2020年北京市中考数学模拟试卷1
- 格式:docx
- 大小:413.59 KB
- 文档页数:29
2020年北京市密云区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.下列四个角中,最有可能与60°角互补的是()A. B.C. D.2.一周时间有604800秒,604800用科学记数法表示为()A. 6048×102 B. 6.048×105C. 6.048×106D. 0.6048×1063.下列各式计算正确的是()A. a2+a2=a4B. (−2x)3=−8x3C. a3·a4=a12D. (x−3)2=x2−94.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.5.实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是A. a>cB. b+c>0C. |a|<|d|D. −b<d6.如图是某一正方体的展开图,那么该正方体是()A.B.C.D.7.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价几何?译文:今有人合伙买物,每人出八钱,则多三钱;每人出七钱,则少四钱,问人数、物件各是多少?设合伙人数是x,物价为y钱,以下列出的方程组正确的是()A. B. C. D.8.下表反映了我国高速铁路基本情况,根据统计表提供的信息,下列推断不合理的是()年份营业里程(公里)占铁路营业里程比重(%)客运量(万人)占铁路客运量比重(%)20086720.87340.520092699 3.24651 3.120105133 5.6133238.0 201166017.12855215.8 201293569.63881520.5 20131102810.75296225.1 20141645614.77037830.5 20151983816.49613937.9 20162298018.512212843.4(上表摘自《2017中国统计年鉴》)A. 2008−2016年,我国高速铁路营业里程逐年增长B. 2008−2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2016年C. 2008−2016年,我国高速铁路客运量逐年增长D. 到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%二、填空题(本大题共8小题,共16.0分)9.写一个比4小的无理数.10.如果分式1x−5有意义,那么x的取值范围是______.11.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是______ .12.计算:m2−4m+4m−1÷(3m−1−m−1)=______.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=______.14.如图,大楼AB的底部右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,则障碍物B,C两点间的距离为______米.(结果保留根号)15.从绵阳园艺山到涪城区有三条不同的线路(三条线路分别用A,B,C表示).为了解早高峰期间这三条线路上的公交车从园艺山到涪城区的用时情况,在每条线路上随机选取了100个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路20≤t≤3030<t≤4040<t≤5050<t≤60合计A25153030100B183********C3193723100早高峰期间,乘坐______(填“A”,“B”或“C”)线路上的公交车,从绵阳园艺山到涪城区“用时不超过50分钟”的可能性最大.16.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为______ .三、解答题(本大题共12小题,共68.0分)17.计算:(1)(12)−1+√3+(√7)0−2cos60°−|3−π|;(2)解不等式组:{2x−7<3(x−1)①5−12(x+4)≥x②18.解不等式组:{7x<8+9xx+12<1,并写出它的所有整数解.19.阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC=∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E是CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.20.已知一元二次方程x2−4x+k=0有两个不相等的实数根.(1)求k的取值范围.(2)如果k是符合条件的最大整数且一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,求此时m的值.21.如图,AE//BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若,BD=6,求AD的长.22.如图,在平面直角坐标系xOy中,直线y=−x+1与函数y=k的图象交于A(−2,a),B两点.x(1)求a,k的值;(2)已知点P(0,m),过点P作平行于x轴的直线l,交函数y=k的图象于点C(x1,y1),交直线y=x−x+1的图象于点D(x2,y2),若|x1|>|x2|,结合函数图象,直接写出m的取值范围.23.如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求半径的长及tan C的值.24.为引领学生感受诗词之美,某校团委组织了一次全校800名学生参加的“中国诗词大赛”,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6050.0560≤x<70150.1570≤x<8020n80≤x<90m0.3590≤x≤100250.25请根据所给信息,解答下列问题:(1)m=______,n=______;并补全频数分布直方图;(2)这100名学生成绩的中位数会落在______分数段;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的800名学生中成绩“优”等的约有多少人?25.如图,P是半圆弧AB⏜上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53y/cm3 3.1 3.5 4.0 5.36(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是______.26.在平面直角坐标系xOy中,二次函数y=ax2−2ax+1(a>0)的对称轴为x=b,点A(−2,m)在直线y=−x+3上.(1)求m,b的值;(2)若点D(3,2)在二次函数y=ax2−2ax+1(a>0)上,求a的值;(3)当二次函数y=ax2−2ax+1(a>0)与直线y=−x+3相交于两点时,设左侧的交点为P(x1,y1),若−3<x1<−1,求a的取值范围.27.△ABC是等边三角形,点C关于AB对称的点为C′,点P是直线C′B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C′B上(不与点C′,点B重合)①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系______.②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.(2)若点P在线段C′B的延长线上,①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:______.28.在平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=______,d(B,⊙O)=______.②已知直线l:y=−512x+b与⊙O的“距离”d(l,⊙O)=3413,求b的值.(2)已知点A(−2,6),B(−2,−2),C(6,−2).⊙M的圆心为M(m,0),半径为1.若d(⊙M,△ABC)=1,请直接写出m的取值范围______.【答案与解析】1.答案:D解析:解:60°角的补角=180°−60°=120°,是钝角,结合各图形,只有D选项是钝角.故选:D.根据互补的两个角的和等于180°求出60°角的补角,然后结合图形即可选择.本题考查了互为补角的定义,根据补角的定义求出60°角的补角是钝角是解题的关键.2.答案:B解析:解:数字604800用科学记数法表示为6.048×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:本题考查了合并同类项,积的乘方,同底数幂的乘法,完全平方公式,熟练掌握运算法则是解本题的关键,根据积的乘方即可判定B正确.解:A.a2+a2=2a2,故错误;B.(−2x)3=−8x3,正确;C.a3·a4=a7,故错误;D.(x−3)2=x2−6x+9,故错误.故选B4.答案:C解析:解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.5.答案:D解析:本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.解:由数轴上点的位置,得a<−4<b<0<c<1<d=4.A.a<c,故A选项错误;B.∵|b|>|c|,b<0<c,∴b+c<0,故B选项错误;C.|a|>4=|d|,故C选项错误;D.−b<4=d,故D选项正确.故选D.6.答案:B解析:本题考查展开图折叠成几何体,训练了学生的观察能力和空间想象能力.根据正方体展开图的相对面的位置作答即可.解:根据正方体的展开图可得选B.故选B.7.答案:C解析:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数−物品价值=3,②物品价值−7×人数=4,据此可列方程组.解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4. 故选C .8.答案:B解析:解:A.2008−2016年,我国高速铁路营业里程逐年增长,故正确;B .2008−2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2014年,故错误;C .2008−2016年,我国高速铁路客运量逐年增长,故正确;D .到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%,故正确; 故选:B .根据统计表中的数据逐一判断即可得结论.本题主要考查统计图表,统计表是表现数字资料整理结果的最常用的一种表格,统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.9.答案:π解析:此题考查了实数大小比较,以及无理数,熟练掌握无理数的定义是解本题的关键.找出一个小于4的无理数即可.解:比4小的无理数可以是π,故答案为π.10.答案:x ≠5解析:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.根据分母为零,分式无意义;分母不为零,分式有意义.解:分式1x−5有意义,得x−5≠0,解得x≠5.故答案为:x≠5.11.答案:答案不惟一,如球、正方体等解析:解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查了几何体的三种视图,掌握常见几何体的三视图是关键.12.答案:2−m2+m解析:解:m2−4m+4m−1÷(3m−1−m−1)=(m−2)2m−1÷3−(m+1)(m−1)m−1=(m−2)2m−1⋅m−13−m2+1=(m−2)2m−1⋅m−1(2+m)(2−m)=2−m2+m,故答案为:2−m2+m.根据分式的除法和减法可以化简题目中的式子,本题得以解决.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.13.答案:2解析:本题考查考查垂径定理,属于基础题.连接OC,如图,根据垂径定理得到CE=DE=12CD=4,再利用勾股定理计算出OE,然后计算OB−OE即可.解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=12CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE=√52−42=3,∴BE=OB−OE=5−3=2.故答案为2.14.答案:(70−10√3)解析:解:过D作DF⊥AB,交AB于点F,过C作CG⊥DF,交DF于点G,可得四边形FBED与四边形CGDE为矩形,∴FB=CG=DE=10m,∵AB=80m,∴AF=AB−FB=80−10=70m,在Rt△AFD中,tan45°=AFFD=1,即AF=FD=70m,在Rt△CGD中,tan30°=CGDG ,即10DG=√33,解得:DG=10√3m,∴BC=FG=FD−DG=(70−10√3)m,故答案为:(70−10√3)过D作DF⊥AB,交AB于点F,过C作CG⊥DF,交DF于点G,可得四边形FBED与四边形CGDE为矩形,由AB−BF求出AF的长,在直角三角形AFD中,利用锐角三角函数定义求出FD的长,在直角三角形CGD中,利用锐角三角函数定义求出GD的长,由FD−DG求出FG的长,即为BC的长.此题考查了解直角三角形的应用−仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.15.答案:C解析:解:∵A线路公交车用时不超过50分钟的可能性为25+15+30100=0.7,B线路公交车用时不超过50分钟的可能性为18+32+10100=0.6,C线路公交车用时不超过50分钟的可能性为31+9+37100=0.77,∴C线路上公交车用时不超过50分钟的可能性最大,故答案为:C.根据给出的数据先分别计算出用时不超过50分钟的可能性,再进行比较即可得出答案.本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.16.答案:122n−1解析:解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=14⋅s=122⋅s,s2=14⋅14s=124⋅s,s3=126⋅s,∴s n=122n ⋅s=122n⋅12⋅2⋅2=122n−1,故答案为12.记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.17.答案:解:(1)原式=2+√3+1−2×12+3−π=5+√3−π;(2){2x −7<3(x −1)①5−12(x +4)≥x② 解不等式①,得x >−4,解不等式②,得x ≤2,∴不等式组的解集为−4<x ≤2.解析:(1)原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的性质计算,即可得到结果;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解二元一次方程组与一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.答案:解:{7x <8+9x①x+12<1②, ∵解不等式①得:x >−4,解不等式②得:x <1,∴原不等式组的解集为:−4<x <1,∴不等式组的整数解是:−3,−2,−1、0.解析:先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集.19.答案:解:(1)如图所示,点P 即为所求:(2)∵CD=10,DE=2,∴CE=8,∵BC=AD=6,∴BE=10,则OP=OB=5,BC=3,∵BQ=CQ=12∴OQ=4,则PQ=9,∴PC=√CQ2+PQ2=√32+92=3√10.解析:(1)作BC的垂直平分线,交BE于点O,以O为圆心,OB为半径作圆,交垂直平分线于点P,则点P为所求.(2)先根据AD=6,CD=10,DE=2知CE=8,BE=10,从而得OB=OP=5,再由BQ=CQ=1BC=3得OQ=4,再根据勾股定理求解可得.2本题考查作图−复杂作图,解题的关键是掌握圆周角定理、线段垂直平分线的尺规作图、矩形的性质及勾股定理等知识点.20.答案:解:(1)由一元二次方程x2−4x+k=0有两个不相等的实数根,得△=b2−4ac=(−4)2−4k>0,解得k<4;(2)由k是符合条件的最大整数,且一元二次方程x2−4x+k=0,得x2−4x+3=0,解得x1=1,x2=3,一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,当x=1时,把x=1代入x2+mx−1=0,得1+m−1=0,解得m=0,,当x=3时,把x=3代入x2+mx−1=0,得9+3m−1=0,解得m=−83综上所述:如果k是符合条件的最大整数,且一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,m=0或−8.3解析:本题考查了根的判别式,解一元二次方程.(1)根据方程有两个不等实数根,可得判别式大于零,根据解不等式,可得答案;(2)根据解方程,可得x2−4x+k=0的解,根据解相同,把方程的解代入,可得关于m的一元一次方程,解一元一次方程,可得答案.21.答案:(1)证明:∵AE//BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,BD=3,∴AC⊥BD,OD=OB=12∵∠ADB=30°,∴AD=2AO,在Rt△AOD中,(2AO)2−AO2=OD2,3AO2=32,AO=√3,∴AD=2√3.解析:本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、勾股定理等知识;熟练掌握菱形的判定与性质是解决问题的关键.(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD =OB =12BD =3,再由勾股定理即可得出AD 的长. 22.答案:解:(1)∵直线y =−x +1与函数y =kx 的图象交于A(−2,a),把A(−2,a)代入y =−x +1解得a =3,∴A(−2,3).把A(−2,3)代入y =k x ,解得k =−6;(2)画出函数图象如图解{y =−6x y =−x +1得{x =−2y =3或{x =3y =−2, ∵A(−2,3),∴B(3,−2),根据图象可得:若|x 1|>|x 2|,则0<m <3或−2<m <0.解析:(1)将点A(−2,a)代入y =−x +1,得出点A 的坐标,再代入函数y =kx ,即可求出k 的值;(2)求出点B 的坐标,结合函数的图象即可求解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键. 23.答案:(1)证明:连接OB ,∵OB=OD,∴∠OBD=∠ODB,∵CD是⊙O的直径,∴∠CBD=90°,又∵∠ABD=∠C,∴∠ABO=∠ABD+∠DBO=∠C+∠BDC=90°,∴OB⊥AB ∴AB是⊙O的切线;(2)设⊙O的半径为r.在Rt△ABO中,∠ABO=90°,∴AB2+OB2=AO2,即16+r2=(r+2)2,解得:r=3,又∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴BDBC =ADAB=12,∴tanC=BDCB =12.解析:本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.(1)连接OB,如图,利用圆周角定理得∠CBD=90°,再利用∠OBC=∠C=∠ABD得到∠ABD+∠OBD=90°,然后根据切线的判定定理得到结论;(2)根据勾股定理得到半径,然后根据三角函数的定义即可得到结论.24.答案:(1)35,0.2;∴m=100×0.35=35,n=20÷100=0.2,补全图形如下:(2)80≤x<90;(3)该校参加这次比赛的800名学生中成绩“优”等的约有800×0.25=200(人).解析:解:(1)∵被调查的总人数为5÷0.05=100,故答案为:35,0.2;统计图见答案;(2)∵中位数是第50、51个数据的平均数,且第50、51个数据均落在80≤x<90内,∴中位数会落在80≤x<90内,故答案为:80≤x<90;(3)见答案.(1)先由分数段50≤x<60的人数及其频率求得总人数,再根据频率=频数÷总人数可求得m、n的值,据此即可补全直方图;(2)根据中位数的定义求解可得;(3)总人数乘以样本中第5组的频率即可得.本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.答案:(1)4.62)根据题意,画出函数图象如下图:(3)9≤C≤12解析:解:(1)经过测量,x=2时,y值为4.6(2)见答案;(3)根据图象,可以发现,y的取值范围为:3≤y≤6∵C=6+y故答案为:9≤C≤12解答本题需要动手操作,在细心测量的基础上,描点、连线画出函数图象,再根据观察找到函数值得取值范围.本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.26.答案:解:(1)∵二次函数y=ax2−2ax+1(a>0)的对称轴为x=b,∴b=2a=1.2a∵点A(−2,m)在直线y=−x+3上,∴m=2+3=5;(2)∵点D(3,2)在二次函数y=ax2−2ax+1(a>0)上,∴2=a×32−2a×3+1,∴a=1;3(3)∵当x=−3时,y=−x+3=6,∴当(−3,6)在y=ax2−2ax+1(a>0)上时,6=a×(−3)2−2a×(−3)+1,∴a=1.3又∵当x=−1时,y=−x+3=4,∴当(−1,4)在y=ax2−2ax+1(a>0)上时,4=a×(−1)2−2a×(−1)+1,∴a=1.<a<1.∴13=1.将A(−2,m)代入y=−x+3,即可求出m=2+3=5;解析:(1)根据二次函数的性质,可得b=2a2a(2)将D(3,2)代入y=ax2−2ax+1,即可求出a的值;.再把x=−1 (3)把x=−3代入y=−x+3,求出y=6,把(−3,6)代入y=ax2−2ax+1,求出a=13代入y=−x+3,求出y=4,把(−1,4)代入y=ax2−2ax+1,求出a=1.进而得出a的取值范围.本题考查了二次函数、一次函数的性质,函数图象上点的坐标特征,掌握点在直线上,则点的坐标满足函数的解析式是解题的关键.27.答案:PD=PA BD=BP+AB解析:(1)①解:如图1中,连接AC′.∵△ABC是等边三角形,∴∠ABC=60°,∵点C′与点C关于AB对称,∴∠C′BA=∠CBA=60°,BC′=BC=BA,∴△ABC′是等边三角形,∵PB=PC′,∴PA⊥BC′,且∠APD=60°,∴∠BPD =30°,且∠PBD =120°∴∠BDP =∠BPD =30°,∴PB =BD ,且∠ABC =∠ABC′=60°,AB =AB ,∴△ABD≌△ABP(SAS)∴AP =AD ,且∠APD =60°,∴△APD 是等边三角形,∴AP =PD ,故答案为AP =PD .②证明:如图2中,作∠BPE =60°交AB 于点E .∵△ABC 是等边三角形,∴∠ABC =60°,∵点C′与点C 关于AB 对称,∴∠C′BA =∠CBA =60°=∠BPE ,∴∠PEB =60°.∴△PBE 是等边三角形,∴PB =PE ,AEP =120°=∠PBD .∵∠BPD +∠DPE =60°,∠APE +∠DPE =60°,∴∠BPD =∠APE ,在△PBD 和△PEA 中,{∠BPD =∠APE PB =PE ∠PBD =∠PEA∴△PBD≌△PEA(ASA).∴PD =PA .(2)①解:补全图形,如图3所示:②解:结论:BD=BP+AB.理由:如图3中,在BD上取一点E,使得BE=PB.∵∠EBP=60°,BE=BP,∴△EBP是等边三角形,由(1)可知:△PAD是等边三角形,∴∠BPE=∠APD=60°,∴∠APB=∠EPD,∵PB=PE,PA=PD,∴△BPA≌△EPD(SAS),∴AB=DE,∴BD=BE+ED=BP+AB.故答案为BD=BP+AB.(1)①如图1中,连接AC′,可证△ABC′是等边三角形,由PB=PC′,推出PA⊥BC′,可求∠BDP=∠BPD=30°,可得PB=PD,由“SAS”可证△ABD≌△ABP,可得AP=AD,由等边三角形的性质可求解;②如图2中,作∠BPE=60°交AB于点E,只要证明△PBD≌△PEA(ASA)即可解决问题;(2)①根据要求画出图形即可解决问题;②结论:BD=BP+AB.如图3中,在BD上取一点E,使得BE=PB.只要证明△BPA≌△EPD(SAS),即可解决问题.本题是几何变换综合题,考查等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.28.答案:(1)①1,3;②如图1中,设直线l交x轴,y轴于点P,Q,作OH⊥PQ于H,OH交⊙O于G.由题意:P(125b,0),Q(0,b),∴OP=125|b|,OQ=|b|,PQ=135|b|,∵S△POQ=12⋅OP⋅OQ=12⋅PQ⋅OH,∴OH=1213|b|,∵直线l:y=−512x+b与⊙O的“距离”d(l,⊙O)=3413,∴1213|b|−2=3413,∴b=±5.(2)4或0≤m≤4−2√2或4+2√2解析:解:(1)①如图1中,连接OB交⊙O于点E,设⊙O交y轴于点F.由题意:d(A,⊙O)=AF=2−1=1,∵B(4,3),∴OB=5,d(B,⊙O)=BE=OB−OE=5−2=3,故答案为1,3.②见答案.(2)如图2中,设AC交x轴于E.∵d(⊙M,△ABC)=1,∴当m=−4时,⊙M1满足条件,当m=0时,⊙M2满足条件,假设⊙M3满足条件,作M3H⊥AC,由题意HM3=HE=2,∴EM3=2√2,∴M3(4−2√2,0),∴m=4−2√2.观察图象可知:当0≤m≤4−2√2时,⊙M满足条件,假设⊙M4满足条件,作M4G⊥AC于G,由题意;GM4=GE=2,∴EM4=2√2,∴M4(4+2√2,0),∴m=4+2√2,综上所述,满足条件的m的值为−4或0≤m≤4−2√2或4+2√2.故答案为4或0≤m≤4−2√2或4+2√2.(1)①根据图形M,N间的“距离”的定义即可解决问题;x+b与⊙O的“距②设直线l交x轴,y轴于点P,Q,作OH⊥PQ于H,OH交⊙O于G.根据y=−512,构建方程即可解决问题;离”d(l,⊙O)=3413(2)如图2中,设AC交x轴于E.分四种情形分别求解即可解决问题;本题属于一次函数综合题,考查了点与圆的位置关系,直线与圆的位置关系,图形M,N间的“距离”的定义等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会利用特殊位置解决问题,属于中考压轴题.。
