谐波减速器
- 格式:ppt
- 大小:1.02 MB
- 文档页数:30
谐波减速器技术要求
谐波减速器是一种具有高传动精度和扭矩输出的减速装置,其技术要求包括以下几个方面:
1. 传动精度要求高:谐波减速器可以达到更高的传动精度,通常可达到0.1-1角秒。
传动精度的要求取决于具体的应用场景,比如一些精密仪器、机械手等需要更高的传动精度。
2. 扭矩输出大:谐波减速器可以输出较大的扭矩,一般可达到减速比乘以输入扭矩。
扭矩输出的大小与传动比、减速器的结构和材料等因素有关。
3. 体积小、重量轻:谐波减速器通常用于限定空间和重量要求较高的场景,因此要求体积小、重量轻,以满足实际应用需求。
4. 高工作效率:谐波减速器的工作效率是指输出功率和输入功率之比,一般要求在90%以上。
5. 耐久性和可靠性:谐波减速器在使用过程中需要具备一定的耐久性和可靠性,能够在长时间、高负载情况下稳定工作,并且需要具备较长的使用寿命。
除了以上几个方面的技术要求,谐波减速器还需要根据具体的应用场景来确定参数和性能指标,比如工作温度范围、防护等级、防爆要求等。
谐波减速器节圆直径1. 什么是谐波减速器谐波减速器是一种通过谐波传动原理实现减速的装置。
它由柔性齿轮和刚性齿轮组成,通过谐波发生器的作用,将输入轴的高速旋转运动转换为输出轴的低速高扭矩运动。
2. 谐波减速器的结构谐波减速器主要由三部分组成:谐波发生器、柔性齿轮和刚性齿轮。
2.1 谐波发生器谐波发生器是谐波减速器的核心部件,它由内外套、滚柱、滚柱轴承等组成。
谐波发生器通过内外套的相对运动,使滚柱在内外套之间滚动,从而产生谐波运动。
2.2 柔性齿轮柔性齿轮由柔性齿带和齿轮支撑体组成。
柔性齿带由弹性材料制成,具有一定的柔韧性和弹性,能够适应谐波发生器的谐波运动。
2.3 刚性齿轮刚性齿轮是谐波减速器的输出部件,它由刚性齿轮和输出轴组成。
刚性齿轮通过与柔性齿轮的啮合,将谐波运动转换为输出轴的低速高扭矩运动。
3. 谐波减速器节圆直径的作用谐波减速器节圆直径是指柔性齿带的中心线所描述的圆的直径。
节圆直径的大小直接影响谐波减速器的传动比和输出性能。
3.1 传动比传动比是谐波减速器的输入速度与输出速度之比。
节圆直径的变化会导致传动比的变化,从而影响输出轴的速度。
3.2 输出性能谐波减速器的输出性能包括输出扭矩和输出精度。
节圆直径的变化会改变柔性齿带的弯曲程度和啮合状态,进而影响输出扭矩和输出精度。
4. 谐波减速器节圆直径的计算谐波减速器节圆直径的计算需要考虑多个因素,包括传动比、输出扭矩和输出精度等。
4.1 传动比计算传动比的计算公式为:传动比 = 节圆直径 / 谐波发生器半径4.2 输出扭矩计算输出扭矩的计算公式为:输出扭矩 = 输入扭矩 * 传动比4.3 输出精度计算输出精度的计算需要考虑柔性齿带的变形和啮合误差等因素,一般通过实验或模拟计算得到。
5. 谐波减速器节圆直径的选择谐波减速器节圆直径的选择需要综合考虑传动比、输出扭矩和输出精度等因素。
5.1 传动比选择根据实际需求确定所需的传动比范围,然后根据传动比计算公式选择合适的节圆直径。
大量应用在关节型机器人上的减速器主要有两类:RV减速机和谐波减速机。
那么,对于这两种减速机,哪个更有优势?两者的原理、优劣势区别在哪?是否可以相互取代?让我们一起来了解一下。
谐波减速机用于负载小的工业机器人,或者是大型机器人末端几个轴,特点是体积小、重量轻、承载能力大、运动精度高,单级传动比大。
谐波减速机是谐波传动装置的其中一种,谐波传动装置包括了加速机和减速机。
谐波减速机主要结构有刚轮、柔轮、轴承和波发生器,缺一不可。
其中,刚轮的齿数略大于柔轮的齿数。
RV减速机常适用于扭矩较大的机器人关节中,具体是腿部腰部和肘部这三个关节。
