的S 的值是 ( )A .2B .13 C .3- D . 12-8. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c , 且 1=a ,A B 2=, 则b 的取值范围为 ( )A.()3,2 B. ()3,1 C.()2,2 D. ()2,09. 在ABC △所在的平面内,点P P 、0满足=P 041,λ=,且对于任意实数λ,恒有≥⋅P P 00⋅, 则 ( )A .︒=∠90ABCB .︒=∠90AC BC .BC AC =D .AC AB =10.在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为( ) A.13 B.23 C.12 D.3411.如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为22221(0)x y a b a b +=>> ,若直线AC 与BD 的斜率之积为14- ,则椭圆的离心率为( )A.12 B. 2 C. 2D. 3412.已知函数1()()2(),f x f x f x x=∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-与x 轴有3个不同的交点,则实数a 的取值范围是( )A.1(0,)eB.1(0,)2e C.ln 31[,)3eD.ln 31[,)32e第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。
把答案填在答题纸的横线上)13.设球的半径为时间t 的函数)(t r ,若球的体积以均匀速度21增长,则球的表面积的增长速度与球半径的乘积为14. 若21()n x x+的二项展开式中,所有项的二项式系数和为64,则该展开式中的常数项为15. 在△ABC 中,边,,2AB 1AC == 角32A π=,过A 作P BC AP 于⊥,且μλ+=,则=λμ .16. 椭 圆中有如下结论:椭 圆22221(0)x y a b ab+=>>上斜率为1的 弦 的 中点在直线220x y ab+=上,类比上述结论:双曲线22221(,0)x y a b ab-=>上斜率为1的 弦 的 中点在直线 上三、解答题(本题满分70分,解答应写出文字说明、证明过程或演算步骤,写在答题卡相应位置)17.(本题满分12分)如图,在ABC ∆中,BC 边上的中线AD 长为3,且cos 8B =,1cos 4ADC ∠=-.(Ⅰ)求sin BAD ∠的值;(Ⅱ)求AC 边的长.18. (本题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,CD ⊥平面PAD , BC ∥AD ,PA =PD ,O ,E 分别为AD ,PC 的中点,PO =AD =2BC =2CD . (Ⅰ)求证:AB ⊥DE ;(Ⅱ)求二面角A -PC -O 的余弦值.19. (本题满分12分)今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。
私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。
为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20. (本题满分12分)我校某同学设计了一个如图所示的“蝴蝶形图案(阴影区域)”来庆祝数学学科节的成功举办.其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1) 求抛物线Γ方程;(2) 当“蝴蝶形图案”的面积最小时求α的大小.21. (本题满分12分)已知函数2()ln (0,1)x f x a x x a a a =+->≠. (1)求函数()f x 的单调区间; (2)若函数()f x 满足:①对任意的12,m m ,12m m ≠,当12()()f m f m =时,有120m m +<成立; ②对12,[1,1],x x ∀∈-12()()1f x f x e -≤-恒成立.求实数a 的取值范围.请考生在22,23,24题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题目进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。
22.(本题满分10分)如图,在正ΔA BC 中,点D 、E 分别在边BC ,AC 上,且,AD ,BE 相交于点P .求证:(I)四点P 、D 、C 、E 共 圆;(II)AP CP.23.(本题满分10分)已知直线: t t y t x (.23,211⎪⎪⎩⎪⎪⎨⎧=+=为参数), 曲线:1C cos ,sin ,x y θθ=⎧⎨=⎩ (θ为参数). (Ⅰ)设 与1C 相交于B A ,两点,求||AB ;(Ⅱ)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P是曲线2C 上的一个动点,求它到直线 的距离的最小值.24. (本题满分10分)选修4—5:不等式选讲 已知函数a a x x f +-=2)(.(1)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(5分)(2)在(1)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.