北京市丰台区2020年中考数学综合练习(一)一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×1083.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.308.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.19.解不等式组:.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.22.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为分;(3)请你估计该年级采用公共交通方式上学共有人,其中单程不少于60分钟的有人.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16000000用科学记数法表示为:1.6×107.故选:B.3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形【分析】首先可求得每个外角为60°,然后根据外角和为360°即可求得多边形的边数.【解答】解:180°﹣120°=60°,360°÷60°=6.故选:C.6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.30【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【解答】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:,解得:,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选:B.8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③【分析】根据题意在坐标系中画出对应的图象即可.【解答】解:如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误故选:C.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为x≥2.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.【分析】由质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,∴投掷这个骰子一次,则向上一面的数字是偶数的概率为:=.故答案为:.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是0(答案不唯一).【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【解答】解:若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是60°.【分析】根据垂径定理求出=,求出、、的度数,即可求出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得:y﹣x =4.5;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;组成方程组即可.【解答】解:根据题意得:;故答案为:.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.【分析】由△EDF∽△CBF,可得=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.AD=BC,设AD=3a,则AE=a,∵DE∥BC,∴△EDF∽△CBF,∴===故答案为.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为80元.【分析】分5种方案计算费用比较即可.【解答】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=80(元)方案④:买一日票1张,五日票1张:20+70=90(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=80(元)故答案为80.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为4.【分析】连接CD.根据直角三角形斜边中线的性质求出CD=A′B′=2,利用三角形的三边关系即可解决问题.【解答】解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,故答案为4.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行)(填推理依据).【分析】(1)根据要求作图即可;(2)根据等腰三角形的性质和平行线的判定及角平分线的定义求解可得.【解答】解:(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.【分析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣6×﹣1+2=1.19.解不等式组:.【分析】分别求得各不等式的解集,然后求得公共部分即可.【解答】解:由①得x≤2;由②得x>﹣1;故不等式组的解集为﹣1<x≤2.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先求出判别式△的值,再根据“△”的意义证明即可;(2)根据求根公式得出x1=3,x2=﹣m,即可求出m的值和方程的根.【解答】(1)证明:△=(m﹣3)2﹣4×1×(﹣3m),=m2﹣6m+9+12m,=(m+3)2,无论m取任何实数,(m+3)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m+3)2,由求根公式,得,,原方程的根为:x1=3,x2=﹣m,∵方程的两个根都是整数,∴取m=1,方程的两根为x1=3,x2=﹣1.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.【分析】(1)由角平分线的性质和垂直平分线的性质可证∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,由菱形的判定可证结论;(2)过点D作DH⊥BC,由菱形的性质可得DE=DG=6,DG∥EC,由直角三角形的性质可得BH=DH=3,HG=DH=3,即可求BG的长.【解答】解:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=6,DG∥EC∴∠ACB=∠DGB=30°,且DH⊥BC∴DH=3,HG=DH=3∵∠B=45°,DH⊥BC∴∠B=∠BDH=45°∴BH=DH=3∴BG=BH+HG=3+322.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.【分析】(1)由等腰三角形的性质可得∠BAP=∠BP A,可证∠BAP+∠P AO=90°,∠C+∠CPO=90°,结论得证;(2)作BD⊥AP于点D,先求出OB,OP的长,再求出CP长,根据△BPD∽△CPO,得出比例线段,求PD的长,则AP可求.【解答】(1)证明:∵AB=BP,∴∠BAP=∠BP A,∵AB与⊙O相切于点A,∴OA⊥BA,∴∠BAO=90°,即∠BAP+∠P AO=90°,∵OA=OC,∴∠P AO=∠C,∵∠BP A=∠CPO,∴∠C+∠CPO=90°,∴∠COP=90°,即CO⊥BO;(2)解:如图,作BD⊥AP于点D,在Rt△ABO中,AB=3,OA=4,则BO=5,OP=2,在Rt△CPO中,PO=2,CO=4,则CP=2,∵BA=BP,∴AD=PD,由(1)知∠COP=90°,∵∠BDP=90°,∠BPD=∠CPO,∴△BPD∽△CPO,∴,即,∴PD=,∴AP=2PD=.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.【分析】(1)由点A的横坐标利用反比例函数图象上点的坐标特征可求出n值,进而可得出点A的坐标,由点A的坐标利用待定系数法可求出k值;(2)分AB=AO,OA=OB,BO=BA三种情况考虑:①当AB=AO时,利用等腰三角形的性质可求出CB1的长度,结合点C的坐标可得出点B1的坐标;②当OA=OB时,由点A的坐标利用勾股定理可求出OA的长度,利用等腰三角形的性质可得出OB2的长度,进而可得出点B2的坐标;③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中利用勾股定理可得出关于m的方程,解之即可得出点B3的坐标.综上,此题得解.【解答】解:(1)∵点A(2,n)在双曲线y=上,∴n==4,∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得:k=2.(2)分三种情况考虑,过点A作AC⊥y轴于点C,如图所示.①当AB=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB时,∵点A的坐标为(2,4),∴OC=4,AC=2,∴OA==2,∴OB2=2,∴点B2的坐标为(0,2);③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中,AB32=CB32+AC2,即m2=(4﹣m)2+22,解得:m=,∴点B3的坐标为(0,).综上所述:点B的坐标为(0,8),(0,2),(0,).24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为31分;(3)请你估计该年级采用公共交通方式上学共有200人,其中单程不少于60分钟的有8人.【分析】(1)用被抽查总人数乘以乘公共交通对应的百分比可得其人数,再减去其它分组的人数求出40≤x<50的人数,从而补全图形;(2)根据中位数的概念计算可得;(3)利用样本估计总体思想计算可得.【解答】解:(1)∵选择公共交通的人数为100×50%=50(人),∴40≤x<50的人数为50﹣(5+17+14+4+2)=8(人),补全直方图如下:(2)采用公共交通方式单程所花费时间共50个数据,其中位数是第25、26个数据的平均数,所以采用公共交通方式单程所花费时间的中位数是=31(分),故答案为:31;(3)估计该年级采用公共交通方式上学共有400×50%=200(人),其中单程不少于60分钟的有200×=8(人),故答案为:200、8.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质.【分析】(1)利用配方法得y═m(x﹣3)2+1,由此即可得出顶点坐标;(2)根据抛物线的对称轴以及AB=4,即可得到A、B两点的坐标,代入抛物线即可求出m的值;(3)结合图象即可得出当抛物线与线段CD和线段EF都没有公共点时m的取值范围.【解答】解:(1)∵y=mx2﹣6mx+9m+1=m(x﹣3)2+1,∴抛物线的顶点坐标为(3,1);(2)∵对称轴为直线x=3,且AB=4,∴A(1,0),B(5,0),将点A的坐标代入抛物线,可得:m=﹣;(3)如图:①当m>0时满足,解得:m>;②当m<时满足0,解得:m<﹣1;]综上,m<﹣1或m>.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△P AP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【解答】解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;(2)结论:BP+DP=AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠P AP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G,Rt△ABC中,AB=BC=,∴AC==2,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD=C'D=,OD=AC=1,∴C'G=﹣1,∴S△AC'C=AC•C'G==﹣1.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【考点】MR:圆的综合题.【专题】21:阅读型;23:新定义.【分析】(1)①找到x、y轴距离最大为3的点即可;②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行选择即可;(2)先求出C、D点坐标以及CD长度,分析出N点到坐标轴距离中最小距离为,从而确定r的最小值,根据CD长度确定r的最大值.【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②点B在直线y=x+6上,当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)∵T1(﹣1,t1)、T2(4,t2)是直线l上的两点,∴t1=﹣k﹣3,t=4k﹣3.∵k>0,∴|﹣k﹣3|=k+3>3,4k﹣3>﹣3.依据“等距点”定义可得:当﹣3<4k﹣3<4时,k+3=4,解得k=1;当4k﹣3≥4时,k+3=4k﹣3,解得k=2.综上所述,k的值为1或2.②∵k=1,∴y=x﹣3与坐标轴交点C(0,﹣3)、D(3,0),线段CD=3.N点在CD上,则N点到x、y轴的距离最大值中最小数为,若半径为r的⊙O上存在一点M与N是“等距点”,则r最小值为,r的最大值为CD长度3.所以r的取值范围为≤r≤3.故答案为E、F;(﹣3,3)。
2020年北京市中考数学一模试卷一、单选题(共0分)1.(本题0分)某几何体从三个不同方向看到的形状图如图,则该几何体是( )A.圆锥B.圆柱C.球D.长方体2.(本题0分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×1063.(本题0分)如图所示,BE,CF是直线,OA,OD是射线,其中构成对顶角的是( )A.∠AOE与∠COD B.∠AOD与∠BODC.∠BOF与∠COE D.∠AOF与∠BOC4.(本题0分)下列轴对称图形中,对称轴最多的图形是()A.B.C.D.5.(本题0分)将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180°C.减少360°D.增加360°6.(本题0分)数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为2015cm的线段AB,则线段AB盖住的整点的个数为()A.2015 B.2014 C.2015或2014 D.2015或20167.(本题0分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A .16B .13C .12D .23 8.(本题0分)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(共0分)9.(本题0分)要使分式有意义,则x 的取值范围是 .10.(本题0分)已知关于 x 的一元二次方程20x k -+= 有两个相等的实数根,则 k 的值为_____.11.(本题0分)若a 是一个含有根号的无理数,且3<a <4.写出任意一个符合条件的值____. 12.(本题0分)对于两个实数,m n ,定义一种新运算,规定2m n m n =+☆,例如3523511=⨯+=☆,若2a b ☆且21b a =☆,则b a =__________.13.(本题0分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点(-1,3)且与y 轴垂直,则l 也会经过的点是_____(填A 、B 、C 或D )14.(本题0分)如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件__________.15.(本题0分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)16.(本题0分)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(共0分)17.(本题0分)计算:11()4523---︒18.(本题0分)解不等式组()324211122x x x x ⎧--≥⎪⎨-++≥⎪⎩①②. 19.(本题0分)不解方程组23532x y x y +=⎧⎨-=-⎩,求(2x+y)(2x-3y)+3x(2x+y)的值 20.(本题0分)等角转化;如图1,已知点A 是BC 外一点,连结AB 、AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面的推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = ( )又∵∠EAB +∠BAC +∠DAC =180°∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.21.(本题0分)如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:ABCD是矩形;(2)若AD=cos∠,求AC的长.22.(本题0分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表达式.(2)动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?23.(本题0分)如图,ABC 中,ACB 90∠=,D 为AB 上一点,以CD 为直径的O 交BC 于点,连接AE 交CD 于点,交O 于点F ,连接DF ,CAE ADF ∠∠=.()1判断AB 与O 的位置关系,并说明理由.()2若PF :PC 1=:2,AF 5=,求CP 的长.24.(本题0分)在平面直角坐标系中,直线l 1:y=﹣12x+4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y=x 于点C .(1)如图①,求出B 、C 两点的坐标; (2)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式.(3)如图②,在(2)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.25.(本题0分)学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?26.(本题0分)在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示); (2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.27.(本题0分)如图,在平面直角坐标系中,点A(4,0),B(0,3),以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC =90°.若第二象限内有一点P 1,2a ⎛⎫ ⎪⎝⎭,且△ABP 的面积与△ABC 的面积相等.(1)求直线AB 的函数表达式.(2)求a 的值.(3)在x轴上是否存在一点M,使△MAC为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.28.(本题0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为1-4,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK 绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.。
2024年北京市西城区中考数学一模试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的展开图,该几何体是()A.圆锥B.三棱柱C.三棱锥D.四棱锥2.(2分)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109 3.(2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.4.(2分)直尺和三角板如图摆放,若∠1=55°,则∠2的大小为()A.35°B.55°C.135°D.145°5.(2分)不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为()A.B.C.D.6.(2分)已知﹣2<a<﹣1,则下列结论正确的是()A.a<1<﹣a<2B.1<a<﹣a<2C.1<﹣a<2<a D.﹣a<1<a<2 7.(2分)若关于x的一元二次方程kx2+x﹣2=0有两个实数根,则实数k的取值范围是()A.k≤﹣B.k>﹣且k≠0C.k≥﹣且k≠0D.k≥﹣且k≠08.(2分)如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b(其中a<b).CD⊥AB 于点D,点E在边AB上,BE=BC.设CD=h,AD=m,BD=n,给出下面三个结论:①n2+h2<(m+n)2;②2h2>m2+n2;③AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围为.10.(2分)分解因式:x2y﹣12xy+36y=.11.(2分)方程=的解为.12.(2分)在平面直角坐标系xOy中,若函数y=(k≠0)的图象经过点(﹣1,8)和(2,n),则n的值为.13.(2分)如图,在▱ABCD中,点E在边AD上,BA,CE的延长线交于点F.若AF=1,AB=2,则=.14.(2分)如图,在⊙O的内接四边形ABCD中,点A是的中点,连接AC,若∠DAB =130°,则∠ACB=°.15.(2分)如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上,点O1,O2分别为两个正六边形的中心.则tan∠O2AC的值为.16.(2分)将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为,第37个空格所填入的数为.37…三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:|﹣|﹣()﹣1+2sin60°﹣.18.(5分)解不等式组:.19.(5分)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.20.(5分)如图,点E在▱ABCD的对角线DB的延长线上,AE=AD,AF⊥BD于点F,EG∥BC交AF的延长线于点G,连接DG.(1)求证:四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=,AB=4,求菱形AEGD的面积.21.(5分)某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5),B (﹣2,0),且与y轴交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<2时,对于x的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.23.(6分)某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8,8.8,8.9,9.4,9.4,9.4,9.6,9.6,9.6,9.8,10,10,10,10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n 根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的10颗山植中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为_______和;(3)估计这些山楂共能制作多少串冰糖葫芦.24.(6分)如图,AB为⊙O的直径,弦CD⊥AB于点H,⊙O的切线CE与BA的延长线交于点E,AF∥CE,AF与⊙O的交点为F.(1)求证:AF=CD;(2)若⊙O的半径为6,AH=2OH,求AE的长.25.(6分)如图,点O为边长为1的等边三角形ABC的外心.线段PQ经过点O,交边AB 于点P,交边AC于点Q.若AP=x,AQ=y1,S△APQ:S△ABC=y2,下表给出了x,y1,y2的一些数据(近似值精确到0.0001).x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.92940.51350.5 y20.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy中描出了部分点(x,y1),(x,y2).请补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象;(3)结合函数图象,解决下列问题:①当△APQ是等腰三角形时,y1关于x的函数图象上的对应点记为(a,b),请在x轴上标出横坐标为a的点;②当y2取最大值时,x的值为.26.(6分)在平面直角坐标系xOy中,点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上.设抛物线的对称轴为直线x=t.(1)若y1=3,求t的值;(2)若当t+1<m<t+2时,都有y1>y3>y2,求t的取值范围.27.(7分)在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点(不与点A,B重合),点E在射线AC上且满足AE=AD,过点D作直线BE的垂线交直线BC于点F,垂足为点G,直线BE交射线AM于点P.(1)如图1,若点D在线段AB上,当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP,AB的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,已知⊙O的半径为1,对于⊙O上的点P和平面内的直线l:y=ax给出如下定义:点P关于直线l的对称点记为P′,若射线OP上的点Q 满足OQ=PP′,则称点Q为点P关于直线l的“衍生点”.(1)当a=0时,已知⊙O上两点P1(,),P2(﹣,﹣),在点Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣)中,点P1关于直线l的“衍生点”是,点P2关于直线l的“衍生点”是;(2)P为⊙O上任意一点,直线y=x+m(m≠0)与x轴,y轴的交点分别为点A,B.若线段AB上存在点S,T,使得点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,直接写出m的取值范围;(3)当﹣1≤a≤1时,若过原点的直线s上存在线段MN,对于线段MN上任意一点R,都存在⊙O上的点P和直线l,使得点R是点P关于直线l的“衍生点”.将线段MN长度的最大值记为D(s),对于所有的直线s,直接写出D(s)的最小值.2024年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【解答】解:由题意可知,该几何体的底面是一个三角形,侧面由三个三角形组成,故该几何体是三棱锥.故选:C.【点评】本题考查棱柱的展开与折叠,掌握三棱锥展开图的特征是正确判断的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;B.该图是中心对称图形,不是轴对称图形,故本选项不合题意;C.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;D.该图既是中心对称图形也是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.4.【分析】求出∠3=90°﹣55°=35°,由平行线的性质推出∠3=∠4=35°,由邻补角的性质得到∠2=180°﹣35°=145°.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°,∵直尺的对边平行,∴∠3=∠4=35°,∴∠2=180°﹣35°=145°.故选:D.【点评】本题考查平行线的性质关键是由平行线的性质推出∠3=∠4=35°.5.【分析】列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红蓝红(红,红)(红,蓝)蓝(蓝,红)(蓝,蓝)共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为.故选:A.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.6.【分析】根据﹣2<a<﹣1,判断出﹣a的取值范围,进而推出a、﹣a的大小关系即可.【解答】解:∵﹣2<a<﹣1,∴1<﹣a<2,∴a<1<﹣a<2.故选:A.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是判断出﹣a的取值范围.7.【分析】根据一元二次方程kx2+x﹣2=0有两个实数根,构建不等式求解.【解答】解:由题意,Δ≥0且k≠0,∴1+8k≥0,∴k≥﹣,∴k≥﹣且k≠0.故选:C.【点评】考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.8.【分析】因为CD⊥AB,所以∠CDB=∠CDA=90°,由勾股定理得,n2+h2=a2,因为∠ACB=90°,由勾股定理得,(m+n)2=a2+b2,因为a2<a2+b2,所以n2+h2<(m+n)2,由射影定理得,h2=mn,所以2h2=2mn,因为a<b,a=,b=,则m>n,所以(m﹣n)2>0,可得m2+n2>2mn,所以m2+n2>2h2,方程x2+2ax﹣b2=0配方得(x+a)2﹣(a2+b2)=0,因为a2+b2=(m+n)2,可得(x+a)2=(m+n)2,解得x的值,因为BE=BC,BC=a,可得BE=a,因为AB=AD+BD=m+n,所以AE=m+n ﹣a,可得AE的长是否是关于x的方程x2+2ax﹣b2=0的一个实数根.【解答】解:∵CD⊥AB,∴∠CDB=∠CDA=90°,∴n2+h2=a2,∵∠ACB=90°,∴(m+n)2=a2+b2,∵a2<a2+b2,∴n2+h2<(m+n)2,故①符合题意,∵h2=mn,∴2h2=2mn,∵a<b,a=,b=,∴m>n,∴(m﹣n)2>0,即m2+n2>2mn,∴m2+n2>2h2,故②不符合题意,x2+2ax﹣b2=0,配方得,(x+a)2﹣(a2+b2)=0,∵a2+b2=(m+n)2,∴(x+a)2﹣(m+n)2=0,即(x+a)2=(m+n)2,∴x=m+n﹣a或x=﹣m﹣n﹣a,∵BE=BC,BC=a,∴BE=a,∵AB=AD+BD=m+n,∴AE=m+n﹣a,∴AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根x=m+n﹣a,故③符合题意,故选:B.【点评】本题考查了射影定理、勾股定理,关键是掌握射影定理的运用.二、填空题(共16分,每题2分)9.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2,故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.11.