负载大的工业机器人,一二三轴用的都是RV减速机。
RV减速机与谐波减速机相比具有更高的疲劳强度、刚度和寿命。
谐波减速机的缺点还包括,随着使用时间增长,运动精度会降低。
跟谐波减速机重量轻体积小的的优点相反,RV减速机的缺点是其重量重,外形尺寸较大。
两者均为少齿差啮合,不同的是谐波减速机中的一种关键齿轮具有柔性,需要反复高速变形,因而较为脆弱,所以谐波减速机跟RV减速机相比,承载能力低,寿命短。
RV减速机一般用的是摆线针轮,谐波减速机以前用的的是渐开线齿形,现在有些厂家用的是双圆弧齿形,比渐开线更高级一些。
与谐波减速机相比,RV减速机是一种新兴起的传动产品,RV减速机其实是在传统针线针轮减速机的基础上发展起来的,不仅克服了一般针摆传动的缺点,而且具有更多的优势,比如寿命长、保持精度稳定、效率高、传动顺畅等。
对于两者能不能替代的问题,概括来说其实有两种说法。
1、一是可以替代,但只是部分型号之间可以替代。
我们前面已经提到过RV减速机比机器人常用的谐波传动的疲劳强度、刚性和寿命都要高得多,而且回差精度稳定,不会像使用时间增长的谐波传动那样,运动精确度会明显降低。
很多国家的高精度机器人传动多采用RV减速机,所以RV减速机有一种发展趋势,逐渐开始取代了先进机器人传动中的谐波减速机。
谐波减速机的特点是轻和小,在这方面,行星减速机和RV减速机却很难做到。
谐波减速器工作原理
谐波减速器是一种常用的机械传动装置,它通过利用弹性变形的原理将输入速度和输出速度之间的比例关系进行转换。
谐波减速器的工作原理如下:
1. 谐波发生器:谐波减速器的输入轴与谐波发生器相连,谐波发生器通常是一个内齿圈和一个柔性齿条组成的装置。
当输入轴旋转时,谐波发生器会产生谐波振动。
2. 谐波传动:谐波振动会通过内齿圈传递到输出轴,内齿圈上的前导齿和柔性齿条之间的啮合关系会引起传动的变形和滑移。
这样,谐波传动将输入轴的旋转运动转换成了输出轴的运动。
3. 减速效果:由于在谐波传动过程中存在变形和滑移,所以输出轴的转速会比输入轴的转速慢。
根据前导齿和柔性齿条的结构设计,可以实现不同的减速比。
谐波减速器具有结构简单、传动效率高、减速比大、可靠性强等优点,广泛应用于工业生产和机械设备中。
它适用于需要准确控制速度和力矩的场合,如机床、准确度要求高的机械装置等。
谐波减速器的原理及应用一、谐波减速器简介谐波齿轮减速器是利用行星齿轮传动原理发展起来的一种新型减速器。
谐波齿轮传动(简称谐波传动),它是依靠柔性零件产生弹性机械波来传递动力和运动的一种行星齿轮传动。
二、传动原理当波发生器为主动时,凸轮在柔轮内转动,就近使柔轮及薄壁轴承发生变形(可控的弹性变形),这时柔轮的齿就在变形的过程中进入(啮合)或退出(啮离)刚轮的齿间,在波发生器的长轴处处于完全啮合,而短轴方向的齿就处在完全的脱开。
波发生器通常成椭圆形的凸轮,将凸轮装入薄壁轴承内,再将它们装入柔轮内。
此时柔轮由原来的圆形而变成椭圆形,椭圆长轴两端的柔轮与之配合的刚轮齿则处于完全啮合状态,即柔轮的外齿与刚轮的内齿沿齿高啮合。
这是啮合区,一般有30流右的齿处在啮合状态;椭圆短轴两端的柔轮齿与刚轮齿处于完全脱开状态,简称脱开;在波发生器长轴和短轴之间的柔轮齿,沿柔轮周长的不同区段内,有的逐渐退出刚轮齿间,处在半脱开状态,称之为啮出。
波发生器在柔轮内转动时,迫使柔轮产生连续的弹性变形,此时波发生器的连续转动,就使柔轮齿的啮入一啮合一啮出一脱开这四种状态循环往复不断地改变各自原来的啮合状态。
这种现象称之错齿运动,正是这一错齿运动,作为减速器就可将输入的高速转动变为输出的低速转动。
对于双波发生器的谐波齿轮传动,当波发生器顺时针转动1/8周时,柔轮齿与刚轮齿就由原来的啮入状态而成啮合状态,而原来脱开状态就成为啮入状态。