(5分)2013—2014学年度第二学期高三年级二调考试数学试卷(理科) 参考答案DBDBC CDACA CC 13.1 14.4910 15. 15 16. 220x ya b-= 17.PABO EDCFH --------6分(Ⅱ)在ABD ∆中,由正弦定理,得sin sin AD BD B BAD =∠,=解得2BD =…8分 故2DC =,从而在ADC ∆中,由余弦定理,得2222cos AC AD DC AD DC ADC =+-⋅∠22132232()164=+-⨯⨯⨯-=,所以4AC =……………………12分18. .解法一:(Ⅰ)设BD OC F ⋂=,连接EF , E F 、分别是PC 、OC 的中点,则//EF PO ,…1分已知CD ⊥平面PAD ,CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,又PA PD =,O 为AD 的中点,则PO AD ⊥, 而平面ABCD PAFD AD ⋂=平面, 所以PO ⊥平面ABCD , 所以EF ⊥平面ABCD ,又AB ⊂平面ABCD ,所以AB EF ⊥;……3分在ABD ∆中,222ABBD AD +=,AB BD ⊥;又EF BD F ⋂=,所以AB ⊥平面BED , 又DE ⊂平面BED ,所以⊥AB DE . ……6分(Ⅱ)在平面ABCD 内过点A 作AH CO ⊥交CO 的延长线于H ,连接HE ,AE ,因为PO ⊥平面ABCD ,所以POC ⊥平面ABCD ,平面POC ⋂平面ABCD AH =,所以AH ⊥平面POC , PC ⊂平面POC ,所以AH ⊥PC ;在APC ∆中,AP AC =,E 是PC 中点,故AE PC ⊥; 所以PC ⊥平面AHE ,则PC ⊥HE .所以AEH ∠是二面角O PC A --的平面角.……10分设222PO AD BC CD ====, 而222AEAC EC =-,AE =所以二面角O PC A --的余弦值为7. ……12分解法二:因为CD ⊥平面PAD ,CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,又PA PD =,O 是AD 的中点,则PO AD ⊥,且平面ABCD PAFD AD ⋂=平面, 所以PO ⊥平面ABCD .……2分如图,以O 为原点,以,,OB OD OP分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. (0,1,0)A -(1,0,0)B (1,1,0)C (0,1,0)D 11(,,1)22E (0,0,2)P …4分(1,1,0)AB = 11(,,1)22DE =- ,0AB DE ⋅=,所以AC DE ⊥.……6分(Ⅱ)(1,2,0)AC = ,(1,1,2)PC =-,设平面PAC 的法向量为(,,)x y z =m ,又0BD PO⋅=,0BD OC ⋅=,所以平面POC 的法向量(1,1,0)BD =-, ……10分7,所以二面角O PC A --. ……12分 19.解:(Ⅰ)各组的频率分别是0.1,0.2,0.3,0.2,0.1,0.1.……2分 所以图中各组的纵坐标分别是0.01,0.02,0.03,0.02,0.01,0.01.……4分……5分(Ⅱ)ξ的所有可能取值为:0,1,2,3……………6分()22642251061545150=,104522575C C p C C ξ==⋅=⋅=()21112646442222510510415624102341=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()111224644422225105104246666222=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()124422510461243=,104522575C C p C C ξ==⋅=⋅=……10分所以ξ的分布列是:……11分所以ξ的数学期望65E ξ=.……12分21.当1a >时,211()()()f m f m f m =>-,由于()f x 在∞(-,0)上单调递减,所以21m m <-,120m m +<.同理01a <<,120m m +>.当12()()f m f m =时,当且仅当1a >时,有120m m +<成立. ……8分②1a >时,由(1)可得min [()](0)1f x f ==,max [()]max{(1),(1)},f x f f =-22.证明:(I )在ABC ∆中,由11,,33BD BC CE CA ==知: ABD ∆≌BCE ∆,………………2分 ADB BEC ∴∠=∠即ADC BEC π∠+∠=.所以四点,,,P D C E 共圆;………………5分(II )如图,连结DE .在CDE ∆中,2CD CE =,60ACD ∠= ,由正弦定理知90CED ∠= .………………8分由四点,,,P D C E 共圆知,DPC DEC ∠=∠,则1||=AB . (II )2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd , 由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-. 24.解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤, ∴32a -=-,∴1a =。