【分析】方程两边都乘(3x﹣1)(x﹣2)得出4(x﹣2)=3(3x﹣1),求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘(3x﹣1)(x﹣2),得4(x﹣2)=3(3x﹣1),4x﹣8=9x﹣3,4x﹣9x=﹣3+8,﹣5x=5,x=﹣1,检验:当x=﹣1时,(3x﹣1)(x﹣2)≠0,所以分式方程的解是x=﹣1.故答案为:x=﹣1.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】由点A的坐标,利用待定系数法可求出反比例函数解析式,再利用反比例函数图象上点的坐标特征,即可求出n的值.【解答】解:将点(﹣1,8)代入y=(k≠0)得:8=,解得:k=﹣8,∴反比例函数解析式为y=﹣当x=2时,y=﹣=﹣4,∴n的值为﹣4.故答案为:﹣4.【点评】本题考查了反比例函数图象上点的坐标特征以及待定系数法求反比例函数解析式,根据给定坐标,利用待定系数法求出反比例函数解析式是解题的关键.13.【分析】由平行四边形的性质得到AB∥CD,CD=AB=2,推出△FAE∽△CDE,得到=,而AF=1,于是得到=.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴△FAE∽△CDE,∴=,∵AF=1,∴=.故答案为:.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,推出=.14.【分析】根据圆内接四边形的性质求出∠DCB,再根据圆周角定理求出∠ACB.【解答】解:∵四边形ABCD为圆内接四边形,∴∠DAB+∠DCB=180°,∵∠DAB=130°,∴∠DCB=180°﹣130°=50°,∵点A是的中点,∴∠ACB=∠ACD=×50°=25°,故答案为:25.【点评】本题考查的是圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质是解题的关键.15.【分析】根据正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义进行计算即可.【解答】解:如图,连接O2C,过O2点作O2E⊥BC,垂足为E,设正六边形的边长为a,则O1A=O1B=O2C=a,在Rt△O2CE中,O2C=a,∠CO2E=30°,∴EC=O2C=a=BE,O2E=O2C=a,∴AE=2a+a=a,∴tan∠O2AC==.故答案为:.【点评】本题考查正多边形和圆,掌握正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义是正确解答的关键.16.【分析】根据第1个数是第2个数的倍数,第1个空格填入37,而37是质数,可知第2个空格所填入的数为1,根据前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,且前37个数的和是第37个数的倍数,即可得出结果.【解答】解:根据要求:第1个数是第2个数的倍数,第1个空格填入37,而37是质数,∴第2个空格所填入的数为1,∵前36个数的和是第37个数的倍数,∴前37个数的和是第37个数的倍数,∴前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,假设第37个数为x,则(37×19﹣x)一定能被x整除,∵x≠37,第2个空格所填入的数为1,∴x的值只能是19,故答案为:1,19.【点评】本题考查的是数字的变化规律,从题目中找出数字间的倍数关系是解题的关键.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】首先解出两个不等式的解集,再根据同小取小确定不等式组的解集.【解答】解:,解解不等式①,得:x<3,解不等式②,得:x≤7,∴原不等式组的解集为x<3.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1,∵x2﹣x﹣4=0,∴x2﹣x=4,∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)根据等腰三角形三线合一的性质得出EF=DF,再证△GEF和△ADF全等,得出GF=AF,于是根据对角线相等的四边形是平行四边形推出四边形AEGD是平行四边形,再根据一组邻边相等的平行四边形是菱形即可得出四边形AEGD是菱形;(2)分别求出AF、EF的长,即可得出对角线AG、ED的长,根据菱形的面积公式计算即可.【解答】(1)证明:∵AE=AD,AF⊥BD,∴EF=DF,∵四边形ABCD是平行四边形,∴AD∥BC,∵EG∥BC,∴AD∥EG,∴∠GEF=∠ADF,在△GEF和△ADF中,,∴△GEF≌△ADF(ASA),∴GF=AF,∵EF=DF,∴四边形AEGD是平行四边形,∵AE=AD,∴四边形AEGD是菱形;(2)解:∵AF⊥BD,AF=BF,∴△AFB是等腰直角三角形,∵AB=4,∴由勾股定理得,,∵tan∠AEF=,∴,即,∴EF=,∵四边形AEGD是菱形,∴AG=2AF=,ED=2EF=,∴菱形AEGD的面积.【点评】本题考查了菱形的判定与性质,平行四边形的性质,勾股定理,锐角三角函数,菱形的面积等,熟练掌握这些知识点是解题的关键.21.【分析】设购买象棋x套,若购买围棋2x套,可得40×2x+30x=1000,解得x=9,即可判断不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【解答】解:不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍,理由如下:设购买象棋x套,若购买围棋2x套,根据题意得:40×2x+30x=1000,解得x=9,∵x是整数,∴x=9不符合题意,∴不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意列出方程.22.【分析】(1)利用待定系数法求函数解析式,然后计算自变量为0时对应的函数值得到C点坐标;(2)先利用(1)中解析式计算x=2时,y=4,再把点(2,4)代入y=﹣3x+n中得到n=10,则利用一次函数的性质可判断当n≥10时满足条件.【解答】解:(1)根据题意得,解得,∴一次函数解析式为y=x+2,当x=0时,y=x+2=2,∴C(0,2);(2)当x=2时,y=x+2=4,把点(2,4)代入y=﹣3x+n得﹣6+n=4,解得n=10,∴当n≥10时,对于x<2的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值.【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数的性质.23.【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【解答】解:(1)根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以m=9.4;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以n=10.故答案为:9.4,10.(2)①根据题意可知甲同学的5个冰糖葫芦重量分布于9.1﹣9.2之间,乙同学的5个冰糖葫芦重量分布于8.8﹣9.4,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.②∵要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:[(9.3﹣9.48)2+(9.4﹣9.48)2+(9.5﹣9.48)2+(9.6﹣9.48)2+(9.6﹣9.48)2]×=0.0136,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:[(9.4﹣9.6)2+(9.5﹣9.6)2+(9.6﹣9.6)2+(9.6﹣9.6)2+(9.9﹣9.6)2]×=0.028,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:[(9.3﹣9.54)2+(9.4﹣9.54)2+(9.5﹣9.54)2+(9.6﹣9.54)2+(9.9﹣9.54)2]×=0.0424,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.故答案为:甲;9.3、9.6.(3)7.6千克=7600克,7600÷9.5=800(个),800÷5=160(串),答:能制作160串冰糖葫芦.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)连接AC、OC、BC,由切线的性质证明CE⊥OC,而AB为⊙O的直径,所以∠OCE=∠ACB=90°,可证明∠ACE=∠B,由AF∥CE,得∠CAF=∠ACE=∠B,则=,由垂径定理得=,则=,即可证明=,所以AF=CD;(2)由⊙O的半径为6,AH=2OH,得OC=OA=2OH+OH=6,求得OH=2,因为==cos∠COE,所以OE==18,则AE=12.【解答】(1)证明:连接AC、OC、BC,则OC=OA,∵CE与⊙O相切于点C,∴CE⊥OC,∵AB为⊙O的直径,∴∠OCE=∠ACB=90°,∴∠ACE+∠OCA=90°,∠B+∠OAC=90°,∵∠OCA=∠OAC,∴∠ACE=∠B,∵AF∥CE,∴∠CAF=∠ACE=∠B,∴=,∵CD⊥AB,∴=,∴=,∴=+=+=,∴AF=CD.(2)解:∵⊙O的半径为6,AH=2OH,∴OC=OA=2OH+OH=6,∴OH=2,∵∠OHC=∠OCE=90°,∴==cos∠COE,∴OE===18,∴AE=OE﹣OA=18﹣6=12,∴AE的长为12.【点评】此题重点考查圆周角定理、切线的性质定理、平行线的性质、垂径定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.【分析】(1)利用已知条件得到:当x=0.5时,点P为AB的中点,当y1=1时,此时点Q在点C处,由题意计算当x=0.5时的y1即可;(2)补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象即可;(3)①当△APQ是等腰三角形时,利用等边三角形的判定与性质解答即可求得a值,在x轴上描出横坐标为的点即可;②观察图象即可得出结论.【解答】(1)解:当x=0.5时,点P为AB的中点,∵点O为边长为1的等边三角形ABC的外心,∵y1=1,∴此时点Q在点C处,如图所示:∵△ABC为等边三角形,点P为AB的中点,点Q在点C处,∴∴y2=S△APQ:S△ABC=0.5,填报如下:x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.52940.51350.5 y20.50.46540.450.44470.44550.450.45710.46610.47650.48780.5(2)解:补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象如图所示:(3)解:①连接AO并延长交BC于点D,连接OB,如图,∵△ABC为等边三角形,点O为△ABC外心,∴∠OBD=∠BAD=30°,AD⊥BC,,OA=OB,∴,∴,∴.当△APQ是等腰三角形时,AP=AQ,∵∠PAQ=60°,∴△PAQ为等边三角形,∴∠APQ=60°,∴∠APQ=∠ABC,∴PQ∥BC,∴∠AOP=∠ADB=90°.∴,∴.∴,∴b=,在x轴上标出横坐标为a的点,如图所示:②根据函数图象可知,函数y2的最大值为0.5,此时x=0.5或x=1.故答案为:0.5或1.【点评】本题主要考查了还是的图象与性质,描点法画出函数的图象,等边三角形的性质,等边三角形的外心的性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,特殊角的三角函数值,熟练掌握等边三角形的性质和函数图象的画法是解题的关键.26.【分析】(1)把A点的坐标代入解析式求得b=2a,然后利用对称轴公式即可求得;(2)由题意可知点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t ﹣2),分两种情况讨论,得到关于t的不等式组,解不等式组从而求得t的取值范围.【解答】解:(1)∵点A(﹣2,3)在抛物线y=ax2+bx+3(a>0)上,∴3=4a﹣2b+3,∴b=2a,∴t=﹣=﹣1;(2)∵a>0,∴抛物线y=ax2+bx+3(a>0)开口向上,当x>t时,y随x的增大而增大,∵当t+1<m<t+2时,都有y1>y3>y2,∴点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,∵点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上,∴点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t﹣2),当t≥2时,则,解得2≤t≤3;当t<2时,则,解得1≤t<2,故1≤t≤3.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.27.【分析】(1)根据等腰直角三角形的性质证明∠AEP=∠APE=67.5°,进而可以解决问题;(2)结合(1)即可补全图形,作CQ∥AP交BE于点Q,证明△BDF≌△CEQ(ASA),得BF=CQ,再根据等腰直角三角形的性质即可解决问题.【解答】解:(1)在△ABC中,∵∠ABC=∠ACB=45°,∴AB=AC,∠BAC=90°,∴∠ABE+∠AEB=90°,∵AM⊥BC,∴∠MAC=BAC=45°,BM=CM,∵AP=AE,∴∠AEP=∠APE=(180°﹣∠MAC)=(180°﹣45°)=67.5°,∵DF⊥BE,∴∠ABE+∠BDF=90°,∴∠BDF=∠AEP=67.5°;(2)如图,即为补全的图形,线段CF,MP,AB的数量关系为:CF=2MP+AB,证明:如图2,作CQ∥AP交BE于点Q,∵CO∥AP,BM=CM,∴==,∴CQ=2MP,∵AM⊥BC,∴∠AMC=90°,∵CQ∥AP,∴∠BCQ=∠AMC=90°,∴∠QCE=180°﹣∠ACB﹣∠BCQ=45°,∵∠DBF=∠ABC=45°,∴∠DBF=∠QCE,∵DG⊥BE,∴∠DGB=∠BAC=90°,∵∠DBG=∠ABE,∴∠D=∠E,∵AD=AE,AB=AC,∴AD﹣AB=AE﹣AC,∴BD=CE,∴△BDF≌△CEQ(ASA),∴BF=CQ,∵CF=BF+BC,BC=AB,∴CF=CQ+√AB=2MP+AB.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,平行线分线段成比例定理,解决本题的关键是得到△BDF≌△CEQ.28.【分析】(1)a=0,则直线l为x轴,据此求出P1,P2的对称点P1′,P2′,然后可以求出P1P1′和P2P2′的长度,用勾股定理求出Q1,Q2,Q3,Q4到原点的距离,判断是否符合新定义即可;(2)因为直线y=ax过圆心O,所以P′也在圆上,所以PP′不大于圆的直径,因为存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,所以线段AB上存在到O的距离不小于2的点,也存在不大于2的点,据此解答;(3)根据P所在位置分类讨论,得出PP′的取值范围,从而根据新定理求出MN的长度的最大值,从而得解.【解答】解:(1)当a=0时,直线l为y=0,即x轴,∵P1(,),P2(﹣,﹣),∴P1′(,﹣),P2′(﹣,),∴P1P1′=,P2P2′=,∵Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣),∴OQ1=,OQ2=,OQ3=,OQ4=2,∴点P1关于直线l的“衍生点”是Q2,点P2关于直线l的“衍生点”是Q3;故答案为:Q2,Q3;(2)∵直线l:y=ax过圆心O,∴P′也在⊙O上,∴PP′≤2,∵存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,∴线段AB上存在到O的距离不小于2的点,也存在不大于2的点,令x=0,则y=m,令y=0,则x=﹣m,∴A(﹣m,0),B(0,m),当OA=OB=2时,线段AB上所有点到O的距离都不大于2,此时,m=±2,又∵y=ax不能是y轴,∴(1,0)和(﹣1,0)不能同时是P和P′,∴m=±2符合题意;当O到线段AB的距离是2时,∵OA=OB,OA⊥OB,∴△AOB是等腰直角三角形,∴OA=2,∴m=±2,∴要满足线段AB上存在到O的距离不小于2的点,也存在不大于2的点,需要满足:﹣2≤m≤﹣2或2≤m≤2,∴﹣2≤m≤﹣2或2≤m≤2;(3)∵﹣1≤a≤1,∴在图中作直线y=x和直线y=﹣x,将⊙O分成四份,如图:①当P在或上时,当P,P′重合时,PP′=0,当PP′为直径时,PP′=2,∴0≤PP′≤2,∴D(s)=2,②当P在或上时,当PP′为直径时,PP′=2,当P在y轴上时,直线l为y=x或y=﹣x时,PP′取最小值,此时,PP′=,∴≤PP′≤2,∴D(s)=2﹣,综上所述,D(s)的最小值为2﹣.【点评】本题主要考查了圆的综合题,结合一次函数的图象、轴对称的性质、勾股定理等知识点,充分理解新定义,是本题解题的关键。
2020年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有______;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2020年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.。
2020年中考数学一模试卷一、选择题(共8小题)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×1062.下列图形中,是轴对称图形的是()A.B.C.D.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.44.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C .D .6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣37.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.18.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是元.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.18.解不等式组.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是,公民科学素质水平增速最快的城市是.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.22.已知:△ABC为等边三角形.(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.①根据题意,将(1)中图形补全;②求证:EF∥BC;③若DE=2,求EF的长.23.如图,四边形ABCD为矩形,点E为边AB上一点,连接DE并延长,交CB的延长线于点P,连接PA,∠DPA=2∠DPC.求证:DE=2PA.24.已知:在平面直角坐标系xOy中,对于任意的实数a(a≠0),直线y=ax+a﹣2都经过平面内一个定点A.(1)求点A的坐标;(2)反比例函数y=的图象与直线y=ax+a﹣2交于点A和另外一点P(m,n).①求b的值;②当n>﹣2时,求m的取值范围.25.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如表所示:x1=AP012345θ=∠QMPα85°130°180°145°130°小芸同学在读书时,发现了另外一个函数:对于自变量x2在﹣2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1)表格中α的值为.(2)如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.26.在平面直角坐标系xOy中,存在抛物线y=x2+2x+m+1以及两点A(m,m+1)和B(m,m+3).(1)求该抛物线的顶点坐标;(用含m的代数式表示)(2)若该抛物线经过点A(m,m+1),求此抛物线的表达式;(3)若该抛物线与线段AB有公共点,结合图象,求m的取值范围.27.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M 为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.28.如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.参考答案一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:将200000用科学记数法表示应为2×105,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.4【分析】由题意得出2≤a<2.5,根据2﹣a的取值范围,即可得到结果.解:根据表示实数a的点的位置可得,2≤a<2.5,∵﹣0.5<2﹣a≤0,∴2﹣a的值可以为0,故选:C.【点评】本题考查了实数与数轴,正确的理解题意是解题的关键.4.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多【分析】根据三角形的三边关系和四边形的不稳定性即可得到结论.解:以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出无限多个四边形,故选:D.【点评】本题考查了三角形的三边关系,四边形的性质,熟练掌握四边形的不稳定性是解题的关键.5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C.D.【分析】依题意,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,则两者之间是正比例函数.解:把一个实心铁块缓慢浸入这个容器的水中,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,即y是x的正比例函数.自变量x的取值范围是0≤x≤3.故选:A.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+a=1,整体代入计算可得.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.7.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.1【分析】利用x=﹣1时,y<2和当x=2时,y>3得到a的范围,然后对各选项进行判断.解:∵x=﹣1时,y<2,即a<2;当x=2时,y>3,即4a>3,解得a >,所以<a<2.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.8.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④【分析】根据概率公式、样本估计总体思想的运用、中位数和平均数的定义逐一判断可得.解:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率为=0.3,使用B支付方式的概率为=0.25,此推断合理;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有1000×=400(人),此推断合理;③样本中仅使用A种支付方式的同学,第15、16个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数无法估计,此推断不正确.故推断正确的有①②③,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握熟练概率公式、样本估计总体思想的运用、中位数和平均数的定义.二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如0℃可以表示温度正负分界等(答案不唯一).【分析】根据数学中0表示数的意义解答即可.解:在实际中,数字“0”表示正负之间分界点,如:0℃可以表示温度正负分界等(答案不唯一).故答案为:0℃可以表示温度正负分界等(答案不唯一).【点评】此题考查了正数和负数的意义,熟练掌握既不是正数,也不是负数的0的意义是解本题的关键.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为540°.【分析】通过内角求出外角,利用多边形外角和360度,用360°除以外角度数即可求出这个正多边形的边数即可解答.解:∵正多边形的每个内角都相等,且为108°,∴其一个外角度数为180°﹣108°=72°,则这个正多边形的边数为360÷72=5,∴这个正多边形的内角和为108°×5=540°.故答案为:540°.【点评】本题主要考查了多边形的内角与外角公式,求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为4mn+m+n.【分析】直接利用多项式乘以多项式计算进而得出答案.解:∵(4m+1)(4n+1)=4K+1,∴16mn+4m+4n+1=4K+1,则4K=16mn+4m+4n,故K=4mn+m+n.故答案为:4mn+m+n.【点评】此题主要考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为1.【分析】根据线段的和差关系可求图2中小正方形ABCD的边长,再根据正方形面积公式即可求解.解:3﹣2=1,1×1=1.故图2中小正方形ABCD的面积为1.故答案为:1.【点评】考查了勾股定理的证明,全等图形,关键是求出图2中小正方形ABCD的边长.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙.【分析】分别计算平均数和方差后比较即可得到答案.解:甲的平均数为:(36.1×5+36.4×5+36.5×5+36.8×5)=36.45;乙的平均数为:(36.1×6+36.4×4+36.5×4+36.8×6)=36.45;丙的平均数为:(36.1×4+36.4×6+36.5×6+36.8×4)=36.45;甲的方差为:[5×(36.1﹣36.45)2+5×(36.4﹣36.45)2+5×(36.5﹣36.45)2+5×(36.8﹣36.45)2]=0.0625;乙的方差为:[6×(36.1﹣36.45)2+4×(36.4﹣36.45)2+4×(36.5﹣36.45)2+6×(36.8﹣36.45)2]=0.0745;丙的方差为:[4×(36.1﹣36.45)2+6×(36.4﹣36.45)2+6×(36.5﹣36.45)2+4×(36.8﹣36.45)2]=0.064;∵0.064<0.625<0.0745,∴在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙,故答案为:丙.【点评】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为2.【分析】证出BE=2AE,∠CBD=∠C'BD=∠EDB=30°,得出DE=BE=2AE,求出AE=1,得出DE=2即可.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC=3,AD∥BC,∴∠CBD=∠EDB,由折叠的性质得:∠CBD=∠C'BD,∵∠ABE=30°,∴BE=2AE,∠CBD=∠C'BD=∠EDB=30°,∴DE=BE=2AE,∵AD=AE+DE=3,∴AE+2AE=3,∴AE=1,∴DE=2;故答案为:2.【点评】本题考查了翻折变换的性质、矩形的性质、含30°角的直角三角形的性质、等腰三角形的判定等知识;熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是98或77元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为整数的值).解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是①②③④.【分析】连接AC、BD,根据三角形中位线定理得到PQ∥AC,PQ=AC,MN∥AC,MN=AC,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.解:①当AC与BD不平行时,中点四边形MNPQ是平行四边形;故存在无数个中点四边形MNPQ是平行四边形;②当AC与BD相等且不平行时,中点四边形MNPQ是菱形;故存在无数个中点四边形MNPQ是菱形;③当AC与BD互相垂直(B,D不重合)时,中点四边形MNPQ是矩形;故存在无数个中点四边形MNPQ是矩形;④如图所示,当AC与BD相等且互相垂直时,中点四边形MNPQ是正方形.故存在两个中点四边形MNPQ是正方形.故答案为:①②③④.【点评】本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1=﹣1﹣2×+4=3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.18.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≥1,得:x≥1,解不等式3(x﹣2)>2﹣x,得:x>2,则不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.【分析】(1)分m﹣2=0和m﹣2≠0两种情况,其中m﹣2≠0时根据根的判别式求解可得;(2)在所求范围内取一m的值代入方程,再解之即可得.解:(1)∵关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根,∴①当m﹣2=0,即m=2;②当m﹣2≠0,即m≠2时,△=(﹣3)2﹣4×(m﹣2)×(﹣2)≥0,解得m≥且m≠2;综上,m≥;(2)取m=3,此时方程为x2﹣3x﹣2=0,利用公式法求解得:x=(答案不唯一).【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.【分析】(1)直接根据题意画出图形即可;(2)直接利用基本作图方法结合正方形的判定方法得出答案.解:(1)如图所示:(2)证明:∵直线l垂直平分AB,∴AC=BC,BD=AD,∠AOC=∠AOD=90°,在△AOC和△AOD中,∴△AOC≌△AOD(SAS),∴AC=BC=BD=AD,∴四边形ACBD是菱形,又∵OA=OB=OC=OD,∴∠CAD=45°+45°=90°,∴菱形ACBD为正方形.【点评】此题主要考查了基本作图以及正方形的判定,正确掌握正方形的判定方法是解题关键.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京,公民科学素质水平增速最快的城市是重庆.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为 6.2%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数少于女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.【分析】(1)利用统计图1中信息判断即可.(2)利用表格和图2信息,解决问题即可.(3)答案不唯一,说法合理即可.解:(1)由2015和2018年我国各直辖市公民科学素质发展状况统计图如图1得知,上海:22%﹣19%=3%,北京:21.5%﹣17.5%=4%,天津:14%﹣12%=2%,重庆:8%﹣4.5%=3.5%,故在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京;上海:3%÷19%≈16%,北京:4%÷21.5%≈19%,天津:2%÷12%≈17%,重庆:3.5%÷4.5%=78%,故公民科学素质水平增速最快的城市是重庆;故答案为:北京,重庆;(2)∵在2015年的调查样本中,男女公民的比例约为1:1,∴2015年我国公民的科学素质水平为(9.0%+3.4%)÷2=6.2%,设男性公民占x%,则有11.1%×x%+6.2%×(1﹣x%)=8.5%,解得x=47,∴男性公民人数少于女性公民人数,故答案为6.2,少于.(3)①能实现.理由如下:2015年我国公民的科学素质水平为6.2%,2018年我国公民的科学素质水平为8.5%,平均每年的增幅平均为0.77%,如果按照匀速增长的速度推断,2020年我国公民的科学素质水平达到10.3%,由此可知,“2020年我国公民科学素质提升到10%以上”的目标能够实现.②条件不足,无法判断.理由如下:一种情形同①,能实现目标.另一种情形,无法判断.因为不知道2018~2020年间我国公民的科学素质水平的增从速度是加快还是减缓,所以无法判断,2020年能否实现目标.。