同样道理,啮出变为脱开,啮合变为啮出,这样柔轮相对刚轮转动(角位移)了1/4齿;同理,波发生器再转动1/8周时,重复上述过程,这时柔轮位移一个齿距。
依此类推,波发生器相对刚轮转动一周时,柔轮相对刚轮的位移为两个齿距。
柔轮齿和刚轮齿在节圆处啮合过程就如同两个纯滚动(无滑动)的圆环一样,两者在任何瞬间,在节圆上转过的弧长必须相等。
由于柔轮比刚轮在节圆周长上少了两个齿距,所以柔轮在啮合过程中,就必须相对刚轮转过两个齿距的角位移,这个角位移正是减速器输出轴的转动,从而实现了减速的目的。
谐波减速器传动比计算公式
谐波减速器是一种高精度、高刚性的传动装置,其传动比计算公式是关键的参
数之一。
谐波减速器的传动比计算公式可以通过以下几个步骤得到。
首先,需要了解谐波减速器的构造。
谐波减速器由柔性齿轮、谐波发生器和固
定齿轮组成。
柔性齿轮通过谐波发生器的变形产生滚动摩擦,从而实现传动效果。
固定齿轮是与柔性齿轮嵌合的齿轮,通过固定齿轮转动一周导致柔性齿轮产生4倍于固定齿轮的转动。
其次,谐波减速器的传动比计算公式可以表示为:
传动比 = Ns × Nf × Np
其中,Ns是固定齿轮的齿数,Nf是柔性齿轮的齿数,Np是谐波发生器的齿数。
最后,通过使用以上的计算公式,可以得到谐波减速器的传动比。
需要注意的是,传动比是一个无单位的量,只是用来表示柔性齿轮相对于固定齿轮的旋转速度的比例关系。
传动比越大,输出转速越低,扭矩越大。
总的来说,谐波减速器的传动比计算公式可以通过齿轮的齿数和谐波发生器的
齿数来计算得到,它对于谐波减速器的设计和应用非常重要。
通过合理选择齿轮的齿数,并结合实际需求和使用条件,可以得到满足需求的谐波减速器传动比。
谐波减速器的工作原理
谐波减速器是一种通过谐波机构实现减速的装置。
其工作原理是利用谐波传动的特性,通过变形的弹性元件将输入轴的旋转运动转化为输出轴的减速旋转运动。
谐波减速器的基本结构包括驱动轮、柔性轮和输出轮。
驱动轮与输入轴相连,柔性轮与驱动轮相互啮合,输出轮与柔性轮相互啮合。
其中,柔性轮是由一组刚性齿和柔性片组成的。
当输入轴带动驱动轮旋转时,驱动轮的齿会与柔性轮的刚性齿啮合,使柔性轮产生变形。
柔性轮的变形会引起柔性片的屈曲和扭转,从而将输入轴的旋转运动转化为柔性轮的变形运动。
柔性轮的变形运动进一步传递到输出轮,使其产生减速旋转。
输出轮的齿与柔性轮的齿相互啮合,通过这种啮合关系,将柔性轮的变形运动转化为输出轮的旋转运动。
谐波减速器具有高减速比、高扭矩传递和高精度的特点。
其减速比可以达到传统齿轮传动的数十倍以上,扭矩传递效率通常在90%以上。
同时,由于谐波机构的特殊设计,谐波减速器的反向间隙非常小,具有较高的传动精度。
总之,谐波减速器通过谐波机构将输入轴的旋转运动转化为输出轴的减速旋转运动,实现了高减速比、高扭矩传递和高精度传动的功能。
它在工业领域中被广泛应用于机械设备和自动化系统中的减速装置。
谐波减速器原理
谐波减速器是一种高效的机械传动装置,其工作原理基于谐波振动的特性。
它由一个输入轴和一个输出轴组成,并通过一系列的齿轮和齿条来实现传动。
谐波减速器的特殊之处在于其利用谐波振动将输入轴的旋转运动转化为输出轴的减速运动。
谐波减速器的关键部件是柔性齿锥轮、刚性振动器和柔性齿轮。
其中,柔性齿锥轮位于输入轴上,刚性振动器位于输出轴上,而柔性齿轮则位于两者之间。
当输入轴旋转时,柔性齿锥轮上的齿片会与刚性振动器上的凹槽轴向接触,从而引起柔性齿轮的弹性变形。
这个过程就像是在输入轴上施加了一个谐波振动。
通过柔性齿轮的弹性变形,输入轴上的旋转运动会被转移到输出轴上,并且发生减速。
柔性齿轮和刚性振动器的齿数和齿型设计得很精密,以确保旋转运动的平稳转换和高效的能量传递。
此外,谐波减速器的结构也具有紧凑和高扭矩传递能力的特点。
总的来说,谐波减速器利用谐波振动的原理实现输入轴旋转运动到输出轴的减速传动。
它具有结构简单、紧凑、高效等优点,被广泛应用于各种机械设备中。
谐波减速机规格参数
一、结构特点:
1.谐波减速机采用谐波传动原理,具有非常高的传动效率和传动精度。
2.减速比范围广,可达到50:1以上。
3.体积小、重量轻,与传统减速器相比,具有更小的安装空间。
4.具有自锁性能,能够防止一些应用中的倒转现象。
5.耐冲击、抗振性好,可适应高速运动和频繁启停的工况。
6.高可靠性和稳定性,适用于高精度、高速度和高反转负载的应用。
二、性能参数:
1.额定输出扭矩:谐波减速机的额定输出扭矩是指能够持续运转下的
最大扭矩。
该参数取决于减速机的尺寸和材质等因素。
2.额定输出转速:谐波减速机的额定输出转速是指在额定加载下,减
速机能够持续运转的最高输出转速。
3.输出扭矩波动系数:谐波减速机的输出扭矩波动系数是指输出扭矩
的波动程度。
该参数越小,减速机运行的平稳性和精度越高。
4.温升:谐波减速机的温升是指在额定工况下,减速机运行时产生的
温度升高。
该参数反映了减速机的散热性能,应控制在一定范围内。
5.额定工作周期:谐波减速机的额定工作周期是指减速机在额定工况下,可连续工作的最长时间。
三、应用范围:
1.工业自动化设备:包括机床、激光设备、数控设备等。
2.机电一体化设备:如包装机械、食品机械、纺织机械等。
3.机器人及自动化装配线:在机器人及自动化装配线中,谐波减速机可提供高精度和高可靠性的传动。
总结:。
谐波齿轮减速器工作原理谐波齿轮减速器是一种常用的机械传动装置,它采用了独特的工作原理,通过谐波效应实现高效的速度减小。
本文将详细介绍谐波齿轮减速器的工作原理。
一、谐波齿轮减速器的构造谐波齿轮减速器主要由柔性轮、输出轴和输入轴组成。
其中,柔性轮由内外两层齿轮组成,它们之间有一定间隙,这样就形成了柔性。
输入轴由传动梁和活动插销组成,通过运动学性质与柔性轮相连。
输出轴连接到柔性轮的外滚筒上,负责输出转动力。
二、谐波齿轮减速器的工作原理1. 输入转动当输入轴开始转动时,传动梁和活动插销会向外移动,使得活动插销与内层柔性轮的齿轮嵌合,传递输入轴的转动力。
2. 谐波效应内层柔性轮的齿轮齿数通常比外层柔性轮的齿轮齿数多一个。
当输入轴以一定的角度转动时,活动插销会导致内层柔性轮发生弹性形变,这种变形以谐波的形式传递到外层柔性轮上。
谐波效应的出现使得速度比例不再是线性的,而是非线性的。
这样就实现了速度的减小。
3. 输出转动谐波效应使得柔性轮的外层齿轮与输出轴的齿轮嵌合,将内层柔性轮的转动力传递到输出轴上,实现输出转动。
三、谐波齿轮减速器的特点1. 大传动比谐波齿轮减速器的传动比可以达到几十甚至上百,这使得它在需要大速度减小的应用领域中起到了关键作用。
2. 紧凑结构谐波齿轮减速器的特殊结构使得它非常紧凑,相对于其他传动装置,节省了很大的空间。
这使得它在机械设计中具有一定的优势。
3. 平稳传动谐波齿轮减速器传动过程中没有间隙和冲击,实现了平稳的传动,减小了机械部件的磨损和噪音。
4. 高精度谐波齿轮减速器具有较高的精度,在需要精确定位和控制的应用中非常重要。
综上所述,谐波齿轮减速器采用谐波效应实现高效的速度减小,具有传动比大、结构紧凑、传动平稳和高精度等特点。
它在机械工程领域中有着广泛的应用,尤其适用于对精度要求较高的机械传动系统。
通过深入了解和研究谐波齿轮减速器的工作原理,可以更好地应用于实际生产和设计中,为机械传动领域的发展做出贡献。