2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
北京市2020年中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2020•北京)2的相反数是()A.2B.﹣2 C.﹣D.考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:B.点评:此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2020•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300 000=3×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2020•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥考点:由三视图判断几何体.分析:如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答:解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.点评:本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2020•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5考点:众数;加权平均数.分析:根据众数及平均数的概念求解.解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选A.点评:本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2020•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米考点:函数的图象.分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答:解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.点评:此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2020•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于圆O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2020•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.考点:动点问题的函数图象.分析:根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.解答:解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选A.点评:本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2020•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式进行分解即可.解答:解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).点评:此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2020•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.考点:相似三角形的应用.分析:根据同时同地物高与影长成正比列式计算即可得解.解答:解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.点评:本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2020•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y= (k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).考点:反比例函数图象上点的坐标特征.专题:开放型.分析:先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.解答:解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y= (k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)(2020•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2020的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.考点:规律型:点的坐标.分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.解答:解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=503余2,∴点A2020的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.点评:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2020•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2020•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2020•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母、去括号,移项、合并同类项,系数化成1即可求解.解答:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2020•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.考点:整式的混合运算—化简求值.分析:先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.解答:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.点评:此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2020•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.考点:根的判别式.专题:计算题.分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.解答:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2020•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2020•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2020•北京)根据某研究院公布的2020~2020年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2020~2020年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2020 3.882020 4.122020 4.352020 4.562020 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2020到2020年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2020年成年国民年人均阅读图书的数量约为5本;(3)2020年某小区倾向图书阅读的成年国民有990人,若该小区2020年与2020年成年国民的人数基本持平,估算2020年该小区成年国民阅读图书的总数量约为7500本.考点:扇形统计图;用样本估计总体;统计表.分析:(1)1直接减去个部分的百分数即可;(2)设从2020到2020年平均增长幅度为x,列方程求出x的值即可;(3)根据(2)的结果直接计算.解答:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2020到2020年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2020年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评:本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2020•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC 的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则OC⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2020•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.考点:相似三角形的判定与性质;勾股定理;解直角三角形.分析:根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2020•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2020•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.考点:四边形综合题.分析:(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.解答:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2020•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.点评:本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
2020年北京市朝阳区初三一模数学试卷一、单选题(共10小题)1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学计数法表示应为()A.B.C.D.2.实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是()A.与B.与C.与D.与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.4.下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.5.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A = 50º,则∠BCE的度数为()A.40ºB.50ºC.60ºD.130º6.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B两点均可直接到达,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m 7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示,设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是()A.=,<B.=,>C.<,<D.>,>8.如图,△内接于⊙,若⊙的半径为6,,则的长为()A.2πB.4πC.6πD.12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为()A.(–2,–4)B.(–1,–4)C.(–2,4)D.(–4,–1)10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CGB.线段AGC.线段AHD.线段CH二、填空题(共6小题)11.若二次根式有意义,则x的取值范围是____________.12.分解因式:____________.13.关于x的方程有两个不相等实数根,写出一个满足条件的k的值:k=____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.三、计算题(共1小题)17.计算:四、解答题(共12小题)18.已知,求的值.19.解不等式组并写出它的所有整数解.20.如图,E为AC上一点,EF∥AB交AF于点F,且AE = EF.求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2020年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF =∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.23.在平面直角坐标xOy中,直线与双曲线的一个交点为A(2,4),与y 轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线上,△OBP的面积为8,直接写出点P的坐标.24.如图,点D在⊙O上,过点D的切线交直径AB延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,,求BC的长.25.人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2020年底达到279.3万人,占户籍总人口的21.2%; 2020年底比2020年底增加17.4万人,占户籍总人口的22.3%;2020年底比2020年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2020年达到8.0516万张,2020年达到10.938万张,2020年达到12万张.根据以上材料回答下列问题:(1)到2020年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或统计图,将2020年––2020年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2020年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:,,,……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:-3=3;(3)请你再写两个实数,使它们具有上述等式的特征:-=;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy中,抛物线经过点(0,–3),(2,–3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x轴交点的坐标;(3)将(y≤0)的函数图象记为图象A,图象A关于x轴对称的图象记为图象B.已知一次函数y=mx+n,设点H是x轴上一动点,其横坐标为a,过点H作x轴的垂线,交图象A于点P,交图象B于点Q,交一次函数图象于点N.若只有当1<a<3时,点Q 在点N上方,点N在点P上方,直接写出n的值.28.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(,0),对于线段AB和x轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若,在点,,中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.答案部分1.考点:科学记数法和近似数、有效数字试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以264000=2.64 .故本题选C.答案:C2.考点:实数的相关概念试题解析:所以绝对值相等的两实数是a与d。
北京市丰台区中考数学一模试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为()A.189×106B.1.89×106C.18.9×107D.1.89×1082.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>bB.|b|<aC.﹣a<a D.﹣b<a3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是()A.北京林业大学B.北京体育大学C.北京大学D.中国人民大学4.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45 B.60 C.72 D.1445.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.义B.仁C.智D.信6.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2 B.﹣1 C.2 D.37.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm 时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为()A.3万元B.万元C.2.4万元D.2万元9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,﹣3)D.(2,﹣3)10.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率=(﹣1)×100%,下面有四个推断:①2016年下半年各月销售量均比2015年同月销售量增多②第四季度销售量占下半年销售量的七成以上③下半年月均销售量约为16万台④下半年月销售量的中位数不超过10万台其中合理的是()A.①②B.①④C.②③D.③④二、填空题(本题共18分,每小题3分)11.如果二次根式有意义,那么x的取值范围是.12.图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:.13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.1班2班3班4班班级节次第1节语文数学外语化学第2节数学政治物理语文第3节物理化学体育数学第4节外语语文政治体育14.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应.(只考虑小于90°的角度)的度数为15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为.16.在数学课上,老师提出如下问题:已知:线段a,b(如图1).求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.小姗的作法如下:如图2,(1)作线段BC=a;(2)作线段BC的垂直平分线MN交线段BC于点D;(3)在MN上截取线段DA=b,连接AB,AC.所以,△ABC就是所求作的等腰三角形.老师说:“小姗的作法正确”.请回答:得到△ABC是等腰三角形的依据是:.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:﹣(4﹣π)0+cos60°﹣|﹣3|.18.(5分)解不等式组:.19.(5分)如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.20.(5分)已知关于x的一元二次方程3x2﹣kx+k﹣4=0.(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k值,并求出此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,直线y=﹣3x+m与双曲线y=相交于点A(m,2).(1)求双曲线y=的表达式;(2)过动点P(n,0)且垂直于x轴的直线与直线y=﹣3x+m及双曲线y=的交点分别为B和C,当点B位于点C下方时,求出n的取值范围.22.(5分)课题学习:设计概率模拟实验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是.”小海、小东、小英分别设计了下列三个模拟实验:小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.23.(5分)如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.24.(5分)阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题:(1)补全折线统计图;(2)根据材料提供的信息,预估位于北京市五环之内新建商品住宅成交量占比约,你的预估理由是.25.(5分)如图,AB是⊙O的直径,C,D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD,CB.若AD=CD=a,写出求四边形ABCD面积的思路.26.(5分)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+)(x>0).【探索研究】小彬借鉴以前研究函数的经验,先探索函数y=x+的图象性质.(1)结合问题情境,函数y=x+的自变量x的取值范围是x>0,如表是y与x的几组对应值.x … 1 2 3 m …y …432 2 234…①写出m的值;②画出该函数图象,结合图象,得出当x= 时,y有最小值,y最小= ;【解决问题】(2)直接写出“问题情境”中问题的结论.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+2m﹣1(m≠0)与平行于x轴的一条直线交于A,B两点.(1)求抛物线的对称轴;(2)如果点A的坐标是(﹣1,﹣2),求点B的坐标;(3)抛物线的对称轴交直线AB于点C,如果直线AB与y轴交点的纵坐标为﹣1,且抛物线顶点D到点C的距离大于2,求m的取值范围.28.(7分)在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的两个动点(不与点B,C,D重合),且AE⊥EF.(1)如图1,当BE=2时,求FC的长;(2)延长EF交正方形ABCD外角平分线CP于点P.①依题意将图2补全;②小京通过观察、实验提出猜想:在点E运动的过程中,始终有AE=PE.小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB上截取AG=EC,连接EG,要证AE=PE,需证△AGE≌△ECP.想法2:作点A关于BC的对称点H,连接BH,CH,EH.要证AE=PE,需证△EHP为等腰三角形.想法3:将线段BE绕点B顺时针旋转90°,得到线段BM,连接CM,EM,要证AE=PE,需证四边形MCPE为平行四边形.请你参考上面的想法,帮助小京证明AE=PE.(一种方法即可)29.(8分)在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.北京市丰台区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为()A.189×106B.1.89×106C.18.9×107D.1.89×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:189 000 000=1.89×108.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>bB.|b|<aC.﹣a<a D.﹣b<a【考点】29:实数与数轴.【分析】根据数轴上点的位置,利用相反数,绝对值的性质判断即可.【解答】解:根据数轴上点的位置得:a=﹣2,1<b<2,则|a|=2>b,|b|>a,﹣a>a,﹣b>a,故选A【点评】此题考查了实数与数轴,相反数,绝对值,熟练掌握各自的性质是解本题的关键.3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是()A.北京林业大学B.北京体育大学C.北京大学D.中国人民大学【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45 B.60 C.72 D.144【考点】R3:旋转对称图形.【分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【解答】解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.5.