谐波减速器作用谐波减速器是一种常见的机械传动装置,它具有紧凑结构、高传动精度和大扭矩输出等特点,在工业生产中起到了重要作用。
本文将从谐波减速器的工作原理、结构特点以及应用领域等方面进行介绍。
一、工作原理谐波减速器主要由柔性齿轮和刚性齿轮组成。
当输入轴旋转时,柔性齿轮通过弹性变形使传动齿轮产生相对运动,从而实现减速效果。
其工作原理类似于人体骨骼系统中的肌肉和骨骼之间的协调配合,通过柔性元件的变形来传递力量和运动。
二、结构特点1. 紧凑结构:谐波减速器的结构设计非常紧凑,体积小、重量轻,可以在有限的空间内实现大扭矩输出。
2. 高精度:谐波减速器的传动精度非常高,一般可以达到0.1弧分左右,适用于对传动精度要求较高的场合。
3. 大扭矩输出:谐波减速器的输出扭矩较大,可以满足不同工况下的需求。
4. 高效率:谐波减速器的传动效率较高,一般可以达到90%以上。
5. 可逆性:谐波减速器具有可逆性,即可以实现正反转。
三、应用领域由于谐波减速器具有结构紧凑、传动精度高等特点,因此广泛应用于各个领域。
以下是谐波减速器的几个典型应用领域:1. 机床行业:谐波减速器常用于数控机床、雕铣机、切割机等设备中,可以提高设备的精度和稳定性。
2. 机器人领域:谐波减速器广泛应用于工业机器人、服务机器人等领域,可以实现机器人的精确定位和灵活运动。
3. 包装设备:在包装设备中,谐波减速器可以提高包装速度和精度,提高生产效率。
4. 自动化生产线:谐波减速器可以应用于各种自动化生产线中,实现传动和定位控制。
5. 太阳能发电:谐波减速器可以用于太阳能跟踪系统中,帮助太阳能板实现精确跟踪,提高能量转换效率。
谐波减速器作为一种重要的机械传动装置,在工业生产中发挥着重要作用。
其紧凑的结构、高传动精度和大扭矩输出等特点,使其广泛应用于机床行业、机器人领域、包装设备、自动化生产线以及太阳能发电等领域。
未来随着技术的不断发展,谐波减速器在更多领域将发挥更大的作用,为生产和生活带来更多便利和效益。
文章标题:探索机械传动中的RV减速、谐波减速与精密行星减速在机械工程领域中,减速器是一种常见的机械传动装置,它可以实现从高速轴到低速轴的传动。
在减速器的种类中,RV减速、谐波减速和精密行星减速是比较常见的类型。
它们各自拥有独特的特点和应用领域,对于不同的机械系统起着至关重要的作用。
本文将就这三种减速器进行深入探讨,并就其结构设计、工作原理及应用领域进行全面评估。
1. RV减速器RV减速器是一种精密的减速器,其主要特点是具有高传动精度、高扭矩密度和紧凑的结构。
它通常被应用于精密的机械设备中,如工业机器人、数控机床等领域。
在RV减速器中,采用了柔性齿轮机构,它能够有效地减小齿轮的间隙,并且降低了噪音和振动。
RV减速器还具有重量轻、寿命长、传动效率高的优点,因此在一些对传动精度要求较高的场合得到了广泛的应用。
2. 谐波减速器谐波减速器是一种利用柔性变形元件进行传动的减速装置。
它的结构简单、传动精度高、扭矩密度大,因此在一些高精度、高扭矩传动场合得到了广泛的应用。
与其他减速器相比,谐波减速器具有零间隙传动、高刚度、干式摩擦传动等特点,这些特点使得谐波减速器具有出色的定位精度和传动稳定性。
3. 精密行星减速器精密行星减速器是一种结构紧凑、传动比范围广、传动效率高的机械传动装置。
它由太阳轮、行星轮和内齿圈组成,通过行星架来传递动力,因此具有较高的传动效率和较大的扭矩输出。
精密行星减速器还具有重量轻、寿命长、噪音低的特点,因此在一些对传动效率和空间要求较高的场合得到了广泛的应用。
总结回顾:通过本文的探讨,我们可以清晰地了解到RV减速、谐波减速和精密行星减速这三种减速器的特点和应用领域。
在实际的工程应用中,我们需要根据具体的传动要求和工作环境来选择适合的减速器类型,以实现最佳的传动效果和性能。
个人观点和理解:对于减速器的选择,我认为需要综合考虑传动精度、扭矩密度、传动效率、空间布局等因素,以及具体的应用场景和工作要求。
谐波减速器原理
## 一、谐波减速器概述
1. 谐波减速器是一种新型的电机传动装置,它结合了电动机和传统的谐波齿轮减速器的性能,将传统的减速器的齿轮组与电机的定子结合,利用电机转子的本质特性,通过制作精密的多槽定子来实现传动系统的精密减速。
2. 谐波减速器的结构和传统的齿轮减速器的结构类似,它也由定子、转子等部件组成,只不过转子多了一组谐波齿轮组。
同时,由于它把电机之间的磁链接耦合,并利用定子(螺旋耦合)达到模块间传输力,它还比传统的齿轮减速器有更强的耐热性能,可以把电机的温度低于一般的减速器。
## 二、谐波减速器的工作原理
1. 当谐波减速器的电机转子旋转时,谐波齿轮组与定子槽发生磁链接耦合,这样,就形成了螺旋接触,转子上的接触区域有多个,而定子上的接触区域只有一个,所以,谐波减速器可以提供高负荷,高力矩传输。
2. 谐波减速器电机转子在螺旋传递过程中,受磁链接耦合的作用,传动系统的动载荷受到有效的减轻,从而可以达到很高的精确度和平稳性,较大的负荷耐受能力,因此是电机精密减速的理想装置。
## 三、谐波减速器的优点
1. 谐波减速器体积小巧,性能优良,它采用螺旋接触技术,可以有效减少传动系统的动载荷,从而达到传动系统的精确度和平稳性。
2. 谐波减速器的耐热性能比传统的减速器更强,在极端温度下依然能保持很高的性能。
同时,谐波减速器在传输力矩时,减少了摩擦损失,可大大提高定子等部件的使用寿命,满足上位机对数据采集,高精度控制等要求。
3. 谐波减速器可高效传输大扭矩,噪声低,并且效率非常高,可将电机的温度低于一般的减速器,维护成本更低,综上所述,谐波减速器是一种新型的优质的传动装置,也是电机减速领域最令人兴奋的产品。
谐波减速器波形1. 什么是谐波减速器?谐波减速器是一种通过谐波驱动的机械传动装置,用于将高速输入转换为低速输出,并提供较高的扭矩。
它由一个输入轴、一个输出轴和一组谐波齿轮组成。
2. 谐波减速器的工作原理谐波减速器的工作原理基于谐波振动的特性。
当输入轴旋转时,其上的椭圆形齿轮产生一个偏心运动。
这种偏心运动使得位于输出轴上的柔性齿轮发生变形,并通过摩擦力和弹性恢复力实现输出轴的转动。
3. 谐波减速器波形分析在谐波减速器中,输入轴和输出轴之间存在一定的相位差。
这会导致输出轴上的转矩和角度与输入轴不完全同步,产生特定的波形。
3.1 正弦曲线当输入轴以恒定角速度旋转时,输出轴上产生一个周期性变化且呈正弦曲线状的转矩。
这是由于谐波减速器的结构特点决定的。
3.2 谐波分量除了正弦曲线外,谐波减速器输出轴上还存在多个谐波分量。
这些谐波分量是由于谐波齿轮间的摩擦和弹性变形引起的。
3.3 波形失真由于摩擦和弹性变形等因素的影响,谐波减速器输出轴上的波形可能存在一定程度的失真。
这会导致实际输出转矩与理论预期不完全一致。
4. 谐波减速器波形的应用4.1 运动控制谐波减速器的波形特点使其在运动控制领域中得到广泛应用。
通过对输出轴上的转矩进行精确控制,可以实现高精度的位置和速度控制。
4.2 自适应振动补偿由于谐波减速器输出轴上存在多个谐波分量,这些分量可能会引起振动和噪音问题。
通过对不同频率和幅值的谐波分量进行补偿,可以有效降低振动和噪音水平。
4.3 动力学分析通过对谐波减速器波形进行分析,可以了解其动力学特性。
这对于设计和优化传动系统非常重要,可以提高系统的性能和可靠性。
5. 谐波减速器波形的改进为了改善谐波减速器的波形特性,研究人员提出了许多改进方法。
例如,优化齿轮剖面形状、改变齿轮材料和润滑方式等都可以对谐波减速器的性能产生积极影响。