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.义B.仁C.智D.信【考点】I8:专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中“礼”字对面的字是义.故选:A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2 B.﹣1 C.2 D.3【考点】6D:分式的化简求值.【分析】先把括号内通分,再把分子分解后约分得到原式=m2+2m,然后利用m2+2m﹣2=0进行整体代入计算.【解答】解:原式=•=•=m(m+2)=m2+2m,∵m2+2m﹣2=0,∴m2+2m=2,∴原式=2.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.7.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm 时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【考点】SA:相似三角形的应用.【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.【点评】本题考查的是相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了数形转化思想的应用.8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为()A.3万元B.万元C.2.4万元D.2万元【考点】VB:扇形统计图.【分析】利用总开支乘以对应的比例即可求解.【解答】解:6×=2(万).故选D.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,﹣3)D.(2,﹣3)【考点】D3:坐标确定位置.【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(3,﹣2).故选B.【点评】本题主要考查了点的坐标.点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.10.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率=(﹣1)×100%,下面有四个推断:①2016年下半年各月销售量均比2015年同月销售量增多②第四季度销售量占下半年销售量的七成以上③下半年月均销售量约为16万台④下半年月销售量的中位数不超过10万台其中合理的是()A.①②B.①④C.②③D.③④【考点】VD:折线统计图;VC:条形统计图;W4:中位数.【分析】①根据题意求得7月的同比增长率是﹣2.3%,于是得到2016年7月销售量比2015年同月销售量减小;②通过计算即可得到结果;③列式计算即可得到结果;④根据中位数的定义即可得到结论.【解答】解:①∵7月的同比增长率是﹣2.3%,∴2016年7月销售量比2015年同月销售量减小;故①错误;②∵≈0.73,∴第四季度销售量占下半年销售量的七成以上,故②正确;③∵(8+9.3+9.8+13.4+19.7+36)≈16万台,故③正确;④下半年月销售量的中位数=≈11.1万台>10万台,故④错误;故选C.【点评】本题考查了折线统计图,条形统计图,中位数的定义,正确的识别图形是解题的关键.二、填空题(本题共18分,每小题3分)11.如果二次根式有意义,那么x的取值范围是x≥﹣4 .【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+4≥0,解得,x≥﹣4,故答案为:x≥﹣4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.12.图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:(m+n)(a+b+c)=ma+mb+mc+na+nb+nc .【考点】4B:多项式乘多项式.【分析】根据图中,从两个角度计算面积即可得出答案.【解答】解:(m+n)(a+b+c)=ma+mb+mc+na+nb+nc;故答案:(m+n)(a+b+c)=ma+mb+mc+na+nb+nc(答案不唯一)【点评】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.1班2班3班4班班级节次第1节语文数学外语化学第2节数学政治物理语文第3节物理化学体育数学第4节外语语文政治体育【考点】X2:可能性的大小.【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午九年级的课表中听一节课有16种等可能结果,其中听数学课的有3种可能,∴听数学课的可能性是,故答案为:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【考点】M1:圆的认识.【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA 的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为28x﹣20(x+13)=20 .【考点】89:由实际问题抽象出一元一次方程.【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【解答】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.故答案为:28x﹣20(x+13)=20.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题关键.16.在数学课上,老师提出如下问题:已知:线段a,b(如图1).求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.小姗的作法如下:如图2,(1)作线段BC=a;(2)作线段BC的垂直平分线MN交线段BC于点D;(3)在MN上截取线段DA=b,连接AB,AC.所以,△ABC就是所求作的等腰三角形.老师说:“小姗的作法正确”.请回答:得到△ABC是等腰三角形的依据是:垂直平分线上的点到线段两个端点距离相等;有两条边相等的三角形是等腰三角形.【考点】N3:作图—复杂作图;KG:线段垂直平分线的性质;KJ:等腰三角形的判定与性质.【分析】利用垂直平分线的性质得到AB=CB,从而可判断△ABC为满足条件的等腰三角形.【解答】解:由作法得MN垂直平分BC,则AB=AC.故答案为垂直平分线上的点到线段两个端点距离相等;有两条边相等的三角形是等腰三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:﹣(4﹣π)0+cos60°﹣|﹣3|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方和开方,然后从左向右依次计算,求出算式﹣(4﹣π)0+cos60°﹣|﹣3|的值是多少即可.【解答】解:﹣(4﹣π)0+cos60°﹣|﹣3|==【点评】此题主要考查了实数的运算,零指数幂以及特殊角的三角函数值,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:解不等式①,得x>2.解不等式②,得x≥3.∴原不等式组的解集是x≥3.【点评】此题考查了不等式组的解法,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.【考点】LD:矩形的判定与性质.【分析】先证明四边形ABCF是平行四边形.再证出四边形ABCF是矩形.得出∠AFC=90°,得出∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.由等腰三角形的性质得出∠EAG=∠EGA.由对顶角相等得出∠DAF=∠CGF.证出∠D=∠ECD.即可得出结论.【解答】证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.∴∠AFC=90°,∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.∵EA=EG,∴∠EAG=∠EGA.∵∠EGA=∠CGF,∴∠DAF=∠CGF.∴∠D=∠ECD.∴ED=EC.【点评】本题考查了矩形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、对顶角相等的性质;熟练掌握矩形的判定与性质是解决问题的关键.20.已知关于x的一元二次方程3x2﹣kx+k﹣4=0.(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k值,并求出此时方程的根.【考点】AA:根的判别式.【分析】(1)先求出△的值,再根据根的判别式即可得出方程根的情况;(2)根据方程有整数根,可知△是完全平方数,利用求根公式选择k=4(答案不唯一),求出方程的根即可.【解答】解:(1)∵△=(﹣k)2﹣12(k﹣4)=k2﹣12k+48=(k﹣6)2+12>0,∴方程有两个不等的实数根;(2)当k=4时,△=16,方程化为3x2﹣4x=0,解得x1=0,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解法.21.如图,在平面直角坐标系xOy中,直线y=﹣3x+m与双曲线y=相交于点A(m,2).(1)求双曲线y=的表达式;。
2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数一.选择题1.(2020•海淀区一模)将抛物线y=2x2向下平移3个单位长度所得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2D.y=2(x+3)2 2.(2019•房山区二模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15mB.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4sD.小球飞出1s时的飞行高度为10m3.(2019•通州区三模)四位同学在研究二次函数y=ax2+bx+3(a≠0)时,甲同学发现函数图象的对称轴是直线x=1;乙同学发现3是一元二次方程ax2+bx+3=0(a≠0)的一个根;丙同学发现函数的最大值为4;丁同学发现当x=2时,y=5,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁4.(2019•怀柔区二模)在平面直角坐标系xOy中,四条抛物线如图所示,其表达式中的二次项系数绝对值最小的是()A.y1B.y2C.y3D.y4 5.(2019•道外区二模)将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1 6.(2019•大兴区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(1,2),(5,3),则下列说法正确的是()①抛物线与y轴有交点②若抛物线经过点(2,2),则抛物线的开口向上③抛物线的对称轴不可能是x=3④若抛物线的对称轴是x=4,则抛物线与x轴有交点A.①②③④B.①②③C.①③④D.②④7.(2019•丰台区模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定二.填空题8.(2020•朝阳区校级模拟)如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断:①四条抛物线的开口方向均向下;②当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小;③抛物线y1的顶点在抛物线y2顶点的上方;④抛物线y4与y轴的交点在点B的上方.所有正确结论的序号为.9.(2020•朝阳区校级模拟)已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作正方形ABCD.则正方形的边长AB的最小值是.10.(2020•西城区校级模拟)已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.11.(2020•海淀区校级一模)计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数y=x2(x﹣3)和y=x﹣3的图象如图所示.根据图象可知方程x2(x﹣3)=x﹣3的解的个数为;若m,n分别为方程x2(x﹣3)=1和x﹣3=1的解,则m,n的大小关系是.12.(2020•西城区校级模拟)如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.13.(2019•朝阳区模拟)在平面直角坐标系中xOy中,横、纵坐标都是整数的点叫做整点,记函数y=﹣x2+a(a>0)的图象在x轴上方的部分与x轴围成的区域(不含边界)为W.当a=2时,区域W内的整点个数为,若区域W内恰有7个整点,则a 的取值范围是.14.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.15.(2019•朝阳区模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则关于x的方程ax2+bx+c=0(a≠0)的解为.16.(2019•朝阳区模拟)请写出一个开口向下,并且与y轴交于点(0,2)的抛物线的解析式,y=.17.(2019•石景山区二模)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=﹣,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.三.解答题18.(2020•北京二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax(a≠0)与x轴交于点A,B(A在B的左侧).(1)求点A,B的坐标及抛物线的对称轴;(2)已知点P(2,2),Q(2+2a,5a),若抛物线与线段PQ有公共点,请结合函数图象,求a的取值范围.19.(2020•东城区二模)在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.20.(2020•海淀区二模)在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.21.(2020•门头沟区一模)在平面直角坐标系xOy中,一次函数y=﹣ax+3的图象与y 轴交于点A,与抛物线y=ax2﹣2ax﹣3a(a≠0)的对称轴交于点B,将点A向右平移5个单位得到点C,连接AB,AC得到的折线段记为图形G.(1)求出抛物线的对称轴和点C坐标;(2)①当a=﹣1时,直接写出抛物线y=ax2﹣2ax﹣3a与图形G的公共点个数.②如果抛物线y=ax2﹣2ax﹣3a与图形G有且只有一个公共点,求出a的取值范围.22.(2020•丰台区一模)已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.23.(2020•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求m的值;(2)若一次函数y=kx+5(k≠0)的图象经过点A,求k的值;(3)将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+5(k≠0)向上平移n个单位,当平移后的直线与图象G有公共点时,请结合图象直接写出n的取值范围.24.(2020•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.25.(2020•西城区校级模拟)定义:点Q到图形W上每一个点的距离的最小值称为点Q 到图形W的距离.例如,如图,正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果点G(0,b)(b<0)到抛物线y=x2的距离为3,请直接写出b的值.(2)求点M(3,0)到直线y=x+3的距离.(3)如果点N在直线x=2上运动,并且到直线y=x+4的距离为4,求N的坐标.参考答案一.选择题1.解:依题意,得平移后抛物线顶点坐标为(0,﹣3),由平移不改变二次项系数,故得到的抛物线解析式为:y=2x2﹣3.故选:B.2.解:A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选:C.3.解:对称轴是直线x=1时,b=﹣2a①;3是一元二次方程ax2+bx+3=0(a≠0)的一个根时,3a+b+1=0 ②;函数的最大值为4时,b2=﹣4a③;当x=2时,y=5时,2a+b﹣1=0 ④;当甲不对时,由②和④联立a=﹣2,b=5,不满足③,故不成立;当乙不对时,由①和③联立a=﹣1,b=2,不满足④,故不成立;当丙不对时,由②和④联立a=﹣2,b=5,不满足①,故不成立;当丁不对时,由①和③联立a=﹣1,b=2,成立;故选:D.4.解:由图象可知:抛物线y1的顶点为(1,0),与y轴的交点为(0,4),根据待定系数法求得y1=2(x ﹣1)2;抛物线y2的顶点为(1,0),与y轴的一个交点为(0,2),根据待定系数法求得y2=(x﹣1)2;抛物线y3的顶点为(1,0),与y轴的交点为(0,1),根据待定系数法求得y3=(x ﹣1)2;抛物线y4的顶点为(1,0),与y轴的交点为(0,﹣b)且﹣b<﹣4,根据待定系数法求得y4=﹣(x﹣1)2;综上,二次项系数绝对值最小的是y3故选:C.5.解:抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,那么所得新抛物线的表达式是y=(x+1)2﹣1.故选:D.6.解:①当x=0时,y=c,∴与y轴有交点;①正确;②抛物线经过(1,2),(2,2),(5,3),∴,∴a=,∴抛物线开口向上;∴②正确;③如果抛物线的对称轴x=3,(1,2)关于对称轴对称的点为(5,2),与经过点(5,3)矛盾,∴对称轴不能是x=3,∴③正确;④对称轴是x=4,∴﹣=4,∴b=﹣8a,将点(1,2),(5,3)代入得,,∴24a+4b=1,∴﹣8a=1,∴a=﹣,∴b=1,c=△=b2﹣4ac=64a2﹣4ac>0,∴抛物线与x轴有交点,∴④正确;故选:A.7.解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a(x﹣6)2+2.6过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.故选:C.二.填空题(共10小题)8.解:将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线y1的表达式为:y1=﹣x2+x+3,顶点(,);同理可得:y2=﹣x2+x+3,顶点坐标为:(,);y3=﹣x2+x+3,顶点坐标为(1,);y4=﹣x2+2x+6,与y轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x<0时,y3随x的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y1的顶点在抛物线y2顶点的下方,错误,不符合题意;④抛物线y4与y轴的交点(0,6)在B的上方,正确,符合题意.故答案为:①④.9.解:∵四边形ABCD是正方形,∴AB=AC,∵y=x2﹣4x+6=(x﹣2)2+2,∴当x=2时,AC有最小值2,即正方形的边长AB的最小值是.故答案为:.10.解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意,故答案为:4(答案不唯一).11.解:函数y=x2(x﹣3)的图象与函数y=x﹣3的图象有3个交点,则方程x2(x﹣3)=x﹣3的解有3个;方程x2(x﹣3)=1的解为函数图象与直线y=1的交点的横坐标,x﹣3=1的解为一次函数y=x﹣3与直线y=1的交点的横坐标,如图,由图象得m<n.故答案为3,m<n.12.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.13.解:(1)当a=2时,函数y=﹣x2+2,函数与坐标轴的交点坐标分别为(0,2),(﹣,0),(,0),函数y=﹣x2+2的图象在x轴上方的部分与x轴围成的区域中,整数点有(﹣1,1),(1,1),(0,2)在边界上,不符合题意,点(0,1)在W区域内.所以此时在区域W内的整数点有1个.(2)由(1)发现,当(0,2)是顶点时,在W区域内只有1个整数点,边界上有3个整数点;当a=3时,在W区域内有4个整数点(﹣1,1),(1,1),(0,2),(0,1),边界上有3个整数点(0,3),(﹣1,2),(1,2);当a=4时,在W区域内有7个整数点(﹣1,1),(1,1),(0,2),(0,1),(0,3),(﹣1,2),(1,2);所以区域W内恰有7个整点,3<a≤4.故本题答案是1;3<a≤4.14.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.15.解:抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),所以抛物线与x轴的一个交点坐标为(﹣3,0),即x=1或﹣3时,函数值y=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.16.解:函数解析式为y=﹣x2+2(答案不唯一).故答案为:﹣x2+2(答案不唯一).17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为:y=﹣(x﹣1)2+3,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:y=﹣(x+2)2+3(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3(﹣3≤x≤0);2.25.三.解答题(共8小题)18.解:(1)∵y=ax2﹣4ax=ax(x﹣4),∴y=0时,ax(x﹣4)=0,∴x=0或x=4,∴抛物线与x轴交于点A(0,0),B(4,0).∴抛物线y=ax2﹣4ax的对称轴为直线:.(2)y=ax2﹣4ax=a(x2﹣4x)=a(x﹣2)2﹣4a,∴抛物线的顶点坐标为(2,﹣4a).令y=5a,得ax2﹣4ax=5a,a(x﹣5)(x+1)=0,解得x=﹣1或x=5,∴当y=5a时,抛物线上两点M(﹣1,5a),N(5,5a).①当a>0时,抛物线开口向上,顶点位于x轴下方,且Q(2+2a,5a)位于点P的右侧,如图1,当点N位于点Q左侧时,抛物线与线段PQ有公共点,此时2+2a≥5,解得a.②当a<0时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点位于点P下方时,抛物线与线段PQ有公共点,此时﹣4a≤2,解得a.(ⅱ)如图3,当顶点位于点P上方,点M位于点Q右侧时,抛物线与线段PQ有公共点,此时2+2a≤﹣1,解得a.综上,a的取值范围是a≥或﹣a<0或a.19.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.20.解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,二次函数y=x2+2x+a的的顶点与图象F的顶点(﹣1,4)重合时,则4=1﹣2+a,解得a=5,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a<3或a=5.21.解:(1)∵抛物线y=ax2﹣2ax﹣3a(a≠0),∴对称轴x=﹣=1,∵一次函数y=﹣ax+3的图象与y轴交于点A,∴A(0,3),∵点A向右平移5个单位得到点C,∴C(5,3).(2)①如图1中,观察图象可知,抛物线与图象G的交点有3个,②∵抛物线的顶点(1,﹣4a),当a<0时,由①可知,a=﹣1时,抛物线经过A,B,∴当a<﹣1时,抛物线与图象G有且只有一个公共点,当抛物线的顶点在线段AC上时,如图2中,也满足条件,∴﹣4a=3,∴a=﹣,当a>0时,如图3中,抛物线经过点C时,25a﹣10a﹣3a=3,解得a=,抛物线经过点B时,﹣4a=﹣a+3,解得a=﹣(舍弃)不符合题意.观察图象可知a≥时,满足条件,综上所述,满足条件的a的取值范围:a<﹣1或a≥或a=﹣.22.解:(1)由题意可得:对称轴是直线x==1,故答案为:1;(2)当a>0时,∵对称轴为x=1,当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,∴3a﹣(﹣a)=4.∴a=1,∴二次函数的表达式为:y=x2﹣2x;当a<0时,同理可得y有最大值为﹣a;y有最小值为3a,∴﹣a﹣3a=4,∴a=﹣1,∴二次函数的表达式为:y=﹣x2+2x;综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;(3)∵a<0,对称轴为x=1,∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,∴t≥﹣1,t+1≤3,∴﹣1≤t≤2.23.解:(1)∵抛物线y=x2﹣2mx+m﹣4与y轴交于点C(0,﹣3),∴m﹣4=﹣3,∴m=1.(2)∵抛物线的解析式为y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,∵抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),∴A(﹣1,0),B(3,0),∵一次函数y=kx+5(k≠0)的图象经过点A,∴﹣k+5=0,∴k=5.(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),当点C落在直线y=5x+5+n上时,﹣3=﹣5n+5+n,解得n=2,当点B落在直线y=5x+5+n上时,0=5(3﹣n)+5+n解得n=5,观察图象可知,满足条件的n的取值范围为2≤n≤5.24.解:(1)∵抛物线y=ax2﹣3ax+a+1与y轴交于A,令x=0,得到y=a+1,∴A(0,a+1).(2)由抛物线y=ax2﹣3ax+a+1,可知x=﹣=,∴抛物线的对称轴x=.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(﹣2,y),∴y c=11a+1,①如图1中,当a>0时,y c>﹣a﹣2,∴点C在点M的上方,结合图象可知抛物线与线段MN没有公共点.②当a<0时,(a)如图2中,当抛物线经过点M时,y c=﹣a﹣2,∴a=﹣,结合图象可知抛物线与线段MN巧有一个公共点M.(b)当﹣<a<0时,观察图象可知抛物线与线段MN没有公共点.(c)如图3中,当a<﹣时,y c<﹣a﹣2,∴点C在点M的下方,结合图象可知抛物线与线段MN恰好有一个公共点,综上所述,满足条件的a的取值范围是a≤﹣.25.解:(1)①当G在原点下方时,b=﹣3,②当G在原点上方时,=3,整理得:x4+(1﹣2b)x2+b2﹣9=0,△=(1﹣2b)2﹣4(b2﹣9)=0,解得:b=(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN=BM=3,故点M(3,0)到直线y=x+3的距离为3;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN =HN=4,故x M=2﹣4,y M=x M+4=6﹣4=y N,故点N的坐标为:(2,6﹣4);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+4);综上,点N的坐标为:(2,6﹣4)或(2,6+4).。