6. 总结谐波减速器是一种通过谐波驱动的机械传动装置,具有独特的工作原理和波形特点。
谐波减速器的结构组成谐波减速器是一种常用的机械传动装置,它具有结构简单、紧凑、效率高的特点。
下面将从结构组成的角度对谐波减速器进行介绍。
谐波减速器的主要结构组成包括输入轴、输出轴、柔性齿轮、刚性齿轮和波发生器等部件。
1. 输入轴:输入轴是谐波减速器的动力输入端,将电机或其他动力设备输出的动力传递给谐波减速器。
输入轴通常由高强度合金钢制成,具有足够的强度和刚度。
2. 输出轴:输出轴是谐波减速器的动力输出端,它将经过减速的动力传递给机械设备。
输出轴通常也由高强度合金钢制成,以保证传递动力的可靠性和稳定性。
3. 柔性齿轮:柔性齿轮是谐波减速器的核心部件,它由多个柔性齿片组成。
柔性齿片通常由高强度不锈钢或弹性材料制成,具有良好的弯曲和弹性性能。
柔性齿轮通过与波发生器的齿槽咬合,实现动力的传递和转换。
4. 刚性齿轮:刚性齿轮是谐波减速器的固定齿轮,它由多个齿槽组成。
刚性齿轮通常由高强度合金钢制成,具有较高的硬度和刚度。
刚性齿轮通过与柔性齿轮的齿槽咬合,实现动力的传递和转换。
5. 波发生器:波发生器是谐波减速器的核心部件,它由多个波形发生器组成。
波形发生器通常由高强度合金钢制成,具有较高的硬度和刚度。
波形发生器的齿槽形状特殊,能够与柔性齿轮的齿片咬合,通过变形传递动力。
谐波减速器的工作原理是:当输入轴带动波发生器旋转时,波形发生器的齿槽将推动柔性齿轮的齿片变形,从而实现动力的传递和转换。
柔性齿轮的变形产生非线性的齿轮传动效果,将输入轴的高速低扭矩动力转换为输出轴的低速高扭矩动力。
谐波减速器具有许多优点,如结构紧凑、体积小、传动比大、重载能力强等。
同时,由于谐波减速器的齿轮传动采用非接触式传动,摩擦损失小,传动效率高。
因此,谐波减速器广泛应用于机械设备中,如机床、机器人、包装设备等。
谐波减速器是一种结构简单、紧凑、效率高的机械传动装置。
它由输入轴、输出轴、柔性齿轮、刚性齿轮和波发生器等部件组成,通过柔性齿轮和刚性齿轮的咬合,实现动力的传递和转换。
谐波减速比:让机器更速更稳
谐波减速器是一种新型的减速装置,它可以通过谐波效应实现减
速和传动的功能。
其减速比可高达1:100,且传动精度高、噪音低、寿命长、传动平稳。
在机器人、自动化设备、航空航天等领域中被广泛
应用。
谐波减速器的核心技术是谐波齿轮,它是一种特殊形状的齿轮,
用于减速传动。
谐波齿轮一般由内外两个轮子组成,内轮通过连接器
和输出轴相连,外轮通过柔性圆环与内轮相互作用,产生谐波效应,
从而实现减速传动。
谐波减速比的计算主要取决于谐波齿轮中内外齿轮的几何参数和
柔性圆环的材料属性。
较高的谐波减速比可通过调整齿轮模数、内外
齿轮齿数比、内轮齿宽、柔性圆环的模量、厚度等参数来实现。
相比传统的摆线针轮减速比,谐波减速器具有更高的轴向承载能
力和更低的渐开线噪声。
且在低速、高扭矩传动时,谐波减速器能够
有效避免齿轮飞出和抱死现象,从而保障传动稳定性,提高设备效率。
总之,谐波减速比具有传动精度高、减速比大、噪声低、寿命长、运行稳定等特点,对于机器人及自动化设备等高精度传动领域具有广
泛的应用前景。
谐波传动原理谐波传动Harmonic Drive是由美国发明家C. Walt Musser马瑟于上世纪50年代中期发明创造的。
一、谐波传动装置的构成谐波传动装置主要由三个基本零部件构成,即波发生器、柔轮和刚轮:波发生器:由柔性轴承与椭圆形凸轮组成。
波发生器通常安装在减速器输入端,柔性轴承内圈固定在凸轮上,外圈通过滚珠实现弹性变形成椭圆形。
柔轮:带有外齿圈的柔性薄壁弹性体零件,通常安装在减速器输出端。