中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 20192.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯B. 84.410⨯C. 94.410⨯D. 104.410⨯4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B.83C. 83-D.435.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 坐标为( )A. ()2,3-B. ()2,3--C. (2,3)-D. (3,2)--6.下列运算正确的是( ) A. 347a a a +=B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5B. 中位数是5C. 平均数是6D. 方差是3.68.如图,已知AB 是⊙O 的直径,BC 是弦,∠ABC=30°,过圆心O 作OD⊥BC,垂足为E ,交弧BC 于点D ,连接DC ,则∠DCB 的度数为()A. 30°B. 45°C. 50°D. 60°9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( ) A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+310.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 1211.如图,二次函数2y ax bx c=++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④12.如图,AB 为半圆O 直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1二、填空题13.分解因式:3249x xy -= __________.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 15.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.16.用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长20m ,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m 2.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A 处看图书馆楼顶B 处和楼底C 处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落边AB 上,连接BB ',则BB C ''∠=__________.三、解答题19.(1)计算201()(20)|32|2sin 602π︒----+(2)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足2220x x --= 20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整; (2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率. 21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F . (1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF4S EDF =△,求ED 的长;P.试(2)如图,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF CA判断四边形AEMF的形状,并证明你的结论.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.答案与解析一、选择题1.2019-的倒数是( ) A. 2019-B. 12019-C.12019D. 2019【答案】B 【解析】 【分析】直接利用倒数的定义进而得出答案. 【详解】∵2019-×(12019-)=1, ∴2019-的倒数12019-. 故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.【答案】C 【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形. 故选C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.我国倡导的“一带一路”将促进中国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( ) A. 84410⨯ B. 84.410⨯C. 94.410⨯D. 104.410⨯【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:将4400000000用科学记数法表示为:4.4×109. 故选:C .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( ) A. 43-B. 83C. 83-D.43【答案】D 【解析】【详解】解:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-, ∴1122x x x x -+=24(2)33---=.故选D .考点:根与系数的关系.5.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( ) A. ()2,3- B. ()2,3--C. (2,3)-D. (3,2)--【答案】B 【解析】 【分析】根据中心对称的性质解决问题即可. 【详解】由题意A ,B 关于O 中心对称, ∵A (2,3), ∴B (-2,-3), 故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.下列运算正确的是( ) A. 347a a a += B. 47(2)8a a =C. 824a a a ÷=D. 34722a a a ⋅=【答案】D 【解析】 【分析】根据同底数幂的乘法,可判断A ,根据积的乘方,可判断B ,根据同底数幂的除法,可判断C ,根据单项式乘单项式,可判断D .【详解】A 、不是同底数幂的乘法指数不能相减,故A 错误; B 、积的乘方等于乘方的积,故B 错误;C 、同底数幂的除法底数不变指数相减,故C 错误;D 、单项式乘单项式系数乘系数同底数的幂相乘,故D 正确; 故选:D .【点睛】此题考查同底数幂的除法,熟记法则并根据法则计算是解题关键.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A. 众数是5 B. 中位数是5C. 平均数是6D. 方差是3.6【答案】D 【解析】 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确; B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确; C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.8.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC,垂足为E,交弧BC于点D,连接DC,则∠DCB的度数为( )A. 30°B. 45°C. 50°D. 60°【答案】A【解析】【分析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.【详解】解:如图,∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=12∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.【点睛】本题主要考查了圆周角定理,圆心角、弧、弦的关系.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.9.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A. y=﹣5(x+1)2﹣1B. y=﹣5(x ﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x ﹣1)2+3 【答案】A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度, 所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.10.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为( )A. 8B. 9C. 10D. 12【答案】C【解析】 试题解析:∵四边形ABCD 是平行四边形, ∴AD BC P .又BF 、CE 分别是ABC ∠和DCB ∠的角平分线.∴ABF FBC ∠=∠,DCE ECB ∠=∠.又AD BC ∥,∴AFB FBC ABF ∠=∠=∠,ABF V 是等腰三角形,即6AF AB ==.同理可证CED V 是等腰三角形.∴6DE DC AB ===.又∵2EF =,∴4AE FD ==.∴42410AD AE EF FD =++=++=.∴10BC =.11.如图,二次函数2y ax bx c =++的图象过点()3,0A ,对称轴为直线1x =,给出以下结论:①0abc <;②240b ac ->;③2a b c ax bx c ++≥++:④若22121,(2,())M x y N x y ++、为函数图象上的两点,则12y y <.其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,a <0;∵抛物线的对称轴为直线x=-2b a=1>0, ∴b >0;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,故①正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故②正确;∵抛物线的对称轴是x=1,与x 轴的一个交点是(3,0),∴抛物线与x 轴的另个交点是(-1,0),∴当x=1时,y 最大,即a+b+c≥ax 2+bx+c ,故③正确;∵B (x 2+1,y 1)、C (x 2+2,y 2)在对称轴右侧,x 2+1<x 2+2,∴y 1>y 2,故④错误;【点睛】此题考查抛物线与x 轴的交点,熟知二次函数的图象与系数的关系、x 轴上点的坐标特点等知识是解题的关键.12.如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 1<S 3<S 2D. S 3<S 2<S 1【答案】B【解析】解:作OD ⊥BC 交BC 与点D ,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =260360R π=26R π.S 扇形BOC =221203603R R ππ=.在三角形OCD 中,∠OCD =30°,∴OD =2R,CD =32R ,BC 3R ,∴S △OBC =234R ,S 弓形=22334R R π-=(23312R π-,(2224333126R R R ππ->>∴S 2<S 1<S 3.故选B .二、填空题13.分解因式:3249x xy -= __________.【答案】x(2x+3y)(2x-3y)【解析】【分析】原式提取x,再利用平方差公式分解即可.【详解】解:原式=x(4x2-9y2)=x(2x+3y)(2x-3y),故答案为:x(2x+3y)(2x-3y)【点睛】此题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.14.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____【答案】8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.15.已知a、b满足(a﹣1)2=0,则a+b=_____.【答案】﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键. 16.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.【答案】112.5 【解析】【分析】设矩形的长为xm,则宽为302x-m,根据矩形的面积公式得出函数解析式,继而将其配方成顶点式,由x的取值范围结合函数性质可得最值.【详解】设矩形的长为xm,则宽为302x-m,菜园的面积S=x•302x-=-12x2+15x=-12(x-15)2+2252,(0<x≤20).∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=2252m2,故答案为2252.【点睛】本题主要考查二次函数的实际应用,根据题意列出函数解析式是解题的根本,由自变量x的取值范围结合二次函数的性质求函数解析式是解题的关键.17.如图,小玲家在某24层楼的顶楼,对面新建了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B 处和楼底C处的俯角分别是45,60︒︒∘,则两楼之间的距离是__________米.【答案】143)【解析】【分析】如图,延长CB交AM于点E,设AE=x.通过解Rt△ABE、Rt△ACE分别求得BE、CE的长度,然后结合图形中相关线段的和差关系列出关于x的方程,通过解方程求得x的值;【详解】如图,延长CB交AM于点E,设AE=x.由题意知,在Rt △ABE 中,∠EAB=45°,∴BE=AE=x .在Rt △ACE 中,∠EAC=60°,∴CE=3x , ∵CE-BE=28,∴3x-x=28,解得x=31-=14(3+1)(米),∴两楼间的距离约为14(3+1)米;故答案为:14(3+1).【点睛】此题考查解直角三角形的应用-仰角俯角问题.解题关键在于作辅助线.18.如图,把Rt ABC V 绕点A 逆时针旋转44︒,得到Rt A B C '''V 点C 恰好落在边AB 上,连接BB ',则BB C ''∠=__________.【答案】22°【解析】【分析】根据旋转性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【详解】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°-∠BAB′)=12(180°-44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°-∠ABB′=90°-68°=22°.故答案为:22°.【点睛】此题考查旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键. 三、解答题19.(1)计算201()(20)|2|2sin 602π︒---+ (2)先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足2220x x --=【答案】(1)3-24(2)21x x +,12. 【解析】【分析】(1)先分别根据0指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再根据x 满足x 2-2x-2=0得出x 2的表达式,代入原式进行计算即可.【详解】解:(1)原式=1344(2)原式=()22212)(211()1x x x x x x x x --+-÷++ =()2(2111()21)x x x x x x -+⨯+- =21x x +, ∵x 满足x 2-2x-2=0,∴x 2=2x+2,∴原式=()1=1221x x ++. 【点睛】此题考查分式的化简求值,实数的运算,熟知分式混合运算的法则, 0指数幂、绝对值的性质及特殊角的三角函数值是解题的关键.20.据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l 所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l 中关注“反腐”类问题的网民所占百分比x 的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.【答案】(1)x =20,补图见解析;(2)110. 【解析】【分析】(1)根据单位“1”,求出反腐占的百分比,得到x 的值;根据环保人数除以占的百分比得到总人数,求出教育与反腐及其他的人数,补全条形统计图即可;(2)画出树状图列出所有等可能结果,找到一次所选代表恰好是甲和乙的结果数,再利用概率公式求解可得.【详解】(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x =20,总人数为:140÷10%=1400(人) 关注教育问题网民的人数1400×25%=350(人), 关注反腐问题网民的人数1400×20%=280(人), 关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是甲和乙的有2种结果, 所以一次所选代表恰好是甲和乙的概率为212010. 【点睛】本题考查了条形统计图,扇形统计图及列表法与树状图法,解题的关键是读懂题意,从统计图上获得信息数据来解决问题.21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解. (2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x 元/件,则乙种玩具进价(40﹣x )元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,,解得20≤y <24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y 取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.22.如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x =>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.【答案】(1)1y x =+.()80y x x =>;(2)M 的坐标为(222,22-或()23,232. 【解析】 分析:(1)根据一次函数y=x+b 的图象经过点A (-2,0),可以求得b 的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于0.详解:(1)Q 一次函数的图象经过点()2,0A -,20b ∴-+=,2b ∴=,2y x ∴=+.Q 一次函数与反比例函数()0k y x x =>交于(),4B a . 24a ∴+=,2a ∴=,()2,4B ∴,()80y x x∴=>. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,以A ,O ,M ,N 为顶点的四边形为平行四边形.即:()822m m--=且0m >,解得:22m =或232m =+(负值已舍), M ∴的坐标为()222,22-或()23,232+.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.如图,ABC V 中,AB AC = ,以AB 为直径的O e 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F .(1)求证:EF 是O e 的切线;(2)若30F ∠=︒,3BF =,求劣弧AD 的长.【答案】(1)见解析;(2)2π.【解析】【分析】(1)根据圆周角定理求出AD ⊥BC ,得出AD 平分∠BAC ,即可推出OD ∥AC ,推出OD ⊥EF ,根据切线的判定推出即可.(2)由OD ⊥DF 得∠ODF=90°,利用含30度的直角三角形三边的关系OF=2OD ,即OB+3=2OD ,可解得OD=3,再计算出∠AOD=90°+∠F=120°,然后根据弧长公式求解.【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴劣弧AD的长度=1203180g g=2π.【点睛】此题考查切线性质与判断,弧长公式,解题关键在于掌握圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.如图,已知一个三角形纸片ACB ,其中90ACB ∠=︒,86AC BC E F ==,,、分别是AC AB 、边上的点,连接EF .(1)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF 4S EDF =△,求ED 的长;(2)如图,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF CA P .试判断四边形AEMF 的形状,并证明你的结论.【答案】(1)5(2)菱形,见解析;【解析】【分析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF =S △DEF ,则易得S △ABC =5S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到两个三角形面积比和AB ,AE 的关系,再利用勾股定理求出AB 即可得到AE 的长;(2)连结AM 交EF 于点O ,利用平行线的性质证明AE=EM=MF=AF ,即可判断四边形AEMF 为菱形;【详解】解:(1)∵△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =4S △EDF ,∴S △ABC =5S △AEF ,在Rt △ABC 中,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠EAF=∠BAC ,∴Rt△AEF∽Rt△ABC,∴2 AEFABCSAES AB⎛⎫= ⎪⎝⎭VV,即21105AE⎛⎫=⎪⎝⎭,∴AE=25,由折叠知,DE=AE=25(2)连结AM交EF于点O,如图2,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.【点睛】此题考查相似三角形的判定与性质,折叠的性质,菱形的判定,解题关键在于灵活构建相似三角形.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【答案】(1)y=﹣x2+2x+3;(2)存在,G(1,0);(3)2.【解析】【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E′,连接E′F交对称轴于G,此时EG+FG的值最小,先求E′F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式,过N作NH⊥x轴于H,交AB于Q,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6)(1<m<3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【详解】(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小.∵E(0,3),∴E'(2,3),设EF的解析式为y=k′x+b′,把F(0,﹣3),E'(2,3)分别代入,得332bk b''-=+'=⎧⎨⎩,解得33kb=⎧⎨=-''⎩,所以E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0);(3)如图2.设AB的解析式为y=k″x+b″,把A(1,4),B(3,0)分别代入,得403k b k b ''''''''=+⎧⎨=+⎩,解得26k b ''''=-⎧⎨=⎩, 所以AB 的解析式为:y =﹣2x+6,过N 作NH ⊥x 轴于H ,交AB 于Q ,设N(m ,﹣m 2+2m+3),则Q(m ,﹣2m+6),(1<m <3),∴NQ =(﹣m 2+2m+3)﹣(﹣2m+6)=﹣m 2+4m ﹣3,∵AD ∥NH ,∴∠DAB =∠NQM ,∵∠ADB =∠QMN =90°,∴△QMN ∽△ADB , ∴QN AB MN BD =,∴2m 4m 325MN -+-=, ∴MN 55=-(m ﹣2)255+. 55-Q <0, ∴当m =2时,MN 有最大值;过N 作NG ⊥y 轴于G ,∵∠GPN =∠ABD ,∠NGP =∠ADB =90°,∴△NGP ∽△ADB , ∴PG BD 21NG AD 42===,∴PG 12=NG 12=m , ∴OP =OG ﹣PG =﹣m 2+2m+312-m =﹣m 232+m+3, ∴S △PON 12=OP•GN 12=(﹣m 232+m+3)•m , 当m =2时,S △PON 12=⨯2(﹣4+3+3)=2.【点睛】本题考查是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.。
2023-2024学年北京市东城区中考数学模拟试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.据台州市统计局调查数据显示,截至2019年年底,全市汽车保有量达到了1752000辆.将1752000用科学记数法表示是()A. B. C. D.2.下列说法正确的是A.两个相等的角不可能互余B.一个角的余角一定比这个角大C.一个角的补角一定比这个角大D.一个锐角的补角一定比这个角的余角大3.如图,两条直线AB,CD交于点O,射线OM是的平分线,若,则等于()A. B. C. D.804.一个多边形的每个内角均为,则这个多边形是()A.七边形B.六边形C.五边形D.四边形5.如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为现以点A为圆心,以AB的长为半径画圆,所得圆和数轴交于点在A的右侧,则点E表示的数为()A. B. C. D.6.春回大地万物生,“微故宫”微信公众号设计了互动游戏,与大家携手走过有故宫猫陪伴的四季.游戏规则设计如下:每次在公众号对话框中回复【猫春图】,就可以随机抽取7款“猫春图”壁纸中的一款,抽取次数不限,假定平台设置每次发送每款图案的机会相同,小春随机抽取了两次,她两次都抽到“东风纸鸢”的概率是()A. B. C. D.7.估计的运算结果最接近的整数是()A.2B.3C.4D.58.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度米与水平距离米之间的关系式为,由此可知小宇此次实心球训练的成绩为()A.米B.8米C.10米D.2米二、填空题:本题共8小题,每小题3分,共24分。
9.若在实数范围内有意义,则实数x的取值范围是__________.10.中D、E、F是三边中点,若的面积是2,则的面积=__________.11.因式分解:__________.12.写出一个大于而小于的无理数:__________.13.若n为整数,且,则n的值为__________.14.在平面直角坐标系xOy中,点在反比例函数的图象上,则n的值为__________.15.如图,切于A,B两点.连接AB,连接OP交AB于点C,若,,则半径为__________,PA的长为__________.16.某公司生产一种营养品,每日购进所需食材500千克,制成A,B两种包装的营养品,并恰好全部用完.信息如下表:规格每包食材含量每包售价A包装1千克45元B包装千克12元已知生产的营养品当日全部售出.若A包装的数量不少于B包装的数量,则A为__________包时,每日所获总售价最大,最大总售价为__________元.三、计算题:本大题共2小题,共12分。
2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。
2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。