刚轮:带有内齿圈的刚性圆环状零件,一般比柔轮多两个轮齿,通常固定在减速器机体上。
二、谐波减速原理谐波做为减速器使用,通常采用波发生器主动、刚轮固定、柔轮输出形式。
当波发生器装入柔轮内圆时,迫使柔轮产生弹性变形而呈椭圆状,使其长轴处柔轮轮齿插入刚轮的轮齿槽内,成为完全啮合状态;而其短轴处两轮轮齿完全不接触,处于脱开状态。
由啮合到脱开的过程之间则处于啮出或啮入状态。
当波发生器连续转动时:迫使柔轮不断产生变形,使两轮轮齿在进行啮入、啮合、啮出、脱开的过程中不断改变各自的工作状态,产生了所谓的错齿运动,从而实现了主动波发生器与柔轮的运动传递。
三、谐波传动特点1.精度高:多齿在两个180度对称位置同时啮合,因此齿轮齿距误差和累积齿距误差对旋转精度的影响较为平均,可得到极高的位置精度和旋转精度。
2.传动比大:单级谐波齿轮传动的传动比可达i=30~500,且结构简单,三个在同轴上的基本零部件就可实现高减速比。
3.承载能力高:谐波传动中,齿与齿的啮合是面接触,加上同时啮合齿数比较多,因而单位面积载荷小,承载能力较其他传动形式高。
4. 体积小、重量轻:相比普通的齿轮装置,体积和重量可以大幅降低,实现小型化、轻量化。
5.传动效率高、寿命长。
6.传动平稳、无冲击,噪音小编号规格1 品种规格我公司的谐波减速器按照柔轮的形状可分为杯形与中空形两大类,每类又根据柔轮的长度又分为标准和短筒两种型号。
同一种机型包括若干传动比。
2 编号规则产品编号由我司英文缩写、产品形式代号、规格代号、减速比、结构代号及输入端与波发生器凸轮连接形式六部分组成,各部分之间用“-”连接。
工业机器人核心部件-谐波减速器作者:csuzhm2009-03-24 00:18 星期二晴机器人驱动系统要求传动系统间隙小、刚度大、输出扭矩高以及减速比大,常用的减速机构有:1)RV减速机构;2)谐波减速机械;3)摆线针轮减速机构;4)行星齿轮减速机械;5)无侧隙减速机构;6)蜗轮减速机构;7)滚珠丝杠机构;8)金属带/齿形减速机构;9)球减速机构。
其中谐波减速器广泛应用于小型的六轴搬运及装配机械手中,下面介绍其工作原理。
以下内容摘自百度百科(稍有修改):谐波齿轮减速器是利用行星齿轮传动原理发展起来的一种新型减速器。
谐波齿轮传动(简称谐波传动),它是依靠柔性零件产生弹性机械波来传递动力和运动的一种行星齿轮传动。
(一)传动原理它主要由三个基本构件组成:(1)带有内齿圈的刚性齿轮(刚轮)2,它相当于行星系中的中心轮;(2)带有外齿圈的柔性齿轮(柔轮)1,它相当于行星齿轮;(3)波发生器H,它相当于行星架。
作为减速器使用,通常采用波发生器主动、刚轮固定、柔轮输出形式。
波发生器H是一个杆状部件,其两端装有滚动轴承构成滚轮,与柔轮1的内壁相互压紧。
柔轮为可产生较大弹性变形的薄壁齿轮,其内孔直径略小于波发生器的总长。
波发生器是使柔轮产生可控弹性变形的构件。
当波发生器装入柔轮后,迫使柔轮的剖面由原先的圆形变成椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开。
周长上其他区段的齿处于啮合和脱离的过渡状态。
当波发生器沿图示方向连续转动时,柔轮的变形不断改变,使柔轮与刚轮的啮合状态也不断改变,由啮入、啮合、啮出、脱开、再啮入……,周而复始地进行,从而实现柔轮相对刚轮沿波发生器H相反方向的缓慢旋转。
在传动过程中,波发生器转一周,柔轮上某点变形的循环次数称为波数,以n 表示。
常用的是双波和三波两种。
双波传动的柔轮应力较小,结构比较简单,易于获得大的传动比。
故为目前应用最广的一种。
谐波齿轮传动的柔轮和刚轮的周节相同,但齿数不等,通常采用刚轮与柔轮齿数差等于波数,即z2-z1=n式中z2、z2--分别为刚轮与柔轮的齿数。