北京市中考数学模拟试卷一、选择题(本大题共8小题,共16.0分)1.如图是某几何体的三视图,该几何体是()A. 圆柱B. 圆椎C. 三棱柱D. 长方体【答案】D【解析】解:该几何体是长方体,故选:D.根据三视图可得到所求的几何体是柱体,可得几何体的名称.考查由三视图判断几何体;用到的知识点为:若三视图里有两个是长方形,那么该几何体是柱体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. 0.36×105B. 3.6×105C. 3.6×104D. 36×103【答案】C【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.如图,AB和CD相交于点O,则下列结论正确的是()A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故C错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.根据对顶角定义和外角的性质逐个判断即可.本题主要考查了对顶角的定义和外角的性质,能熟记对顶角的定义是解此题的关键.4.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.【答案】D【解析】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5.正五边形的外角和为()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.根据多边形的外角和等于360°,即可求解.本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.6.实数a在数轴上的对应点的位置如图所示,若实数b满足−a<b<a,则b的值可以是()A. 2B. −1C. −2D. −3【答案】B【解析】解:因为1<a<2,所以−2<−a<−1,因为−a<b<a,所以b只能是−1.故选:B.先判断b的范围,再确定符合条件的数即可.本题考查了数轴上的点和实数的对应关系.解决本题的关键是根据数轴上的点确定数的范围.7.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. 14B. 13C. 12D. 23【答案】C 【解析】【分析】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的结果与两次记录的数字之和为3的情况,再利用概率公式即可求得答案.【解答】解:列表如下:12123234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为24=12,故选:C.8.有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】解:设容器内的水面高度为h,注水时间为t,根据题意得:ℎ=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.根据题意可得容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系式,进而判断出相应函数类型.本题主要考查了一次函数的应用,观察图象提供的信息,再分析高度、时间和容积的关系即可找到解题关键.二、填空题(本大题共8小题,共16.0分)有意义,则实数x的取值范围是______.9.若代数式1x−7【答案】x≠7【解析】【分析】此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.直接利用分式有意义的条件分析得出答案.【解答】解:若代数式1有意义,x−7则x−7≠0,解得:x≠7.故答案为:x≠7.10.已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是______.【答案】1【解析】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴△=22−4×1×k=0,解得:k=1.故答案为:1.根据方程的系数结合根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出k值.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.写出比√2大且比√15小的整数______.【答案】2或3【解析】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3。
2020年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠43.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d|D.b+c>05.(3分)下列图形中,是轴对称图形但不是..中心对称图形的是()A.B. C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.187.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.38.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2020)》)根据统计图提供的信息,下列推理不合理...的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S =.四边形ABNM14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD=.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.16.(3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q 两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1﹣)0﹣+|﹣2|.18.(5分)解不等式组:.19.(5分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( + ). 易知,S △ADC =S △ABC , = , = . 可得S 矩形NFGD =S 矩形EBMF .21.(5分)关于x 的一元二次方程x 2﹣(k +3)x +2k +2=0. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22.(5分)如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD=2BC ,∠ABD=90°,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分∠BAD ,BC=1,求AC 的长.23.(5分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部平均中位众门数数数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)26.(5分)如图,P是所对弦AB上一动点,过点P作PM⊥AB交于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC 交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.29.(8分)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M 的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)(2020•北京)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:由题意,得点P到直线l的距离是线段PB的长度,故选:B.【点评】本题考查了点到直线的距离,利用点到直线的距离是解题关键.2.(3分)(2020•北京)若代数式有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠4【分析】根据分式有意义的条件即可求出x的范围;【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选(D)【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.3.(3分)(2020•北京)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.4.(3分)(2020•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d|D.b+c>0【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点评】本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.5.(3分)(2020•北京)下列图形中,是轴对称图形但不是..中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2020•北京)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【分析】根据多边形的内角和,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.【点评】本题考查了多边形的内角与外角,利用内角和公式是解题关键.7.(3分)(2020•北京)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.8.(3分)(2020•北京)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2020)》)根据统计图提供的信息,下列推理不合理...的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额2014年后有所下降,故逐年增长错误,故此选项错误,符合题意;C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,故选:B.【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.9.(3分)(2020•北京)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【分析】通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)(2020•北京)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的可能性是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选B.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.二、填空题(本题共18分,每题3分)11.(3分)(2020•北京)写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.(3分)(2020•北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=435元,②篮球的单价﹣足球的单价=3元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.(3分)(2020•北京)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=3.【分析】证明MN是△ABC的中位线,得出MN∥AB,且MN=AB,证出△CMN ∽△CAB,根据面积比等于相似比平方求出△CMN与△CAB的面积比,继而可得出△CMN的面积与四边形ABNM的面积比.最后求出结论.【解答】解:∵M,N分别是边AC,BC的中点,∴MN是△ABC的中位线,∴MN∥AB,且MN=AB,∴△CMN∽△CAB,∴=()2=,∴=,∴S 四边形ABNM =3S △CMN =3×1=3. 故答案为:3.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟练掌握三角形中位线定理,证明三角形相似是解决问题的关键.14.(3分)(2020•北京)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,=.若∠CAB=40°,则∠CAD= 25° .【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论. 【解答】解:如图,连接BC ,BD , ∵AB 为⊙O 的直径, ∴∠ACB=90°, ∵∠CAB=40°, ∴∠ABC=50°, ∵=,∴∠ABD=∠CBD=∠ABC=25°, ∴∠CAD=∠CBD=25°. 故答案为:25°.【点评】本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.15.(3分)(2020•北京)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.【分析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.【解答】解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.(3分)(2020•北京)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q 两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB 的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)(2020•北京)计算:4cos30°+(1﹣)0﹣+|﹣2|.【分析】首先利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=4×+1﹣2+2=2﹣2+3=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)(2020•北京)解不等式组:.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x<3;由②式得x<2,所以不等式组的解为x<2.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)(2020•北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D.求证:AD=BC.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.【解答】证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∠BDC=72°,∴∠A=∠ABD,∠BDC=∠C,∴AD=BD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.20.(5分)(2020•北京)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( S △AEF + S △FCM ). 易知,S △ADC =S △ABC , S △ANF = S △AEF , S △FGC = S △FMC . 可得S 矩形NFGD =S 矩形EBMF .【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【解答】证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( S △ANF +S △FCM ). 易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC , 可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC .【点评】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.21.(5分)(2020•北京)关于x 的一元二次方程x 2﹣(k +3)x +2k +2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k的取值范围.【分析】(1)根据方程的系数结合根的判别式,可得△=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.【点评】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次不等式.22.(5分)(2020•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△ACD中只要证明∠ADC=60°,AD=2即可解决问题;【解答】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB=,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC=.【点评】本题考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.23.(5分)(2020•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.【解答】解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.24.(5分)(2020•北京)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【分析】(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE==,由此求出AE即可解决问题.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.【点评】本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25.(5分)(2020•北京)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100。
2020年北京市数学中考一模试卷含答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D 2 5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 6.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .237.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .610.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1) 11.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,抛物线y=ax2+bx﹣2与x轴交于两点A(﹣1,0)和B(4,0),与Y轴交于点C,连接AC、BC、AB,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 24.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .△≌△;(1)证明:ADP CDP△的形状,并说明理由.(2)判断CEP(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接..写出线段AP与线段CE的数量关系.25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A .【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案.【详解】解:连接OA ,OB .∵∠APB =45°,∴∠AOB =2∠APB =90°.∵OA =OB =2,∴AB =22OA OB +=22.故选C .5.C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.7.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.D解析:D【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D11.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】 解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】 本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D 为AB 的中点∴DF=AB=25∵DE 为△ABC 的中位线∴DE=BC=4∴EF=DE -DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D 为AB 的中点,∴DF=12AB=2.5, ∵DE 为△ABC 的中位线,∴DE=12BC=4, ∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.4【解析】【分析】【详解】解:连接AC 交OB 于D∵四边形OABC 是菱形∴AC⊥OB∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:416.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.19.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形解析:4 3【解析】【分析】连接BD,根据中位线的性质得出EF//BD,且EF=12BD,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式. 三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=.22.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩,∴点D 的坐标为(2,2),(,2),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 ); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .∵EC=EB ,EF 2⊥BC 于点F 2,∴点F 2为线段BC 的中点,∴点F 2的坐标为(2,﹣1);∵BC=,∴CF 2=12 BC,EF 2=12 CF 2=2 ,F 2F 3=12 EF 2, ∴CF 3=4 . 设点F 3的坐标为(x ,12 x ﹣2), ∵CF 3=4,点C 的坐标为(0,﹣2), ∴x 2+[12x ﹣2﹣(﹣2)]2=12516, 解得:x 1=﹣52 (舍去),x 2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.23.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34AD x =. 在Rt △BCD 中,tan48° =BD CD, 则1110BD x=, ∴1110BD x = ∵AD +BD = AB , ∴31180410x x +=. 解得:x≈43. 答:小明家所在居民楼与大厦的距离CD 大约是43米.24.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF , ∵DE ∥BC ,∴∠EDB=∠DBF , ∴∠EBD=∠EDB , ∴BE=ED ,∴平行四边形BFDE 是菱形; (2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°,∵BD 平分∠ABC , ∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。
中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣2.(4.00分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083.(4.00分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b34.(4.00分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(4.00分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)6.(4.00分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a7.(4.00分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或18.(4.00分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(4.00分)▱ABCD中,E,F的对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF10.(4.00分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)不等式>1的解集是.12.(5.00分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.13.(5.00分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(5.00分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8.00分)计算:50﹣(﹣2)+×.16.(8.00分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8.00分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8.00分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10.00分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10.00分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12.00分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12.00分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14.00分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4.00分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4.00分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4.00分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(4.00分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.6.(4.00分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.7.(4.00分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或1【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(4.00分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2]进行计算即可.【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.【点评】此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.9.(4.00分)▱ABCD中,E,F的对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF 即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.10.(4.00分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.【点评】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.12.(5.00分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D 是AB的中点,则∠DOE=60°.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.【解答】解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.【点评】本题考查的是切线的性质、等边三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键13.(5.00分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出A,B点坐标是解题关键.14.(5.00分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.【点评】本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8.00分)计算:50﹣(﹣2)+×.【分析】首先计算零次幂和乘法,然后再计算加减即可.【解答】解:原式=1+2+4=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.(8.00分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8.00分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.【点评】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.18.(8.00分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10.00分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE=米.证明∠AEF=90°.解直角△AEF,求出AE=EF•t an∠AFE≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.【解答】解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,平行线的性质,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.20.(10.00分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.六、解答题(本大题满分12分)21.(12.00分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、解答题(本题满分12分)22.(12.00分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.八、解答题(本题满分14分)23.(14.00分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠NCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2020年北京市中考数学模拟试卷1一.选择题(共8小题,满分16分,每小题2分)1.(2分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 2.(2分)运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.3.(2分)已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定4.(2分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.185.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABC 的平分线BD ;(2)作BC 的垂直平分线EF ;(3)BD ,EF 交于点O ,则点O 即为所求.对于两人的作法,正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对 6.(2分)化简a+b b 2−a 2的结果是( ) A .1a−b B .1b−a C .a ﹣b D .b ﹣a7.(2分)中国共产党第十八届中央委员会第五次全体会议认为,到二〇二〇年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番(即二〇二〇年国内生产总值和城乡居民人均收入是二〇一〇年二倍),产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二〇一一年起,城乡居民人均收入每一年比上一年都增长p %.下面给出了关于p 的四个判断:①p 的值大于100;②p 的值是50;③p 的值是20;④p 的值是7.2.其中符合要求的是( )A .①B .②C .③D .④8.(2分)在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是( )A .26和26B .25和26C .27和28D .28和29二.填空题(共8小题,满分16分,每小题2分)9.(2分)当x = 时,分式x 2−9x+3的值为零.10.(2分)如图,在△ABC 中,E 、F 分别是AD 、CE 边的中点,且S △BEF =3cm 2,则S △ABC为cm2.11.(2分)从三个方向看所得到的图形都相同的几何体是(写出一个即可).12.(2分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4√5,CD=8.求∠ADC=度.13.(2分)在平面直角坐标系xOy中,点M(m,m)(m>0,n<0)在双曲线y=k1x上,点M关于y轴的对称点N在双曲线y=k2x,则k1+k2的值为.14.(2分)如图,以菱形ABCD的对角线AC为边,在AC的左侧作正方形ACEF,连结FD 并延长交EC于点H.若正方形ACEF的面积是菱形ABCD面积的1.4倍,CH=6,则EF=.15.(2分)小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是市场.16.(2分)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.三.解答题(共12小题,满分68分)17.(5分)计算:2sin30°−|−3|+(π−2017)0−(13)−218.(5分)解一元一次不等式组:{2x+4<4 1−2x>0.19.(5分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(5分)如图,在菱形ABCD中,AB=10,连接BD,sin∠ABD=√55.点P是射线BC 上的一个动点(点P不与点B重合),连接AP,与对角线BD相交于点E,连接EC.(1)求证:△ABE≌△CBE;(2)若CE⊥EP,求线段DE的长;(3)若BP=4,求△PEC的面积.21.(5分)国家规定“中小学生每天在校体育活动时间不低于1h”.渝北区某中学就“每天在校体育活动时间”的问题随机调查了本校若干名初中学生,根据调查结果绘制成如图所示的条形统计图与扇形统计图,其中分组情况是:A组:t<0.5hB组:0.5h≤t<1hC组:1h≤t<1.5hD组:t≥1.5请根据上述信息解答下列问题:(1)本次调查数据的中位数落在组内,达到规定的C,D两组学生运动的平均时间至少是小时(结果保留一位小数).请补全条形统计图.(2)若渝北区区内约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人数约有多少.22.(6分)如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O ,点E 在BD 的延长线上,BA 与CD 的延长线交于点F ,DF 平分∠ADE .(1)求证:AC =BC ;(2)若AB =AF ,求∠F 的度数;(3)若CD AC =12,⊙O 半径为5,求DF 的长.23.(6分)观察下面一列数,探究其中的规律:﹣1,12,−13,14,−15,16(1)填空:第11,12,13三个数分别是 , , ;(2)第2020个数是什么?(3)如果这列数无限排列下去,与哪个数越来越近?24.(6分)如图,P 为⊙O 的直径AB 上的一个动点,点C 在AB̂上,连接PC ,过点A 作PC 的垂线交⊙O 于点Q .已知AB =5cm ,AC =3cm .设A 、P 两点间的距离为xcm ,A 、Q 两点间的距离为ycm .某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表:x (cm )0 2.5 3.5 4 5 y (cm ) 4.0 4.7 5.0 4.8 4.1 3.7 (说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当AQ =2AP 时,AP 的长度均为 cm .25.(5分)已知:如图,一次函数y=mx+3的图象经过点A(2,6),B(n,﹣3)(1)求m、n的值;(2)求△OAB的面积.26.(6分)在平面直角坐标系xOy中,点A(﹣4,﹣2),将点A向右平移6个单位长度,得到点B(1)直接写出点B的坐标;(2)拖抛物线经y=﹣(x﹣m)2+m+2过点A,求m的值;(3)若抛物线y=﹣(x﹣m)2+m+2与线段AB有且只有一个公共点时,求抛物线点横坐标m的取值范围.27.(7分)在平面直角坐标系中,O(0,0)、B(a,b),且a、b满足1﹣2a+a2+(b−√3)2=0.(1)求a,b的值;(2)若点A在x轴正半轴上,且OA=2,在平面内有一动点Q(不在x轴上),QO=m,QA=n,QB=p,且p2=m2+n2,求∠OQA的度数.(3)阅读以下内容:对于实数a、b有(a﹣b)2≥0∴a2﹣2ab+b2≥0即a2+b2≥2ab利用以上知识,在(2)的条件下求△AOQ的面积的最大值.28.(7分)探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB上的三点A(1,3)、B(2,5)、C(4,9),有k AB=5−32−1=2,k AC=9−34−1=2,发现k AB=k AC,兴趣小组提出猜想:若直线y=kx+b(k≠0)上任意两点坐标P(x1,y1),Q(x2,y2)(x1≠x2),则k PQ=y2−y1x2−x1是定值.通过多次验证和查阅资料得知,猜想成立,k PQ是定值,并且是直线y=kx+b(k≠0)中的k,叫做这条直线的斜率.请你应用以上规律直接写出过S(﹣2,﹣2)、T(4,2)两点的直线ST的斜率k ST=.探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值.如图2,直线DE与直线DF垂直于点D,D(2,2),E(1,4),F(4,3).请求出直线DE与直线DF的斜率之积.综合应用如图3,⊙M为以点M为圆心,MN的长为半径的圆,M(1,2),N(4,5),请结合探究活动二的结论,求出过点N的⊙M的切线的解析式.2020年北京市中考数学模拟试卷1参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.(2分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.2.(2分)运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故不合题意;B、是轴对称图形,故不合题意;C、不是轴对称图形,故符合题意;D、是轴对称图形,故不合题意.故选:C.3.(2分)已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定【解答】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.4.(2分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.18【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.5.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABC的平分线BD;(2)作BC的垂直平分线EF;(3)BD,EF交于点O,则点O即为所求.对于两人的作法,正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【解答】解:如图1,点O到三角形三个顶点的距离相等,点O为△ABC的外心;如图2,因为AB=AC,所以作BC的垂直平分线平分∠BAC,则点O为三角形的内心.故甲对,乙不对.故选:C.6.(2分)化简a+bb−a的结果是()A.1a−b B.1b−aC.a﹣b D.b﹣a【解答】解:原式=a+b(b+a)(b−a)=1b−a.故选:B.7.(2分)中国共产党第十八届中央委员会第五次全体会议认为,到二〇二〇年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番(即二〇二〇年国内生产总值和城乡居民人均收入是二〇一〇年二倍),产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二〇一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了关于p的四个判断:①p的值大于100;②p的值是50;③p的值是20;④p的值是7.2.其中符合要求的是()A.①B.②C.③D.④【解答】解:∵城乡居民人均收入每一年比上一年都增长p%,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番,∴(1+p%)10=2,解得:p=7.2,故选:D.8.(2分)在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和29【解答】解:6名同学的体育成绩从小到大排列处在第3、4位的数都是26分,因此中位数是26(分), 平均数为24×2+26×3+306=26(分),故选:A .二.填空题(共8小题,满分16分,每小题2分) 9.(2分)当x = 3 时,分式x 2−9x+3的值为零.【解答】解:分式x 2−9x+3的值为零,即x 2﹣9=0,∵x ≠﹣3, ∴x =3.故当x =3时,分式x 2−9x+3的值为零.故答案为3.10.(2分)如图,在△ABC 中,E 、F 分别是AD 、CE 边的中点,且S △BEF =3cm 2,则S △ABC为 12 cm 2.【解答】解:∵F 是CE 边的中点, ∴S △BEC =2×S △BEF =6cm 2, ∵E 是AD 边的中点, ∴S △ABC =2×S △BEC =12cm 2, 故答案为:12.11.(2分)从三个方向看所得到的图形都相同的几何体是 球体(正方体) (写出一个即可).【解答】解:正方体,三视图均为正方形;球,三视图均为圆, 故答案为:球体(正方体).12.(2分)如图,在四边形ABCD 中,AB =AD =4,∠A =60°,BC =4√5,CD =8.求∠ADC = 150 度.【解答】解:连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵BD2+CD2=42+82=80,BC2=(4√5)2=80,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;故答案为:15013.(2分)在平面直角坐标系xOy中,点M(m,m)(m>0,n<0)在双曲线y=k1x上,点M关于y轴的对称点N在双曲线y=k2x,则k1+k2的值为0.【解答】解:∵点M(m,n)(m>0,n<0)在双曲线y=k1x上,∴k1=mn;又∵点N与点M关于y轴的对称,∴N(﹣m,n)∵点N在双曲线y=k2x上,∴k2=﹣mn;∴k1+k2=mn+(﹣mn)=0;故答案为:0.14.(2分)如图,以菱形ABCD的对角线AC为边,在AC的左侧作正方形ACEF,连结FD 并延长交EC于点H.若正方形ACEF的面积是菱形ABCD面积的1.4倍,CH=6,则EF=14.【解答】解:连接BD ,交AC 于点G ∵四边形ABCD 是菱形∴AC ⊥BD ,DB =2DG ,AG =CG ∴S 菱形ABCD =12AC •DB =AC •DG ∵四边形ACEF 是正方形∴EF =AF =AC =CE ,AF ∥EC ,AC ⊥EC ∴DB ∥CE ∥AF ∴DH DF=CG AG=1∴DH =DF ,即DG 为梯形ACHF 的中位线 ∴DG =12(CH +AF )=12(CH +EF ) ∵CH =6,S 正方形ACEF =1.4S 菱形ABCD ∴EF 2=1.4AC •DG ∴EF 2=1.4EF •12(6+EF )解得:EF =14 故答案为:14.15.(2分)小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S 乙2=1.5,S 丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场;故答案为:乙.16.(2分)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD 等.故答案为:AB=AD或AC⊥BD等.三.解答题(共12小题,满分68分)17.(5分)计算:2sin30°−|−3|+(π−2017)0−(13)−2【解答】解:原式=2×12−3+1﹣9=1﹣3+1﹣9=﹣10.18.(5分)解一元一次不等式组:{2x+4<4 1−2x>0.【解答】解:由①得:x<0,由②得:x<1 2,∴不等式组的解为:x<0.19.(5分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=−1±√5 2×1,∴x1=−1+√52,x2=−1−√52.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<5 4.20.(5分)如图,在菱形ABCD中,AB=10,连接BD,sin∠ABD=√55.点P是射线BC 上的一个动点(点P不与点B重合),连接AP,与对角线BD相交于点E,连接EC.(1)求证:△ABE≌△CBE;(2)若CE⊥EP,求线段DE的长;(3)若BP=4,求△PEC的面积.【解答】证明:(1)∵四边形ABCD是菱形,∴∠ABD=∠CBD,AB=BC,且BE=BE,∴△ABE≌△CBE(SAS),(2)当点P在线段BC上时,连接AC,交BD于点O,∵sin∠ABD=AOAB=√55,∴AO=2√5,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∴BO=√AB2−AO2=√100−20=4√5,∴DO=4√5,∵CE⊥EP,AO=CO,∴EO=AO=CO=2√5,∴DE=EO+DO=6√5,当点P在线段BC的延长线上时,同理可求:EO=2√5,DO=4√5,∴DE=DO﹣EO=2√5,综上所述:DE的长为2√5或6√5.(3)如图3,∵四边形ABCD是菱形,∴AD∥BC,∴△BEP∽△DEA,∴BPAD =BEDE=410,∴S△BPES△DAE =425,∵BD=8√5,∴DE=8√57×5=40√57,∴S△ADE=12×2√5×40√57=2007,S△ABE=12×2√5×16√57=807=S△BEC,∴S△BPE=425×2007=327,∵S△PEC=S△BEC﹣S△BPE=807−327=48721.(5分)国家规定“中小学生每天在校体育活动时间不低于1h”.渝北区某中学就“每天在校体育活动时间”的问题随机调查了本校若干名初中学生,根据调查结果绘制成如图所示的条形统计图与扇形统计图,其中分组情况是:A 组:t <0.5hB 组:0.5h ≤t <1hC 组:1h ≤t <1.5hD 组:t ≥1.5请根据上述信息解答下列问题:(1)本次调查数据的中位数落在 B 组内,达到规定的C ,D 两组学生运动的平均时间至少是 1.1 小时(结果保留一位小数).请补全条形统计图.(2)若渝北区区内约有 24 000名初中学生,请你估计其中达国家规定体育活动时间的人数约有多少.【解答】解:(1)∵被调查的学生总人数为10÷20%=50人, ∴B 组人数为50﹣(10+16+6)=18,又中位数为第25、26个数据的平均数,而这2个数据均落在B 组, ∴本次调查数据的中位数落在B 组;达到规定的C ,D 两组学生运动的平均时间至少是16×1+6×1.516+6≈1.1(小时),补全统计图如下:故答案为:B 、1.1;(2)估计其中达国家规定体育活动时间的人数约有24000×16+650=10560人. 22.(6分)如图,⊙O 是四边形ABCD 的外接圆.AC 、BD 是四边形ABCD 的对角线,BD 经过圆心O ,点E 在BD 的延长线上,BA 与CD 的延长线交于点F ,DF 平分∠ADE .(1)求证:AC =BC ;(2)若AB =AF ,求∠F 的度数; (3)若CD AC=12,⊙O 半径为5,求DF 的长.【解答】(1)证明:∵DF 平分∠ADE , ∴∠EDF =∠ADF ,∵∠EDF =∠ABC ,∠BAC ∠BDC ,∠EDF =∠BDC , ∴∠BAC =∠ABC , ∴AC =BC ;(2)解:∵BD 是⊙O 的直径, ∴AD ⊥BF , ∵AF =AB , ∴DF =DB , ∴∠FDA =∠BDA , ∴∠ADB =∠CAB =∠ACB , ∴△ACB 是等边三角形, ∴∠ADB =∠ACB =60°, ∴∠ABD =90°﹣60°=30°, ∴∠F =∠ABD =30°; (3)解:∵CD AC=12,∴CD BC=12,设CD =k ,BC =2k ,∴BD =√CD 2+BC 2=√5k =10, ∴k =2√5,∴CD =2√5,BC =AC =4√5, ∵∠ADF =∠BAC , ∴∠F AC =∠ADC , ∵∠ACF =∠DCA , ∴△ACF ∽△DCA , ∴CD AC=AC CF,∴CF =8√5,∴DF =CF ﹣CD =6√5.23.(6分)观察下面一列数,探究其中的规律: ﹣1,12,−13,14,−15,16(1)填空:第11,12,13三个数分别是 −111 , 112, −113 ;(2)第2020个数是什么?(3)如果这列数无限排列下去,与哪个数越来越近?【解答】解:(1)将﹣1等价于−11,即:−11,12,−13,14,−15,16⋯,可以发现分子永远为1,分母等于序数,奇数项为负数,偶数项为正,由此可以推出第n 个数是(﹣1)n •1n ,∴第11个数为−111,第12个数为112,第13个数为−113,故答案为:−111,112,−113;(2)由(1)知,第2020个数为12020;(3)∵分子为1,分母越大,越接近0,∴如果这列数无限排列下去,与0越来越近.24.(6分)如图,P 为⊙O 的直径AB 上的一个动点,点C 在AB ̂上,连接PC ,过点A 作PC 的垂线交⊙O 于点Q .已知AB =5cm ,AC =3cm .设A 、P 两点间的距离为xcm ,A 、Q 两点间的距离为ycm .某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表: x (cm ) 0 2.9 2.4 2.5 3.4 3.5 4 5 y (cm )4.04.75.04.84.54.13.73.0(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当AQ =2AP 时,AP 的长度均为 2.42 cm .【解答】解:(1)连接BQ ,BC ,过点C 作CF ⊥AB 于点F ,过点P 作PE ⊥AC 于点E , AQ 与PC 交于点G ,由圆周角定理可知:∠ACB =90°, ∵AB =5,AC =3,∴由勾股定理可知:BC =4, ∵12AB •CF =12AC •BC ,∴CF =125,∵AG ⊥PC ,BQ ⊥AQ , ∴PG ∥BQ , ∴△APG ∽△ABQ ,∴AP AB =AG AQ∴x 5=AG y∴AG =xy5,∵12PC •AG =12AP •CF ,∴PC =AP⋅CF AG =x⋅125xy 5=12y∵sin ∠BAC =BC AB =45, ∴PE AP=45,∴PE =45x ,∴由勾股定理可知:AE =35x , ∴CE =AC ﹣AE =3−35x , 在Rt △PCE 中,由勾股定理可知:(45x )2+(3−35x )2=122y 2,∴整理可得:x 2−185x +9=144y2, ∵y >0, ∴y =12√−185x+9(0≤x ≤5)将x 的数据代入上式即可求出答案.(2)根据表格,描点,用光滑的曲线连线,如图所示, (3)由题意可知:AQ =2AP , ∴y =2x ,作出直线y =2x ,由图象可知直线y =2x 与图象只有一个交点, 该交点的横坐标为大约为2.42. 即AP ≈2.4225.(5分)已知:如图,一次函数y=mx+3的图象经过点A(2,6),B(n,﹣3)(1)求m、n的值;(2)求△OAB的面积.【解答】解:(1)∵一次函数y=mx+3的图象经过点A(2,6),∴2m+3=6,解得m =32,∴一次函数表达式为y =32x +3,∴一次函数y =mx +3的图象经过点B (n ,﹣3), ∴32n +3=﹣3,解得n =﹣4;(2)如图,设直线AB 与y 轴的交点为C , 令x =0,则y =3,所以,点C 的坐标为(0,3), ∴OC =3,S △OAB =S △AOC +S △BOC =12×3×2+12×3×4, =3+6, =9.26.(6分)在平面直角坐标系xOy 中,点A (﹣4,﹣2),将点A 向右平移6个单位长度,得到点B(1)直接写出点B 的坐标;(2)拖抛物线经y =﹣(x ﹣m )2+m +2过点A ,求m 的值;(3)若抛物线y =﹣(x ﹣m )2+m +2与线段AB 有且只有一个公共点时,求抛物线点横坐标m 的取值范围.【解答】解:(1)点A向右平移6个单位长度,横坐标加6,纵坐标不变,∴B(2,﹣2);(2)将点(﹣4,﹣2)代入y=﹣(x﹣m)2+m+2,∴m=﹣3或m=﹣4,(3)当抛物线经过点(﹣4,﹣2)时,m=﹣3或m=﹣4;当抛物线经过点(2,﹣2)时,m=0或m=5;∵抛物线y=﹣(x﹣m)2+m+2与线段AB有且只有一个公共点时,∴﹣4≤m<﹣3或0<m≤5;27.(7分)在平面直角坐标系中,O(0,0)、B(a,b),且a、b满足1﹣2a+a2+(b−√3)2=0.(1)求a,b的值;(2)若点A在x轴正半轴上,且OA=2,在平面内有一动点Q(不在x轴上),QO=m,QA=n,QB=p,且p2=m2+n2,求∠OQA的度数.(3)阅读以下内容:对于实数a、b有(a﹣b)2≥0∴a2﹣2ab+b2≥0即a2+b2≥2ab利用以上知识,在(2)的条件下求△AOQ的面积的最大值.【解答】解:(1)∵1﹣2a+a2+(b−√3)2=0∴(1﹣a)2+(b−√3)2=0∴1﹣a=0,b−√3=0∴a=1,b=√3(2)∵OA=2即A(2,0),B(1,√3)∴OB=√12+(√3)2=2,AB=√(2−1)2+(√3)2=2∴OA=OB=AB∴△OAB是等边三角形∴∠OAB=60°把△ABQ绕点A逆时针旋转60°得△AOC,连接CQ ∴∠CAQ=∠OAB=60°,AC=AQ=n,OC=BQ=p,∴△ACQ是等边三角形∴CQ=AQ=n,∠AQC=60°∵p2=m2+n2即OC2=OQ2+CQ2∴△OCQ是直角三角形,∠OQC=90°①若点Q在△OAB的外部,如图1,则∠OQA=∠OQC﹣∠AQC=90°﹣60°=30°②若点Q在△OAB的内部,如图2,则∠OQA=∠OQC+∠AQC=90°+60°=150°综上所述,∠OQA的度数为30°或150°.(3)∵a 2+b 2≥2ab ,∴当a =b 时,a 2+b 2=2ab 成立,即此时ab 取得最大值 过点A 作AH ⊥OQ 于H , ∴∠AHQ =90° ∵∠AQH =30° ∴AH =12AQ =12n∴S △AOQ =12OQ •AH =12m •12n =14mn∴当m =n 时,S △AOQ 取得最大值14n 2①当∠OQA =30°时,如图3,∵OQ =AQ =n ,QH =√AQ 2−AH 2=√n 2−(12n)2=√32n ∴OH =OQ ﹣QH =n −√32n∵OA =2,OA 2=OH 2+AH 2 ∴(n −√32n )2+(12n )2=22解得:n 2=4(2+√3) ∴S △AOQ =14n 2=2+√3②当∠OQA =150°时,如图4, ∴OH =OQ +QH =n +√32n ∵OA =2,OA 2=OH 2+AH 2 ∴(n +√32n )2+(12n )2=22解得:n2=4(2−√3)∴S△AOQ=14n2=2−√3综上所述,当∠OQA=30°时,△AOQ的面积的最大值为2+√3;当∠OQA=150°时,△AOQ的面积的最大值为2−√3.28.(7分)探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB上的三点A(1,3)、B(2,5)、C(4,9),有k AB=5−32−1=2,k AC=9−34−1=2,发现k AB=k AC,兴趣小组提出猜想:若直线y=kx+b(k≠0)上任意两点坐标P(x1,y1),Q(x2,y2)(x1≠x2),则k PQ=y2−y1x2−x1是定值.通过多次验证和查阅资料得知,猜想成立,k PQ是定值,并且是直线y=kx+b(k≠0)中的k,叫做这条直线的斜率.请你应用以上规律直接写出过S(﹣2,﹣2)、T(4,2)两点的直线ST的斜率k ST=23.探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值.如图2,直线DE与直线DF垂直于点D,D(2,2),E(1,4),F(4,3).请求出直线DE与直线DF的斜率之积.综合应用如图3,⊙M为以点M为圆心,MN的长为半径的圆,M(1,2),N(4,5),请结合探究活动二的结论,求出过点N的⊙M的切线的解析式.【解答】解:(1)∵S (﹣2,﹣2)、T (4,2) ∴k ST =2−(−2)4−(−2)=23 故答案为:23(2)∵D (2,2),E (1,4),F (4,3). ∴k DE =4−21−2=−2,k DF =3−24−2=12, ∴k DE ×k DF =﹣2×12=−1, ∴任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积等于﹣1. (3)设经过点N 与⊙M 的直线为PQ ,解析式为y =k PQ x +b ∵M (1,2),N (4,5), ∴k MN =5−24−1=1, ∵PQ 为⊙M 的切线 ∴PQ ⊥MN ∴k PQ ×k MN =﹣1, ∴k PQ =﹣1,∵直线PQ 经过点N (4,5), ∴5=﹣1×4+b ,解得 b =9 ∴直线PQ 的解析式为y =﹣x +9.。